This recipe should work well with chemical plants and produce stable 6k/s of water or in cryogenic plants producing 9k/s based on game mechanics.
I believe that both acid neutralisation and steam condensation recipes should have a lower recipe base for ingredients and results but added productivity modules. If this isn't enough increase buffer limits two, or three times to remove fluctuations and stall cycles. Otherwise, limits need to be set at 150k for the steam to handle cryogenic plants but at this level, I don't know how the game will handle it if at all.
This approach takes into account the benefits of having more modules in a cryogenic plant for players who decide to take this path, but it also won't scale these recipes to horrendous values that the game can't handle or that you can't use at all.
In the refined concrete example below, there should be an option to remove 2 chemical plants and resolve water problems that limit this blueprint.
0eNrtPdtu6ziSv9IwsBhgYffwTuoAu8C8L/ZlF/PSODAUR0mEli8r2+kOGucD5i/2Yb9svmQpyY6ZmJSqSKftOAYafczIrmIVi8VSXVh/jO6qbbGqy8Vm9O2PUTlbLtajb7/8MVqXj4u8av62yOfF6NuoLh7KRXE/sd+Y1cWmGP0Yj8rFffH76Bv98X08KhabclMW3a/bwct0sZ3fFbX9wngPZb29W2/yTblcjMaj1XJdth8tFgtGZtl49DL6NhFSWeD/s80rC8T+qCoei8V9Xr9YnEewGQi2YjoCNofBljICtoDBNjwCtoTB5mQHm+sfHijqFcpdkc/8ENjP8hXGzzIwQysom2LeSUZ578jUelVYiZov77dVMeGjEH37n9tfL6bl4tnOc2kftOAOIytkltTZr6NvpCHG+8RK6g/73zGtGkCrvBJaDYBWcyW0ZsO0CnoltFICIFZcC7EUQKy+FmLZMLGSXAuxHEAsvxZiBYBYdS3ESgCx2bUQCzCf1LWYTxRgP6lrsZ8owIBS12JAUYAFpa/FgmIAC0pfiwXFDhbUZlvfLSebOl+sV8t6M7krqo3vHdrRzaIl/b6si1n3FeNDwVJQSBAKjkXBaQ8Kynw4BBoHQeOQ73BsF/dF/Vgv7b9BLKwXy3i0eVk1AJfbzWq78TpPDodUvl4X87uqXDxO5vnsqVx04nmEU/TJQGgz2G+UK68Xaf9sevjhYlnP8+pP2kIiuIWEs4VCT1jwCQ9uu8NR2X51Ui7WRb2xjzzMVgMLDPWRmQjh0j0LDROuLA1rn0iXiwBSTuLYe0SigHsJKQKl6aEPgZLFoRQJQsQ5VlcIctMVSbqCow8ewXsX24cj4uARDKYbwrtU4ZFK+h7poAbiCF0ryWmUgYGjVPREOzPDionqJdYXrSBoFAppyQm0Pao01soSDC93SvVrsSFZF2gLVRk0XWhFoTI0DomQbIPX/D6UCkuWRhveQqfgaIjzAX1vcK1Xll4/r9y3Z48O6LTbdFWXy3rPsge/oKHVgGZYbkm0HtAcjQNhT2l2EkGT6BdV1w0AJIsjyBKnIcsJMlszqZpU+XzlDbwf0DG/REsJAqUoHQalgKAAs9IpDgYGOZakSUHBQSgAPjbXa8E/s9tJHTTIytryk81y0p2/AyF3Btpkir6BPuDACEiVQmsD97U1BJSnAOUw6kXcyy+Pt3eVRJNl0IuqECLTt799lq3Sca/SPMFgV2ZISt1X55BAoY9797WNQ3ijSQqKwLw1TXmphUmMZik4eGDiiAPczbNI2F1axKFkCSgPG/qh2WPtqdKXWcGgG8Fx7exdOpOHejm3x1K1KRaTsm5PPrSPZ1XbY83ifrZf/7SuHo3QcXLYxtJ6SMNIOizwg2rKdZqEgGQIH0zfRoebvQbhA5byNCgPSs3++mVW+ZGJV6MetD2v1K1pEN5rKU6zPgjd7ebbpKBE6G6pT4NSgqTQBKQwrLivUwxVits0oO4M+o1UUayZb0wKjsCJYTKI7CgekB3zpUQnI7AMe3Xw4vh4nh1OjaKynKzL2eRhWy/yWTHgVGV4F8D5zKQQExmGek2vjHqOol5cGfWHw/G+XK+q/GWyyhdF5SGdOEqXes7GpmZpoE4pr37LX9bT9dPyt9G3Tb0t7ATtZ0vbdPaU15vuj75pHg7UcmHhNuybPRVrn44ljiVJ2nnufzJdF5tNuXhsWVoX8+VzMd3aZ/atpy7upztut1PwzUHBWaVhrNqFrNYrK2yTajnbq68dmudtNcsX23Ua6zSCdeqDWGcQc9AfNIcMMQfzfv1OMwdKCGIS2UdNAhHXcTlB4g1iShCvGi7hSTg5nNmUfBSzEW8f7iSSCD9oS3vgPNb5fJ7f2ZPG2nr5r37M4j1mq6E29bKa3hVP+XO5rJtvzsp6ti03U/vs/vXnD2W93kwPZao7nfZc1ptt6y3aU99+Y2J5NurAW3Y0xa60GcxXeZ1vGiyjf2sf7zA1f57bw6Nuud+BmD7n1baYluvpqtzMnkbfHvJqXTQLtrarMLfMmDZnbrPTlpui/Uzt0ozewmr0951dj+nzsto2E7Tff/2bPZmbKT9Wy7uWhLyqrKpdLauX1dNy8bLXtfbvdinfT7LRyu2DN3p6uZjO89X+T80BsOPZtDMQYGzrEM6L9Tp/bJ7+91PxU/H7yspIcf/T5qlebh+fVtvNT+V68ZfNT3ZSP4/8UumcZcWsvC9qe07P78pFuwge+VBBuWxeVn3CsoN7EJaWO+7oF7TwkIYH66IBAv/Rf1gWfN/H798XVUOldfViCdla0WocpdMux6QTvMay8rL4cO7mdbl5sothLct+Lhs0lw+g3zG646yzzZqc+h3r3my+5aqoO7vj22gyes1zQLHXz4CkgC2BBGwpyVJwUBAOSiLSZ2kPJaCkXUppSrI7ATkwqFPQ2JsC4Ga4U7/fglKEa8+FR+JjJNQp24vImyc9L3C37FeHyzIlZA4VRZWWpU4jt1lkGQBNkVoThzNpp2Qp+QHANWQEnm7nJghQEHCaQkFIa+FLowTF8wWdcyLwutypjhqMXAoC4Aww00wAzgamUhIYoAzQKckGUCQRJTwuGhqTpk9ZFpd/kKKlOD7pRKDZySki3P5uT3jhMUyoPCSunKeVRVC3LCK8qkdlJUg0BFZ9QTlwJ0vATubonSz7pd+LRMflKqQ4TTj6dcVNWYASlsVlRKQQhi8ZkQJNmKBxqQRJhKGPbqnwhEUmLCQRhq4ikX2GsPDikHFZEUl0Kdy9I/Rz3yiTlIEQ0r8isq4tad3wdW0MvdHwFS0Kf7BIirsf5XNLoEQEXdSJgi5udU2fraEBxpxExE70iWRdIvSiPpHp4RbiDAbHDtLZuDLjcaK1k4vZALcbQlk5sec0whAmlhNrTsKp0LrLpRbITIX2f7jkQZGgbSonQnzMwwAStDvECQmDkYgUSqDskimUQJFEeEadULKPYZC3RqXT0JpItAaW0tdA29HnPTycshxw/I07TPsRFXADh83+FhPKtCbLU/M7N2b314iYXQfHH7Zzao3AfBNv+fZWiX4kF/cMOQpsmnQm/S3IIYrnkPzzJOvvMZL1X6cQqzDHGJ5j6s/jWFCKmnPdZcq/RjDl70GmcGQOhsbuso9IwXisi2LR5UQ4STv/PopOsWj4E0ih0BH+UZrBDr6wV9YpvIMnbpxLAUZt9v88xWYPy7VKWzUTt2r4GwiGTKS+FLi6yO+nT3mnLTZ2Mut9apeTJNf+vftql1FG/QwzKVM3Z516xNVyjCabpoakoY00TQ2NQCtT9ZFhaVjj9pPhCZlVxzi9mVVGpODIYDgk6k6P3cw/7Y3ICE8SP3J++KnuUp13dO8azThYiqKarKq8TYzyZES9z+21ZsJ2XUxfgQaqFqiJuw7iEikxCbkPLT1eqAfNW/y+qov1GpmJEKt7s5S0gCA5GU2BakJQI1SnUMnnRIZP90HrtSzCNhbJVlYG7GgkTL9zxqmlQkivpKlnaYa2EiVF++uyiBQhme6vy9BROkmwtDGCudKB9YCHJyIxTL2SZD18xODE5xagXdSM8BQkAaXHSExWkUncWcytOQokXhnA3BH2iyInWmodhzNJpAdvdFEKwK3Djl9tvVFWZXr1PXS6FFhmr2Wv2mcU24CQGUQDQspSQpoatmcxVQ4ueBW0S71YREpAEUqKTAkoQpGouBAwkl86LuiLxGJSQopQhmUpIUUgEkZSKFFAJDSFEigSlhal1HEtFRhPQ6si0QpkzIAF6RRniRm4kZU3L9T//Mf/xccQdggCcQTmVDIguabOWe3qYRv1uiFSeBZV3MoYtn5YXKgcHjN0/AbqdFFsflvWv+6q/+9fq807WLu6/9g1IF11Nvj7FPl9hvw+79lDhxN2zz14yFsHrxRYd2Kwfvv5jX/O77UDLTXEj9f8YduKQudvbRGw8XDAHAVcEeKA5+PhEB0K/KSB/z24diZ2t6rL3q3//Mf/jr7E5svAVw9R2WNkBILR7gUWvzjLFhGP5m8XLDvOEzi6/WhgfU44G+K7auRss6EJs6Ennw1LmA07+Wx4wmz4yWcjEmYjTj4bmTAbefLZqITZqJPPRifMRp98NiZhNubks8kSZpO1Z5PnFjpvJ1CCNRX7fFfmzzUcyUcajRQJHGczMix0F7wYD4sTFnyPSerUfQ9aNOqsFg27KIuGXZRFwy7KomEXZdGwi7Jo2EVZNOyiLBp2URYNuyiLhl2URcPOZdEw+Gmlz3pa0Ys6rehFnVb0ok4relGnFb2o04pe1GlFL+q0ohd1WtGLOq3oRZ1W9FynFY+/eRYcn/vw2jv6rvbuX05b58p4YnGZjkqTc67iGrQkzFktCXJRlgS5KEuCXJQlQS7KkiAXZUmQi7IkyEVZEuSiLAlyUZYEuShLgpzLkkgs5VVxZ2RSKa8+Yz0s40mlvOqsU08s5Y1MpBSJpbyRiZQisZQ3zvoTiaW8cftJ4Et58cnk+DsrGT6ZXKAz1hk+AVuolKpkKBKdgkQFCkKcyyF7ekdy5VZXfNnut0xkccXSCnhT3JkKjpkkcaXTF08XqLdzc6B4pfuLddVl7u2fvbW6/MAwLxyeUpqtINXMTIoUHBqGQ8KbUwj3/oxjMdr5oVa1tcf2AvHgP3zduz1hFdPavwo66qJ8KG8wHeaDx49z9ebwHCm61Ad/y6Z8Z596oUZWF+uE8k/nls2Hhj+tFuq5/91vbg40Lprl66Zv4aSsl4uJ/Wi1xZdrXcScq0YBZclBGRGDUDIAFInYHn3nsvBCV5g5hrawQqgZRfBb2AAE37nXO0nwW0PkK8o8Qg0rhZUz537QwaJzlVJ07lyzGZYVTdNkZb60Ruei05FN9dukyp/zLygzmsFlRgv0vnfuuoSlBOu+9y3xMSnBD9W2vD84THeSgEoGDua7akRzLo3W/Rpxsmh8jbVWcPCGoCfvaVAeOMEMfw/c26X57QKuinpmcbYNc5vFLuZtVHlbF23XCavOdu1+882kKuzZMfKvoBnSe4adRu9lsDcGw2MuyTCYDuSOBSpP2BSbORcpYnrSn3gSLKop/YknwaN6se8mAV50EdV9HYtFIhjq0CJOylCFmET2UZPQUU3fsfw2Uf3tT0xqSgfmlmAfVPwlg+zdWnqhprRU3i3O4GEZc+egewGpjAtoZRzdyTnMJxHVyfl46giXiHOzIL6T8zFmc+vrPGz0Z2ktl3eKBC+qcS2Xj9FhxMsktLAGb/0sjrCEfcMJSeiKfMxS48WR0nkZyDx+dOMirHc0gwFPacAMpkAktJIGI5FRXZ6hK63QPZ9DpwgnOuXeYyg7TELPZzCSLKnnc6+eDKZtcEqiej6nqElOk65hBrKTsrgwkQSJMOVxgbKAKcqpwITGQpuBDl+PSgFQhn38HABFD0IBbG866A+R/RsALJMZTCcpwGI69x4Ou8b7d7AXPB281hXAWYbYH6rPHBNe6BE3FyrVb2oP2nyciTSsIow1rEEZ4qxUBr/aKqq96g48VPydi9egDVXDkmWiGqpiZ5xFtVBFYuGI41GL0xjbHH08aok+Hp1iY3ysRJwnVrLeVg/bupxN8ln755METThHW+1a4dktUpCEdhqXcfEemA7nKi7eA1RsXMfFe4CTN1HxHjEY73kvhH2Bn+ZogIR9OM/gYZ8kM8dJhO/T8zJz1pMHpM/Jbu89MygFwGJAWJB5JTWVCkJNaiPFQlCRjaPYZ24cxQVCo3D5dk0AGkUMvnK43tzgQic58Tjo9VFkKTgYjB2oDG3VAx5hu8gkJx5wnd2cY0zqOUvRnBLxxs+zHpq8x5VEZG4IiufYoGPA9eKFdoZUKb42BmNEkj8PtvtkkjsPyvIsBQkDEaIinXc8YYcrSMKc0L38Gk6u3IXLumw5J30uJn62qu3ZZ3E/NzbgZw2jcRXpz4TpHxXpz4RtOIXyboZsJSUxHsWQEgNkMDPAXPSw3SbFtdhtTkL17KmYl7O8Lb1aeKshNF7PODt/vSnyeRMuvy8W631S2ucOmQe5msG5qkgSV5t31cmi2NozqCqvnK0a430HKAyNKN1R7DRmtEY3GVNo40GjX5OVRL+DaPRbsxJ4JDLN7c+iMky4k7BcVPanjVPoYVsv8lkx4PqPOA3OZ8QE95nGkK/ptZFvUOSLayM/S3Foh3StibinQwN3cjiCZyg8KcgNg3CIcjIRmZo6SyYJXQpj+g2Mk4Z39jPLq1kJrN+HRHJMRPhXm+RzwEQcP4ako026QYSGdmDSlSEkBBXvU6VvoUJ2WpaSeA1EkkVoKDd7mcQttpNUHpG4THtOnFuqssNlFucxJymO5Yyn5UfTSIkSaWhJ1LnkJOCjOEwTXqYyFRcuICk4dRxOmiRJBqskXK//TUkAlUSSY5+CjhlBIo4ZNxBCY3anIDQunpCwOwVB6FxJToSTp9zxEjByBInQqC7cjqLhRZJxDCNAq35/qWOxyO+qphft0V2P4RtGX+e1tArnrm5ug3l7wykhxzc8/0AsHMp5H1wojUlwDkIxmLnQEJQszrVObq71sA9YOFUNKNc6ubnWe9lK41zrBOKQFpTFOdpTTgLKUxztwMPcKe7ovWtBHQB7dQVFX0yqFHoRVJovncYk7guKMJfVkYkOXmxMYjqLxpLFpYzjsDDEDRs6e48FV5a/a0bv+vKOPHiHfozHKa/jV9dfo1l8xCDsTp31CxuYgYiLOQy5dAYiLvgw5EQMFKCLUl+7vJOvfA2wcKqE+rhlAtz6YtfKCqYS3tCaJPEfH3GnPfNvPh31Qrab5ed+IWMm4p2X9fAA5LwULEO8wbVIfFA4AReX+icK5RKP6AOgOIxLYUcBZ4g60TCTUtJEfDP3IklJEwEjSTGfwUjQissprgUjQQfpHKMZjAQds3PKT8FI8GkEFI1EoG8v0QSPBF+1yfBI0HlhmuOR4Asi8ZvRKacaalHnXBBIb63Zb63Zb63Zb63Zb63Zb63ZP6hFnX07tZ/ty/B09pTXm2CnGCEQXVbPe4Td+rXf+rXf+rXf+rXf+rV/jX7t8CNMgY8wdt4j7NYo/NYo/NYo/NYo/NYo/Gs0CocfYRqWXMP3HTuptwGlcK79Cd/E5Hhs9Weu6BfOBURhauW1UOvchBSm1lwNtXSYWucOoc9OLQNQK66GWg6gVl8NtQJwywq5GmoBdwG6aQ2fnFoFoFZdDbWQ+4Kyq6EWYEupq7GlJMCWUldjSymALaWuxpZSAFtKX40tpQC2lL4aW8q5867vzVE2BZ8tvYQgMiMVsOijyR6NgC5h0F8TGHHQFbI5aBj69/Hot7IuGkn4hY7lmI3l93H3idL2s/3LmLef7P/Hov0kmuc6az/L5rPsfpcRO6CZPAwYJYdBU2nTgicNIkrUWLQj1Y60M2Js/0w3I87HrBkp03xTs9fRYZpUZe0z0v3OjkQLpf2m/WvzjHbPmu9YmGT3jLbP+O4ZbbHr3TPWPjuMRPvNbsTf/K4byddnoh11z3T7zOyemZaiHczMZd9+pDrGU+KwuRvtOdhSPW62SDtiFls7a7obNTSIFnvzr50bM6/PGr5089yP1G6k2pHZ/a6dpzMSr+vAWNbSQJ1RE25vR7zlIGe7EWtH+2e8hbIfdWvb8aXlwYH2dtQ4j9pRw4NxI/at8LXSI3Zr1KSiOyMhnLm0/46bKEo7Uq0Aq50IN/+Om43ajeQrhu+ddmuUbLUtVnXZliVW+V1R2b9RSf66tuPnol63W00qloksk9LOnTeVYf8Ppb+8/Q==