- creative mode: you get ore, water, oil, electricity for free
- goal: design a rectangular (other shape not allowed) factory, takes in resources, turn it into 6 type of science packs (excluding military), and consumed by labs.
- scoring is science consumption per hour per meter^2 (more on that later)
- you're allowed to use any number of buildings, modules, etc. The only constant supply are ore, water, oil and electric
Example
This layout consumes 132 spm and used area = 108 m x 75 m = 8100 m^2
Hence its research density is 132 x 60 / 8100 = 0.9777 (m^-2 hr^-1)
It takes around 2 hours to stabilize.
The hardest thing to stabilize is blue circuit. Yellow science and rocket control unit competes for blue circuit for 2 hours before everything stabilize.
Layout
10 hours stat
1 hour stat
This layout consumes 132 spm and used area = 108 m x 75 m = 8100 m^2
Hence its research density is 132 x 60 / 8100 = 0.9777 (m^-2 hr^-1)
It takes around 2 hours to stabilize.
The hardest thing to stabilize is blue circuit. Yellow science and rocket control unit competes for blue circuit for 2 hours before everything stabilize.
Layout
- layout.png (2.61 MiB) Viewed 9167 times
10 hours stat
- 10 hours.png (73.7 KiB) Viewed 9167 times
1 hour stat
- stable.png (68.96 KiB) Viewed 9167 times
Math and stats
Definition:
1 sps (science per sec) = 60 spm (science per min) = 0.06 rpm (rocket per min) = 3600 sph (science per hour)
research density = science consumption / time / area used
In the example,
science consumption rate = 132 spm = 7920 sph
area used = 8100 m^2
7920 / 8100m^2 = 0.9777 m^-2 hr^-1
The way i interpret this number is, each tile generates and consumes 0.9777 set of science pack in 1 hour.
Originally i used spm density, but the number is too small and inconvenient. (132 spm / 8100m^2 = 0.0163 min^-1 m^-2)
Changing to sph density the number is close to 1, which im quite happy with.
Definition:
1 sps (science per sec) = 60 spm (science per min) = 0.06 rpm (rocket per min) = 3600 sph (science per hour)
research density = science consumption / time / area used
In the example,
science consumption rate = 132 spm = 7920 sph
area used = 8100 m^2
7920 / 8100m^2 = 0.9777 m^-2 hr^-1
The way i interpret this number is, each tile generates and consumes 0.9777 set of science pack in 1 hour.
Originally i used spm density, but the number is too small and inconvenient. (132 spm / 8100m^2 = 0.0163 min^-1 m^-2)
Changing to sph density the number is close to 1, which im quite happy with.
Story
This challenge originally came by itself when I was playing no train challenge, after moving to late game i realized self contained base is the only way to go. From mine, smelt, produce, research, everything has to be done on site.
This base evolve from my starter base, which went though many iterations, moving stuff around and fixing bottlenecks. Im quite proud of the final result. Since this base came by organically, im pretty sure it can be improved.
With 8 copies of this base i reached 1.056 rpm (rocket per minute), which is considered a(lol?) megabase.
8 bases sounds a lot until we compare it to standard megabase + 7 outposts + tons of rail network, i think its a fair trade.
This challenge originally came by itself when I was playing no train challenge, after moving to late game i realized self contained base is the only way to go. From mine, smelt, produce, research, everything has to be done on site.
This base evolve from my starter base, which went though many iterations, moving stuff around and fixing bottlenecks. Im quite proud of the final result. Since this base came by organically, im pretty sure it can be improved.
With 8 copies of this base i reached 1.056 rpm (rocket per minute), which is considered a(lol?) megabase.
8 bases sounds a lot until we compare it to standard megabase + 7 outposts + tons of rail network, i think its a fair trade.
QnA
Q: Why exclude electricity?
A: The reason is solar. Using solar severely reduce the research density. Factory design should be independent to electricity design.
Q: Why exclude military?
A: Biters evolution has caps, we dont need research military infinitely. Most of the research goes into mining productivity anyway.
Q: Why rectangular?
A: Easy calculation and verification. Otherwise one would subtract every single unused tile to minimize area.
Q: What are the major obstacles designing the base?
A: Substations! They are REALLY annoying to work with. Also Refinery and cracking.
Q: No limit on size?
A: In theory bigger size should gives better result (with a limit), but the base building philosophy is "plop and forget, small and many", so the size should be reasonable small, preferably everything should fit in your computer screen. Consider this as an optional challenge.
Q: You should insert speed3 in labs, not prod3.
A: If all we care about is science consumption, of course speed3 in labs makes more sense, but lets face it, nobody does that. Its more reasonable to put prod3 inside labs. Consider this as an optional challenge.
Q: How did u choose 132 spm?
A: I consider science assembles ratio 5:6:12:7:7, shrink it down to 2:2:4:2:2. With prod3 and beacon-ed, it turn out 132spm is the number. This means purple and yellow science are the bottleneck of the system.
Q: Whats next?
A: Since the example base only takes less than half of my screen, i want to bump up to 264 spm, hopefully increase the research density to above 1 m^-2 hr^-1 . At this point, i realize this is a fun challenge that i can post for others to try.
Q: Why exclude electricity?
A: The reason is solar. Using solar severely reduce the research density. Factory design should be independent to electricity design.
Q: Why exclude military?
A: Biters evolution has caps, we dont need research military infinitely. Most of the research goes into mining productivity anyway.
Q: Why rectangular?
A: Easy calculation and verification. Otherwise one would subtract every single unused tile to minimize area.
Q: What are the major obstacles designing the base?
A: Substations! They are REALLY annoying to work with. Also Refinery and cracking.
Q: No limit on size?
A: In theory bigger size should gives better result (with a limit), but the base building philosophy is "plop and forget, small and many", so the size should be reasonable small, preferably everything should fit in your computer screen. Consider this as an optional challenge.
Q: You should insert speed3 in labs, not prod3.
A: If all we care about is science consumption, of course speed3 in labs makes more sense, but lets face it, nobody does that. Its more reasonable to put prod3 inside labs. Consider this as an optional challenge.
Q: How did u choose 132 spm?
A: I consider science assembles ratio 5:6:12:7:7, shrink it down to 2:2:4:2:2. With prod3 and beacon-ed, it turn out 132spm is the number. This means purple and yellow science are the bottleneck of the system.
Q: Whats next?
A: Since the example base only takes less than half of my screen, i want to bump up to 264 spm, hopefully increase the research density to above 1 m^-2 hr^-1 . At this point, i realize this is a fun challenge that i can post for others to try.
0eNrtfduSG7eS7b/0szmB+8VxzpdMOBytFiUz3OrW6YtnHDv071OkWGSxhctaCZYs7TMv29uWuCoBZCaARObKf928u3/dfn7aPbzc/Pqvm93d48Pzza//+a+b593Hh9v7/X97+fvz9ubXm93L9tPNLzcPt5/2//b8+fZuu3m+220fpn9O//LnzZdfbnYP77f/ffOr/vLbLzfbh5fdy277Fe3wL3///vD66d32afoLJ5x329vpkxPu58fn6a9P/3f64gSx8faXm7+nf9qwx52+/bz/k+fP2+37zafH96/32429+dV8+fLLN+gGQFdidNtHd1GM7gB0J0b3ALoWo4c+uk1i9AigezF6AtCNGD330U0Wo2sFwAc5PGCtRm6tGjBXIzdXDdirlturBgxWyw1WAxar5RarAZOVW6wGTFZusRowWbnF6r7Jyqfd9A1WrjKmb65ydTd9Y9VyWzV9W9UDx4K+qWq5lzR9S9VyF2/6hmrkym76hmrkhmr6hmrkTsb0DdXKLdX2LdXKTdX2TdXKbdX2bdUNHIP7turktmr7turktmr7turktmr7turltmrPtvr0+O7x8+PTS2lbNf8xG+z0/4o4Z6vc3m/vXp52d5sPr08P07WudCuYDdQuBf78NMl697L7awLuyn220+fXd88vtwf4wpf8SXJbltwpSnIzKrk7W+kk9t2fm93D8/bpZfqjwtdmg3LT197vnibxDn8aSrhn+7x//Lh7fpnGcffH9vlluk4/P+/+mq7VT49/7d4XP2Tz4kPvbvcnltInLC766WqGiO6YJbBheAn8yFRZaKoCMVWmPFWmhBupqVLDU5UwOzOxa2d5YNJP983mpHvKlI0bnRxPmLIxuD34EVM2Gpoqy0yVHvbX3uFTpQNuD37ElLWHpoow5dPdHBGdMmU9vPF40JRzz5J9ZgQf9tZBIUeU7gklaABGd1EMMfbxoVtoyVJvxQKzwY5rWvCwxdQMpuQWQ5DbOmbqIeKCB0Jw5nA87mvDwE6L7R5RwfNkiMNN1MQ8jW/f0UDWZULPvKIdmPAETThjwOOnvogbsCXONXHAgLFjd2T21PGLREz4PCXCDgYMGLvJJdyAa3fQkuCJMeDxq3TCDNi5ngEn5jQ8HrxIDjiK+O5ZJHkqcjGjabHYQRC5sIDWcHfaPDyOVDOvp+3/e53+2Q6R7Ed0/Iu/f9jdT3/7a1LCnK1wAt89PT5sHp/2g7h7fN1nRGilvvxWkog6UZ9coXgGsiKiE/Y07hKSpq7ccVhyQ1y5Q1kHXQmXug+fTknycRD34dPXyitAeQE97AVykFjP6bsrWE+Oggu67R9XMhXTHnZLmXECw1+bJpO/pAHOXCvGI4yro1ZGoI9rqqNWjC8ZdyVa4b6k7Uq0YnzJuDPXCj9RmIQ7c62oa4AdHwdxD7DtFWCcwPhRSC+SvXDrWfMopLXmryaAM9eaidyNH5a1Jh7L3Hkhi1DEYeF0O9GAneiR6PlJaNW6aWotOi+chqHWUDHiwHBKvlWIjiUC2DLAI49np4t2e6EMcSk4pfUiwhvimewUkylbgiGO/5ZZOWNHnoQDNsGEGZ9yjxVw5DKeAFaEfzAi2z19Yg3bNYTtmsxoAGG7p9gzNImZAGaW3Ur27rPsa6yOJUxdp6apW8LUNbPQdsTUdYJM3TLP3ZFZc8LUtWWAw8isYDuMZS7qmhGesN1AmK4lTJdZRSey3LCi4TJZab5pt0N5aB7SIyIPrSMrbqaM2ozkl4EzINmYV9Uf3LSZY5nDDVszR9KRZDTQ2XkivsZcBYiks84O6/EdVjOL5gc2WHB/JdLJameDomP2+PZKnQG9xF5XPal53GBrh9Ly4hOhMOYq4vGt2DArHkQBsDVvOAE38M5tOeAGbpk1DgMGDt6VA27gljl5EalpjjmBjuSmgfEZIjnNMSf/gFssFVwMuMU6ZgmjxGJXjSdGImTdjvTGgcMzGI+NFmdLMElQpetwvgQRvscZE0T4AedMEOFHnDVBhJ9w3gQRfsaZEyT4SeHcCSJ8jbMniPANTp8gwrc4f4II3+EECiJ8jzMoiPADTqEgwo84h4IIP8EkCiL4DLMoSOCzgmkURPAa5VEQoRuUSEGEblEmBRG6g6kURPAe5lIQwQeYTEEEH2E2BRF8gukURPAZ5lMQwBulYEIFEbyGGRVE8AamVBDBW5hTQQTvYFIFEbyHWRVE8AGmVRDBR5hXQQSfYGIFEXzmmBWMK2f5G60k1ArGSzOXjNYSRoSRDxq+sMCEfqDKaHsFToTDl6r3acMkZ53uXZDwXsKKMLIM4Qq0CL3ZijwvwtvZMkXgJCFGGJmta/AZdGbLiAgNBgZlBIwGkDKba1Aa9GZLxGkwMlsCUgNImc01WA16syWgNcCEF/EajCxDEvARjHwvU4QE1Y3dKoaRoA6jeUqCgdFbI+ASGPmepetUII+0SNESswl0TIxI1qq5h7LoQcAnMLIEcZxQoDdViWYUgJyRzQJKgYGpqmd24VQAnalyWsAFMDIkQ5MBQFrs7DgbQG+qnIAOYGSqPM0HAGmxC+OEAL2pinTZDSZ6ElACjCxBFpTyD3zPK6qWv7qLey0p5jdWLrjk0u2BFeeoxU7qOTASN1LPfxjTlTMCjPeSgv6ROQh8Rb+paGKUlPSPyJ74mv63muiKwFlS1D8wkqD4qv7KKgQtKesfkd2M1PWvYkXBCq6oHjh6UHxom3EPFTxf2j/yucBfmRDPHqKgtH9kHGmgtH8djcyC0v6BGWCI1tr+hONWG3fq0dCl/ZBPj1ZQ2j8yDkeX9tdWwAtK+0ckDwOl/atYTxTcMRB3HpOgtH9kZjNf2m9suZmB4kv7DUCBYRZpbvLSfmOad8ZkRkr7D+DXVrFk+dL+gyA9HUuOL+3HgP0VSvt7CxX40n5M+MiX9tcsIfGl/ZiM+Qql/Z0JpgjVfFn44pEra760H/IP2YyU9q9iu9nypf2QBlBka46ZRM+X9mPLHkZK+9dZnciX9ldMPSe+tB9b6HyF0v62qVuCN+2cxwysuVWaL+3HgM0VSvt7s2L50n5MeEeX9iOma5WnS/sxecNAaf8ahmtVpEv7y3ZrVRov7e/pUWZL+yuyasWW9kNqo/VwaX9nBrSRl/avoj8EkRlxLLNE3pzWDK4fL+3vLVGgS/sx0SNd2l/T/kSX9mMS5vHS/s7kEjRktbNB0TETqW3MGdAaM1Dav4rBGkuX9kOLT6S7MVcRS9CXGWrFw0Bp/zorE+nS/oqBE2xlllrjPF7a3zFwq+jSfmi5Ce4xx5xArRkv7e9NiaVL+zHRHV3aD1kskdjmqCUMA6X9q1gsQVnWjvRam8ZL+3tqlInSfiXooqqI0n4JviZK+yX4hijtl+BborRfgu+I0n4JvidK+yX4gSjtl+BHorRfgp+I0n4JfiZK+wX4XhGl/RJ8TZT2S/ANUdovwbdEab8E3+Gl/RJ4j5f2S+ADXtovgY9wab8EPcGl/RL0DJf2C9CDwkv7JfAaL+2XwBu8tF8Cb/HSfgm8w0v7JfAeL+2XwAe8tF8CH/HSfgl8wkv7JfAZL+0XwEeFl/ZL4DVe2i+BN3hpvwTe4qX9EniHl/ZL4D1X2q9DOenfxiAp7ddRmrlklxlYrR7Qzp9kjzXZk4QlYET2zBcs6ATEvJK6AkvA4Uv1q3nSPEsAJryRsAQMLEOyV2AJ6M2W41kC3s5WMcDEtcycY8EjsxUwgzOxa3ApXoFwoDfxSUI4MDI/mSccgOwiqysQDnRmi2t+qcfdN9P9UgfCLrK9AuFAb7YcX82BCe8lhAMjywAade7adI4C6oIRyRNFXVA9uOTMUBfUYNwyl6oxkak3j07pgUqRg5JBDwd3j58/b582n+9vXxaPB9HvRTr+5aWFbrf3zb/7tpTh8WEv9u7p7nX3cv6JMcvfxMtXjDfw+054p7+6uD7dvkyD+vv895IrPnc4ZWjGAsQbu0V62ORPtp/e3e8ePm4+3d79sXvYq2s1WeCg6xP27vPht3d3r59epyE/Pt0UP+PGiQraXswReWOGOJk4FQREBXJP4BR2EzChb3tJwEcwInmm+QigFZC1wrRCHwI9PzqiGaZ1hD1SzTDHLw2uTsQG1CLhczt5wwP03nxPk+vL7vm4Dne37+6XK6EV7aCnD5QXz9HlTtjiedKZXly+z870/V+3D3fb94sB9RbXlRcXOw4513UleuCK46AbjltkxoGTV9yJ7h//a/N++/C8n5/nl6dprl4PBi2cwUyRSFTPUxxf3FwJp8XsF47hi3NL199zxsZISCRGRmJHSCSOynHV3BNnnIREYmQOPE8iMY28CBUkJBIjskeeROKtJroicJKQSIyMJPMkEpVVsEpCIjEgu9UjJBKrWBHVR9SVFaO4DVsrIJEYmVu32CTu/ty+bJ53949V/ghtlvvV8Refbw87y+3ry+Pv97evD3d/3Pw67V5b6cZl2aPIhY6dpHt+vL+drtW3D9v74r3OEgn3vm0RUUDgMLJoiSZwgLwSx2s37l6dEtAujHxP07QLlRVfJP1hKnpxmLj+aZloXro4XRSRHHuULRrfdY+yBAWeY7ZhF3jOBV0+JRNUd+c3V4/ImK7AuaBd8/5S71yKcC4cwK+9w3rFcy4cBOntsF7znAsYsLkC50JnobzlORcw4R3PuVCxBO95zgVMxnAFzoXeBEeec+Gt8MW7J8NHd4pnIv7B5xHOhVVsl2Ksy4QGBM1zLkCTSDQ1PXEuQMse7Ajnwjqr43jOhYqpE41PT5wL2EKHK3AudEw9RJ5zAVvzxHMuYMD5CpwLnVmJiudcgIQn+pluAmG6BCfchlnFaAc4F1YxXII1buObdhv9OOdCT48CXSwOeYYYx4vFe6Inuli8Ns8jle3Y0Z3geqN2RCK30DA+LI1UtuNmRT2IJr62HdLVxNe2VxQp8dXsmIQjHPAKU1C+PL02CXx5OjYJVyhP70wCQeV2ugmWJyHzBenQJOQrFKT3JsHSheOQqyJyAB1zAsh+oHCcdlVvkq50IBLAdCjmFxQzF5wuO8Ec6KL0morG8aL0niolvCj98GbBFWO4nPGidAG+B9qjnqNaEnyNF6WL8A1elC7Ct3hRugjf4UXpInyPF6WL8ANelC7Cj3hRugg/4UXpIvyMF6VL8LXCi9JF+BovShfhG7woXYRv4aJ0EbyDi9JF8B4uShfB433JRfB4X3IRPN6XXASP9yWXwBu8L7kIHu9LLoLH+5KL4PG+5CJ4vC+5CB7vSy6Cx/uSi+DxvuQieLwvuQie7Eueyrmm3orakmdpRoi3zGPwvLrqzXV6f7V6eHl6vP/93faP2792j0/7nxxTOn6f/uz9CefD7mm6Dj7vPj7c3u///eXvQ7bEXvibhSSPD9vNu2nsf958OYBPsh0KcfZx27vHT59vnw7VKr/e/J+bL1//xsNXaQ4zoPf/87R9f7huHke8e78frZmufuV5kDVd8IsZgYVYXugO/yUdxAJvy8X7r61USxXya+Ybc4rFK/Ny7i/gfytOG/Mc7yrqUwRms3BOCQR5mYXzjQ0Vv+UF6dZr20BB8oUhxDEzCFUzCEP52pQZ+K7SLwI53/q0RfVfRTejgBwA0k222OGUe3Ghm/OYHh82z3e77WSmm8+3B6sT5Yh5S2Q4W8YWnboGN4FqxbP8IjMRnVNVmNPDY+JeQPk0OtFOYJYKhL97gm788Hc/bm+fNv/1x+T9Acc80gb4XDjQWTMnKA5Q/bizd2z+8ylfJF+mYB4HfhXzYlIlT/c/aLTxGpwKnaVimoEqRvjMLpVOJbudxSl9g8mE1Iye+bG6iiFTD4Eviaxauzf0KpROS/sChk+319uRmGRNrYgdyQ9UpG8yZDGe9kGh6IKumAXuF/mfCM9E7Y65SPEEaCaqKANp2Rcm1FiDzPMmIHa/SM/keBMu1vbp9v1t2WEFfQXChPbUEPma1GYUWEqJ4s57rIs63og2rw/yyg4fJH3IL44bkI9u+d1gyMt1MGU/HSQP6henMfB2FQ6ZPnCB/7Re20kxp5U+LtVcg18ZRqC70EJufZGQChYVqbWVL/GsGJCZ5RFWDOaaHddUBCJXtnbjNFcPHi7itZdBk7HYYci1oElk767FcMAbuQufwV1+NZzxs0x2tNXJHuI8oSzHvI3TRremLQl4TX5WW2osr5SFhbQlItfL/ey2FKuTHSX5fZI3jxjWtJzEF8cix5GYhaQ2qx1HFrnuCKNN7eqWtITQRsxT5RNRoTJ/Lb/Je/03eGNMlo5x5/PUr/ZuQNEC53l1ikh0zGQ+0sbLi/WuSFjhmYbrJjUljXSEORYkfXm6fXjeW+Hm3fb+pSwz/Vg0RwDierHsJCDDKU9kVnTk0ReG9+0Dh2xgTGN37ZsDo0OqJVu9dkSVaeaey460COuEhDMXg32+fdne308DKxoC0dW9szKBDVGVDOqa2zLRxP1sTcCqECw3oTlj7EGm6Ox6h+pA9HCfP7D6Lr9WMMBXNvmg6GCAXVc7A8E+PMuSy0BWyPmz3tAczfpTGZoXkv6sNzTihuqbQxPw8gDUQaHeth6hzAl4utt0Tu+XsAaVebqc0L8EBq2uQGoTWm85QWue0yb0g8xBG57SBll5onX9id8Gktddgd6mM9WeZ7eBRA88uU38cu3dbpH9dM0rbdCptttpJseOUd00wukTmLEFKvf2whlZpkdBLXkj6MyTBSFmapQokS2TDrrcMKHipY2Avwgaq4C+CPH+ZiiNziEuyTBZdJYQ3fMsR9BUB57yKKwcOi9HRy58oNnfTgZ8oKlF0YOJV6BqYlyWCW8epoKpOmiTeI6nsPKr0ttgz8U66fXWifCzc3ocYhBW8WxXaxtEc4r3t7yBGba6NsNCnmrDm4BlshrK/BLWlrcoitla4/6YKZUhDuPWDbB0hZ+LoiMwlTqnC3oRKIzzf7W3daL6pC0p7sAZrRlg/PG8ubqqy3CSQyqrveW4zKyXXhWVuJa6W/yZffutD6/LMo39Xy4qNEHIXduSrh8yvZ0OUPWD1LRBj+3QNleVYYCCSUOhFoImvLJVF6+rRCUMc9QmWL81EWdxkiI/zQbuqlkc+xCexOAUYXAXxrlYnEVHhArwIhC8aItX+cvttoEXQqR+MddFR8KMdTGsxBQIMnbmmk2UERnGfPIAJSKzD/kVk2EDUaZUCUH8LPl704LVXDhBLn+OgxaBzDgxY3svIKqTmNAlQSRvPW56XlI6sAxh/zBVEGGExh4L8xMk9swDBUFh7zSxtBL3t3wI+nGWliC+P781FoE0TWmJXMLDCMlnQlQvWJyY0dE8MyE4nJdRAu9xWkYJfMBZGSXwESdllMAnnJNRAp9xSkYBfFQ4I6MEXuOEjBJ4g/MxSuAtTscogXc4G6ME3uNkjBL4gHMxSuAjTsUogU8wE6MEPcNEjAL0pGAeRgm6hmkYJegGZmGUoFuYhFGC7mAORgm6hykYJegBZmCUoEeYgFGCnmD+RQl6hukXBehZweyLEnQNky9K0A3MvShBtzD1ogTdccyLqlwUFTJdvHJiui9V5yyZyoqfw9q7b5w/9SevCT6SfzCftk3zUrPIRL+/fdfq3ietEQs58yR8pn9nj0qNMNoZ9HZdL/QoBYNNJ3Ol/KuzGU0D+LS7u71HfuW+IdHDZDybw+vL7v4QlO//KLSekZY/+a24Vppn7DP9W39cZMCX1ffUxESqvnGRG1/5hBr+hMM8hokdjxEX2e5lYU/thuTCCtjSIHOOoqRG/b/m/A+Ys4B0DjLn3FFfnUbVV6sRZjjzc6XVRKYAQTt8obSYlk6vRqIWl9ULLTeae150qFwhAceuqKUcdGtOH8dBp2qTR3HQVVEStJapu5QZwjGhB7TIuW8BOdcF0hTTQ22CDG2Bx2IyyZ0mGgkbeP+BLC5S5CuHq3wSWubvmWT5E5lQGSn0ZLWjssbe6S2OfqF33Tuepwa+ICAgKM+3lRIQrOgjrYCFoDI6IQvBmoMjjDzhNr7IY/68F/vbzeDrCVGVhfK9X5vmNIeLn29eHjcfn6Yz0/sCkD6K0T/+LFKAm0JVhpRwmWxxnstCZRzWl4ZavJYt0ngrQw2NoS6yYLsyxeJQy0KZnlCppRSLXFFQKkQpnMOEqsyUx2XKuFI4XP+NxpWip/+mpf8O139jCaXIPaFcSym8YqVClMJrTKjyTHmDy+RxpfC4/psIK4Xv6b9p6b/H9d9kXCl86Ah1jt4Vfx5ZqSClSJhQlZnC/fypIRsgVMD131pYKUJP/21L/wOu/9bjShFsT6jQUorgWKkQpQgeE6oyU7ift5FQClz/ncKVAt8AnCaWtbcBuOZRMfZOOk43FiDiJx3X2hwjw6g4XwmKQJZmh0FO83EkNnYUuB0bi36Afsb8SEmzkSCjnZMvkehrjDQnCbS0iab8QB52Yh5g/Pjfd53v+a6TFE1Yguhr0nR9ftmnMXSzx6szJN8IF8hR4LZPY5hYA2ywiYhtRtheU5DXnf9s72MpsmXnFcVMw1XnHQXqnW1iQ7rcO9mk1o/xg82sY0WY82o+7u4nVfqwe9g+/V2NBroLstV5593/9Fy9B0Q6bVkY/AKcS9ZY9CIZjHNWphmMc1Z+HdiQInKgzt0wp2vJlNAVD99hxengKLDkSYHB0eIEJaWxgGHl14YNGAJLnlTvamxUSyYHLvkxPrjmkifl2dAntOQBC31WJihi4cDKrxMbDoSWvBs3bSnxIp+ms+Rp/SXXmg1sIkuuDRbYrEyQxYJ9lV87NtiHLLnuxppaSrxIFGkv+TG2t+6SRzZsCS15wsKWlQnKWCiv/Guj2OhYBYeOSCGqY3rG4GxLJvzg5Wz9NJmMg2tx+cKDZDxciitBD3AlrgQ9woW4EvQE1+FK0DNchitAtwquwpWga7gIV4Ju4BpcCbqFS3Al6A6uwJWge7gAV4Ie4PpbCXqEy28l6AmuvpWgZ7T4VgDuFFp7KwHXaOmtBNxQNWuxnN2ZnBWWrF10LahFqUXpYYmgQtscKxYB6pXkZM89/vQBkNooOYoP/PX+w+sigBjIFyFTjrAnF+hE2rWppLYPH/dKdWDCuuQDHGKTnRa2QiWVHN2j63hAvdDupdxinU4DNYRjROoV0vjkMt1qLawzOQTt2cYWdbV4t/J6pBmEPX2nGixPnmmPYXDB+S5/am2n7B3dOA9xyiJOsjk9PfzTTtYHujOf+3ahKq+uwnWKdNUktE5poGiS2Tx9fsNMn9JVGr9qX3zE6zCGGltZ+EzXJa69u5ZHctnAYGyf9bUWASnwFRSFU+RViwxSYHIB8FNknf4NKOv8gcnSS4y0rdQla4vMtJfHgbMoRSsKli4aRbbP4IQ1o2tqI9NKpegwws/nMEKoOgxR6kemd5OvBrP8L1n9eLtJiGw9FGQGSVb6u97ZZJE3CxT+1kIWURF1v1UQ/W2K3eQaH15qrQIufcPrvuv3178te02Khkx28f00rRQt+6ADoToWNZSH7Jl65OrCBWE5cl7vbsSkyR6liWWgJGzvfjG4w3NZET7TJcplOZMSdmnP1w4dpCvc8WPzjp/4O34EzpHJCtvHr6jHTPLoUZqKfnhhx/qLwX24/3v/s72zeNl8eNrjiUcW6GLxtZukFEZ3cfaKK93VUhRWu+dvLrBnSz5cFCbTu4pJJ7r0vaKFWVb5vpYSZiLMmf8NdLB+/M+9hMTW5pMN9ONU/jFRka2OOP2jdj8jV7cGRFRkFzeYskxEpq4rjbS4bfUzdVsWmQlCggBvpTljMhU1IivFygRoRO6n3Db2z8yk3CZUI7IiqrEVqhFZdauxdWukRO4sfLjK/dxZ3dKIyMoEaUQv08/Y1jzhaeWLJ4aeTJqgIgiwRuguFUFL9zVBRZBgjegmxx5lKmsEkRx7lAnRiG5yrMmteSIKsRWuEUSWq8E1opvl2tJ9TfAQOFgjjMJkKmsEkfNqHawR3ZxX29hdM5/ziqyd6fl351rz5Oni8FwGGmm3Opedq9ZNP5tIF1FrhcwgcaE55p/kflwuG1G585yBrfCDfKZaJfcfo0y/j2HlxSgzjbLnnHW18sPrMdx2te7Y08JW7k2ZYYU7JusgmsT0q7ZlxQ8//KwemnWXZ9WKcrOCwJDMD2NIRKjvuOlogFwmWz8Sj1Unla17aRto8ghM8jgueWeDsYlmPcjA/mIzDQvNiGNIGmxj73YjQfojcmdqHUPYkPG924l8g068b3Bu1Dekomt4d/vy8rVorp0Y0uwR7MpehMnU1vH7bMfFWPTFRpKG9hFX3UcIZsWZNCQjZhjGSUPaLpVo9TwLvvr+v/oypuoyilIdteBc7eJPaPLEZqM1vIcxKeCa2NWJZtKb2NjCCILMTcBHPcIHFJF90eORq42HXRLBoenwyegFbX1rffoVbov54mqtsu8XuGklR+8XuC2dLokeFNqhUYSu0Q6NInSDdmgUoVu0Q6MI3aEdGkXoHu3QKEIPaIdGEXpEOzSK0BPaoVGEnmmqAwUEYPqMoK7h+xhG0NOyFYEMTHagDT95SIfkI9uBCN7BdAcieA/zHYjgA0x4IIKPMOOBCD7BlAci+AxzHkjgoR7JWQ6vYdYDEbyBaQ9E8BbmPRDBO5j4QATvYeYDEXyAqQ9E8BHlPhChJ5T8QISeUfYDCTrQKlk+7VkLIgALA8bu84/3u/ebD6/LaL0vl2rnbOT3xIXt1K+J2VJd0LQpZ+fnPEDarRUkKf6gvDS83o02DwTZtIEEH3hf0Bb6giRwpf2aepsHxhyAMWslas6s03qDnkQaeO7QGRv1gEMwBvsEXpy5PF10DG3CHXARxmGiDzxCGo99InDtHmsec0Ia8AsmYcLi747LY25/KQfM2ypI9HoXXeATGvvEgLlaTCE1/jq5vCV1F0APxI8t5l9HWtTaiH1iwFwdqEaBjtvosrkSCZKu7BZdGTdxbV/rDkVnihlM+xqQUUJusH11dIGI9fzGJKqfmQTSWN9l5+exuerYjJAZarWxMV10jkrvEB9hRvrozF1xXdu8qN63qSi8KQMHIUfVassUaaoqcKQygjB7/gTGaFCi//BlWpEjCcnd7bv7ZQaaVvRjcvWozDTxnQN8kNbzPX3nA8lKimNB32Vi13dZEQXNHGH8WVXFWiHX1uWKFr8tXVNHc21hzmAoi3LuMdDx2UwepVGM8FFIBnW5UG9USrpEiWaBAh1MHsnK8tASMQmY2hHCLxIyOYak9WxpmcDZ8o+56x7dSFJNwhbGyah11tpcnGeIdeon/kWqYZ9apwGDH5KO82IrQCwfymKaL+vmT5P+9Hj35/ZlDuVJ5xs/tsR5gMAdcJEE1yMlyt2BnkOWmw9Pj58297uPf7zsm2FIOYsm+fBkujmYj40bD4/MfqgmIXtIWPq1NTWGoE+dg/3Y1LFMK/PWs/qA8ePFLFJtTXFvogMzdfjRYD6g1CRkiUaWB541FyHgB4j54QGauoCzp82n0e/rqQLuUYxhBk48irimztAklcvbzKo6g8dyjGemLuA6E/8RncH9jEnMwHE/Y1VbZ1g/s4xprKkzEfcz86MMNHUES+McCfu+OkM0UbeOGTjuZ2z7CB1ZP2O/0xk64n7GMofoiPsZ+4+cogm2SMecomOiX6ZqEmaGqbN+D+RpIo/smDquc09OWsivuZpAhmbk1B5RBp5ecnaga42UKTg/+fIylBdSZ642NiaUGtpji0LmzMuxXSd4yjAx1s75ZeAs5KBcY5QMLWPt9lwG1jL+ybXUNBuWZhwcJ007rQOEy/QBW0xdH5gnJdKxMqciIvtZ2vSTvsWN5LKeZjS1Y+w58WxMCXmfypmmY4LUSiuGnMjiEmulR5ieflIl08rwXE8AydoETKTazDfosvlr5XgyGkzGK/DodCxMq8DzxmD6yvSg8u0JZo4gjjHWkffbWejOBGslStRwZ3CQSWL6lCaoJIptAq0q9gAqdyKyVlWsVmuaNOgbpbo2l8iFs7pscLP32XIWkf0SV2hEpj9iKIkSobra8lxHkN3Wc30RsqM01tyqoVKeZxmCnKwmHKBmTgJaQKiTVibUWdMIUt0Ihsh0OBcYfxQXyFPk1LY/o0ayjDS0SxnCYwfCCIxhqXcwL2VElGzh5z4MG+Kg2T5RmZGTJXbuMRiTT1XCXo+B0P45Hgc/DacMlFFOoUzXGE+beI/zIzZHaXsk66n9c6yJRvXnPTp13b43WQczKonm1mP9OKri9RT4fBoo/z7ClE6i4fXo1LVti9dtmOGav3cKa7hR/X23OUbbwp2BOa0k0+ss1rujKl63G0zbNp2HSbVEw+sqd9v2Xc89m7btu4Q156j+vqe9pm2cXsGsYpLp9Rrr81EVr+eZTds4PU5rJhpet91L2/Z9t+lF2/a7LIGmbZy+q71t4wS4AGcE0fRmrCdITbzQ7WrRNk6A0G+OY0qGF7oNLtq2H3qu2bZtPzis6Uf19z3ttW3jJJj1RNMbsf4hVfG6fVraxhkyTO0nGV6XJs+2bT/2XLNt237sam/bOGNPe13bOAGGOzdwao495XZt40Qo7I70gUZJ5Iswf6AMP8EEgjL8DDMIivARGrvjEsrwNcwhKMM3MImgDN/CLIIyfAfTCMrwPcwjKMMPMJGgDD/CTIIy/ARTCcrwM8wlKMIHOO3mmK4MX6NsgjJ4g9IJyuAtyicog3cgoaAM3bMUvUYhMfYcKK4XYyupujpHIdeLsaskq2kq/efo9AzyfJBlbdP8+RNXej+AXwSu8CZlqNwkV5zOUAbWQiKdS8W5SiqnoVKGVHmU3+/d9UBiOvDualStFc3+j0R0Mvk8J7gU5grvrhWtdTSvEKi1XsgrdKm1VyRAMEw2lnW4wzN1gkGAWYhUhbSeKiSaKeib6fmZTDvWTTsLqY3W8Lia6RGXCK3VopzXY/D3p92mmZwxEwiHp6XsSSud78wIr+RMpmTarI+mTizZ1CFN6lBLLy5zihakg99O5OkXRU0qeku3+Kupp3SupnM8ERSocxGuxJyTCI2tl2Keu5rJCi+N5rmgVj8dzoO6akKe0bm6e+gr8FZxhwKdFoJ8/U+5Lp8R5Uxr90/bbNm2zEjnU20hL2fMQIrl/zdejuFX1ZrwcovMvK6Xy+s7OYaKNf7MPs6Eug8Z6ZgaBC7O+LcuzipXF090IfM/qIdLDPVcNQBpTCao5+owb7Iq+8mfRgNxVtPNtjytTvnnePdQ5lAvalwfz8MWX9O1ChV1sA5KSzW6MlGeJNarznjA5Kj9HGd5z0U1qixYGm6Pc/hQ4zRANIPX5cN82QIcbljzuUUj9/x+LqhraowzWC5sbaX7yZ6u/Xu8wa72hKoQzcSXp/L+fAcs97Y63pE2RglSYYcn8OtIuEuCtVMnwjS8qAVRJv3w3ePtovmQtjUP7AeuHAbzMQxfZ25qkyf49Bhv5SWVjHPg5/pLgtvyHNmCfCfBsXkOapWRIpa0XPPCHjdZ4wgv2E+HbXv3oGi5IC8aNJYFXZULPxBSYd4wwH1tImT8QWRaaSXTYtgqI+FAQmDJIKtLPdLfK2NLIimytWqtJclstzFsSRiSSdVcEqJhttWEP+7nB5umF41gdnt1XPhZ1FrCC0dP40JeNAYsm746XvyBYfl8f/kkfAq9/bG9/evvPbXj5u5pUq/dw0d5FI7gYrSR0bCMZbDXNCwp8PeVGU+E5TAX42TY/mxY3CZZGrc2cseya2IrmrpJ9+37bwoMV2c9cMYTD84pcdfv2mIY4sFZjIol8lSDs+Ku1erEMISDNjdHx1MMzg56vdEZmuizOjorJPpcQycZNsJZjNq4PN03yiAUwCYHIXuo8fV9cZqmu+10Up2QXh+GNCPSdKLVGUxCAtG3Aw2rDDTTjKKFN8HrPsK9HdzFY5xeL+HAKr6JVWXVrdI0rRJkN5bJG9amLaMVttb6HiZomYTa8O+gmPVXYsvnAIfv5kIskw3s2wqJX5KOu5Zbbp7Pr/cfXp+mg8Ht3e69+EJkF+m7PSnm7AtXt4evQg1IgzvoXBamCKsV+BZVEUvj7S7mbeNirU7NCcZvsHaRidqVJRXnaJnWcplmKxXJsl2H1hcJT/6Z48vrrZhnG+ysPz1ELw71nUSKbEuZFVeMiBKVbSyUcTMd9YD8m1F0DAQ6fpnea4o7rUT594Ymije+AmVpanjjoTGO5LvPQofmO4AdovabR9P7RqBp2U2AlCvStOzVRUw0EftbGcuGZUaSp2ehOxNsFU17jglviduTDc0JtkyMJzIyjvTunYXuTTBTVOgJDSaS104lWbUJDjSvPChjHOeV705wonnlQeEzTQaPOWem0bbxhD67kfz/eQid6XaGZlyvqd1Q62xjMXF7GaIzZ3lVSN8FSG2AgAKECkDsAsS2BPjB7wSF6VvuStZ2PF4RkinCdru0iJv2qndpETftRfcW/H5lzT3+/rdJxIoxuWHMdAf8asFIi+dFM2c/n7Bs7draZDDuUtGNgMZtKt8PaA5z7feGzvWFVivgr986EcvVZVHUbVvqsiga1f49rtyGOSGHSGcLYvOVwGzB2ngzxpla+30ksiCZ3YbJo2L2igiyhFbHi+ZR1X7P51Fh8+XpuAx0fI2BbcAHrkPvnOM685hwQsjEs2pZhFBxJoSU4EOEinEAX+OEkCJ8gxNCivAtTggpwnc4IaQI3+OEkCL8gBNCivAjTggpwk84IaQIP+OEkBJ8iFBxwH4RQkU9YL8Io6IesF+EUnHAfAFKxc2A9WYPE0KK4ANKCClC75vuiOIksHONDD2jzVsk8E4ptHmKDF6jzUNk8AZt3iGDt2jzChm8Q5tHyOA92jxBBh/Q5gUy+IiS98vgE0qeL4PPKHm8CF73rdYNWK3uW60bsFrdt1o3YLW6b7V+wGoXWSgIC7DVlSIAt0gh+ZoSvrvbfHh9eri929ZfjK3+0s+AqEm+eOd6fff8cnvALyX5z7KrquyRkt2My55oslmrgDCBG6LoOhYMHL5Uf4VxRtHMqm+FN2VgzSzD8cl2ZBmY5I+jewZHYgd4Uw+fYLrhPj4t+FW8qhBEOqYP5PHqiimdoUz/GM4bWjfQ9E3smr6hTP8Yuh2SPdEFHOAqDHUl15DpMwkmRhEGYynT1+O7B5OGcjzTgyMRmb72q5o+k7eiHaF0ljJ9Pb5zWtD0c9fyLWX545uNpdjO6gcty7Cd1WEWeSv94Y+PfpHN0lq31F22RcpKX+4rKJzDszopy3EDSZ1Lb9Hw1g5PKqNc3CIJBliCcV/tIsv0A44jyZl+1vLUBNEUdTrwjLlf4ZjjMXs3oWvwnjH4KxwuCV4p6pTsBwx+eTNoGLzHDZ66znjG4K9wL/O4wVMXTC8iu8mrGrzHDZ6KBATG4K8Q0giYwTvXNfjAGPwVAkmLVCeABqN+olqkNiFRpCOcHRCcu3fn8Q8Gmn3CIlwrLlBn8dkbjowk0UwTVlegMhVBiMOyR0V9UI9/UNPkC9iyR0PdHsctJlqaXaG27JGy9nHbi4yxX+Fz1Bn/CiuDb/nnhUFULDHn3ivYSmZ5NWsKlqgT+7hbSUwI7gouOOERuLMHBlY8WWYc45aS8NjaeU8sIzEmfoXzQwp07au10BJEuhLW2oqMSdRy8yitW+fMnvJ4sexBtsZdjmH6OiaSWqQS22VNF8tiq86wdx3f80GJRSH1WfaVdIDh9DomylqkAt9lvhS0ZjyZLwUFZbxCKWjXAPhSUFCd+FJQyAC84ktBIYm9kjU0dGsagFd87SikXF5ZmlGrYgCe4azSlIwjdAnaIAbgGR4nrRl1iiyTF6j/ie0fBcorarsdVtV+pnmpb+qoHqnz9pAmEa1BPbHeGjfU0J4CCS+8X3d9Bww8YIsSyH5FmLFo4iJtmMXGjZtyRlpi3HrVs50nMtyoXcPgR+/zwaOMhFs0tfeakSYQDtJ7Ig2NOiQR3QvPx2ZA8QnWIuYY6kWt/JZn5zUUHzdy5r7gDfHI1T7RERlozK3L24Fd2GHnOSLljLkee4tvw+dgC6D4RNIYE4DwVtJaexk1WUHxCdKkcySsjDRwNV6GrVqKhNdG28DXBHiL10aL8B1eGy3Dx2ujZfh4bbQMH6+NluHjtdEyfLw2WoaP10bL8PHaaBk+Xhstw8dro0X4Hq+NluHjtdEyfLw2WoYP10bL4OHaaBk8XBstg0dro2XoaG20DB2tjZahw7XRIvgA10bL4OHaaBk8XBstg4dro2XwcG20DB6ujZbBw7XRMni4NloGD9dGy+Dh2mgRfIRro2XwcG20DB6ujZbBw7XRXfjfvv7xHun+dfv5aXdgdb+/fbe9n/6b+Q/zn/s//r/Pn2/vtpvnu932Yfrn9C9//jb9tb+mW+jhkzFarXxWOcYvX/4HMWXezg==