Let's get to the point.
Goal:
1. Perfect 25:21 ratio
2. Tileable
3. Able to start from small
4. Able to construct via map view (use radar and roboport)
5. Pretty to look at (symmetric)
6. Minimize unusable space, radar, roboport.
solar farm blue print book
I will walk through my thought process. If u are not interested, the string is above, nothing to see below.0eNrNnd2uXMd1bl8l4LUYdP1X6TVyeRAYlE0cCJFFgaING4Hf/ZC29u7GyRpVc/TWRe5iJxrRmrtqdX3fXN+s/373w09/+fjL5x9//vKHHz59+q933//3/b/59d33/+fhP3773/34x08//+u//vXH//vzh5++/Xdf/v7Lx3ffv/vxy8c/v/vu3c8f/vztP/366acPn9//8uHnjz+9+8d37378+U8f//bu+/SP//zu3cefv/z45ceP/8L88z/8/Q8//+XPP3z8/PX/4BXw4Y9//Muf//LThy+fPn+l/vLp16//zKefv/3/+8p53/+9fffu71//h/nv7R//+O5/cHKQUw+ccvlA/5OTf6NcMWqMkTaIFkPUDaLHEGODGMGizpei9uuiTvtHBs6yf2TgpJt9sAogvXwJpNcvgeQCvoa4FXzNcEv4muHW8DVjBAsy/wXJl5AZhLQdJLp888vfOMO7Lrp8bydQcPmmEyerv/VldXJRf+trRrUVvsEDPSzev/zw65cP//yHNwUmTpcFJo5bxOmS4dbwNcMu4QS/snYFE0cuYMKo9XtZmaKW7zWiqj9yvWQ09Ue+ZnT1E3LNGOYX5BoxzR/lGhFcruO35VGul0e9OUwDTFJ/33HJyOrve81wR4RrhjohXCNarKrlt6oOqGrwFdsOmOH+xv/EfNU2/xRB3z9opu/e/fThh6+l+P7df3wrzL+lv6Wv/91fP37+9Z+QXmvua615m3eVdPv2L/T7yq7vnvwn8+8l2NJLwd+n8TbJlsqJFF3QKb1w3iDbXg6K1xD3/gWIewEDRL2BgaFewcBY6lx3zXgQbPuHuW0p0dNCPi24qFxL9Ugq0V0wXlHw+5Kq35qEan5vEqrrohNp6KITKWhIpH4kLf/nK29UdQ9/vvI2Xff45ytvk3b3d2t9i7p7fbnWg76LvV3rSdyFXq/1IO1C79f6Fl1Xt5Dp3rD1oOxib9j6Fl33sNnLG5VdPZKy3uxECp8zXkr9Np2X6hYTfke/uguJ9G/wHf1+HUlRy3gcSdJygyItudfTQQCG9np6i/zb/tFrcDH3U3lr8Nwxj6DgqSPdjqTge/nbkWlToeh7uW8pQ2+uBU81Y1biOnGW3VkAaje5hIiTQg82T5hs1w+B7Nv5uvFmX87XFP9uBn3Q9KuZQPrNTCD5Yr4u0Pod+qz99vZGa0+/Q6fVvpShst2+k4mjX8kEkm/k6+rIF/I1ZMjNff08U27ua8qSkuiSMm5OEV1DktuL15Bsu2YghkexfUkCVdk2I87v0IMev0MPegwnrq4h023Ga8hym/H6c46wU/Hy9wFBNYMi73biZPl2uOwezyLfDteUKt8O15T2O3y1MKNnh3bo78/o2eFuJwEoaLzlEyd4GK6HB1u3t390sJLb3NeQ7Db3NaS4zX0NqW4vXcqn1dxWuoZ0t5OuIb/DlxNr2n0En3GsJffRjb5fu7l9hJwk9xGC8ps/f0i3ojYSQKraSABpaiMBxL59E9V2yJ/bTKDpfm6RI9++9GDRrt7Lq6ZeU5J71wBF9jmAUt7+CU9K9e3f8KRwB+/lFYFfuHZ5qEfQcId65Lz9u6CUVFP6mpFdTxogSb2uAJLV6wog0j677rBnaZ8BRdtn9KF3tvYZgqx9hqD59i+4Ul5v/4Qrldubv+FKRdlnwJD2GVW2SPsMOdY+Q5Czz6A6zj4DiG5nTHom2c5Ajm1nEKjKdgZyXDsDMbadgSD5Pk63a4x8IRNGv5ETSYVqX8lMsu9kJslv46FI7q0MlKZeywRR72WCyBczlrfJNzOD7KuZSe7dTBVyL2eiDPsRWSJp1qb9iIxRy35Ehqh+k05Ouca4D+iJ4j6hJ4r7iJ4o6jN6gqguB0FUm4Mgrs9BlCk/IuN1t+RHZEgaN/kRGZOS3uykhMONu/tmR1TRmx1R1f75kNTsnw9J3f75kDR0zUkejKlrjijZkk79+rNo15MmimtKEyW7FyxQinrBAqSqFyxAmnrBAqS7FyxQht2htO6i/bz7Du3R3FT+Wz7mptL/ptzUs/9kefqfrPGs1ucPf/pwqYx++75q5LcktPr9i6TbKaF1IPUTKapne33hvCWm1dOOEm1QtrmjRDuUre0oYQWbd5To78g3qcuUcGOn9i0m+kNSyxYTnq1xOy2+cFqrHHdEOK1V8hEVNWfK+QHD0cPtkg4P3cjbNR0eu5G3izqFT0fbVZ3DKna7qnO4X7ld1fFg1m2LierYsaVUO75mnCdvBD9GHG+cvVGOoOES5gwKLuft1goHtba/XOHez/ZXNNr9SdvFE52+kbcLORrOyttdFc1m5e0WjzZ+8vZ9E01llXQ8fQVXcDnuhRI88Jd1JEU/Ijk+XTSdVbdrORzP2q7l6HyOtl3L0d5P267laOunbddyNJXVtms5msrq2x/yGjxW9O2pogbXcB/HlRdcw/24Gx6aPiDV9kqtRV3F8XoE7PNtgawH1YcoL/sQVfUhHlFNH+IRFe1llvMDhr+xrkfU1NICUUtLC0L1m57eSKRkz4hIyjaxgqQiIysIqvLYiqAmj60I0ucQJOlzCJKi55Dz0wVXeBknUrRHdD8bISnZsxGSsv2tQ1Kxv3VICq7wcX665n/1wMqOdogef/UINfyvHqGmdDv7eEvq69XuvMaE20MvfidgkjQ8AZOl4wmYIi1PwFRpeQKmScsTMN2flvpbs1/HjTGnPy31twXAHk9L/ZgBC5+WCJX8aYlQWRqx1wthFWnEAqZKIxYwTRqxgOnSiAXMkEYsYKY0YgGznBHbx5uSYe+P+yIcDnufzyh/zkaUPmgjSZ+0kaSP2kjqyiKmRTCcR0yY6UxiwiznEgMm2lTMtz0mOZ+YMNkZxYQpzikmTNUSjVZgtJlYztsiGh0r530RDY89qLR+zo9FZRqitIeNqCxNbFgIWbrYhJE2NmGkj93fFipr+72WpZNNGGllE0Z62YTRZjYvQe1mIyo6B3KcN0a0x/h+vKzFekqZHTTw2HPCnvb9hFXfmDR73/OZFfVC+u3Msh82Ua3sp03EsR83Ecd+3gScGj5k92Ota/SUXc/rqYa/dDqvp3D+rO73XTiAVvb7LtqHfF/qnhNd2yXtOVFfJM9zraPGSA6sp/AVLef1FI2i3WV/fVMa7a776ymQFhT+9ZRHCyr/+qY42vt0fueGu5Ln5RTuSp5XU4u+wfebLjwzcr/nolMj96sxmkbb/yZFm5DjWONoE3KdSVFvJJ1RVWr/+qZsWtq//KPptLz/LYrm0/J+20ebj7mdyxx8W+fzMoq2H/N5HUXHSpb9RhvB13XZ77QRfFuX/WF0RFM8+3dQtOdYy7nMwfd0Pa+jaM+xBtbRlNq/vimS1vZ7LdpzbPtf/GjPse0PIDPaTj+/YGe0n35eRzN4DOnndRTtP/b9Xovm1MZ+r4V7jw9aO5+jatvBJQ9SG1HLS21irSekJLJiI0welSSinlCSyCpeKSGrxh4xB6rVvFBCVvdCAFkj9oiBYvl7lxG17GkX7669hR5vnUFJH3YRlfWBDlEl9Hg5UKiqz3OI8mcWRPXQ89VApfyRBVFT/ywjaoWer58rFb1kvJ9LlbQHfn17b9IeOHCe8MApE5We8MCR9YQHjiztgUOttAcOHO2BA0d74Nec/MTBhWqdn/DAkfXEyQVZ2gOHWmkPHDjaAweO9sCB84QHjrV+wgNH1hMeOLGK9sCva1W0Bw4c7YEDR3vgwHnCA8daew8cUd4DR5T1wKFQ1gMHjPTArylVeuBA0R441bhqDxxJ3gNHlPXAoUrWAweM9cABYz1wwHgPHMvsPXAcHuA9cERZD/y6Ts164ICxHjhgrAcOGK8nsczeA0eUF5SIsh441Ml64NeYbj1wwFgPHDDeA8cJHd4DR5T3wBFlPXCok/XAATOk9m/zmjOl9ifOkpE04ITvv3vJpBEnSZ1OnKhubK8rqE0aGBP1R1o5s6Ln65bOrCa1P9Wqy7AbcYZMuxFnSp1OnCV1OnDCQcmy3yPhpGTZ75Fpw2TEsWky4tg4GXHCU+nXcW+EI5Ovc3k3LD0kdsOaUqdTrZaMqQEnemXe+/0WWcmJasJkJ6oJU5SoJkpVopooTUXAiNJdBIwww0lgwkw5f5n3Q7QTmeYJVcK36N3OKJkqu65TuclUGWFkqoww1UlgwjQngQnTnQQmzHASmDDT5bUIs1xeCzDRbGS77TFBP6/l44aIDl1t9YwKnqZbP6Oqk8BUp+YiYITpLgJGmOH0KmGm06uEifZeHv7ykP0q4R7jw4JEVvjehXlmhS9e6GdW1K8eZ1T05oV1RkUT7eWMCh6sH3Q1orQXAhzthQBHeyHXnKK9EOBE13i7r/EGtS5hP+S+xiuxwn7I7cwKDwIMPGOzPgZwuvUxgDOsjwGcaX0M4CzrY1xz6s36GMBJ1scATrY+BnDCX7bm41qs0XWdz3vkoeP4+dMPn3759PnL3sgoBAqbIvX8LxU2RQLFsjN36A8oh+4AJpyT3G+TeExyj8nOzABKcWYGUKozM4DSpJkBmOgtUOW4AKO9xgeDj/ZFdFprTmdUtJN+fsBozzHvfxmjPcdXJwIwWToRgCnSiQBMlU4EYJp0IgDTpRMBmCGdCMAEV3Nd5yUYXM3tvDGi2cg2zqioR3J+wGg+su9XdTQf2ferOpqP7PtVHe0xjv2qDrcYX6VevuYMK/WAYyexEseOYgXOvHmpR6e8mbzUy8TKXuohq3iph89o57NS3e2AVuJ0K/WAM6zUA860Ug84y0q9a064zfgq9YCTrNQDTvZSj9ZiPBB53iOreoWGrOYVGj5jtwoN6j6kQgPMlAoNMEsqtHx9Yc3NKTSgJKfQgJKdQgNKkQoNMFUrtEKXAjWt0DKhulZoiBpaoeEDTqnQoORLKrRrTLQDWfZrOpp0LPtFHQ06lv2qjk5nrftVHe061rrHNKnQANO1QqMlGJ3K2s4bIzqV9UGhIWpphUYPGJ3K2verOjqVte9XdXQqa9+v6miqcexXdfjOxwcFkqjOzTeN6U6uaL/xsWmMrOEVCD7j9CdIZC3fzKZnjM5qfWxmIyv5EyQ9Y7QB+XAWQJTvseMT+h47opo+C+AD+nc6oobu/OMDTt35R5R/p9MDhpuRL85SXdecJJ0l4mTpLBGnSGeJOFUGKojTdKCiTvqbdR2oYNbQgQpmTRmooFot6U4BJ96ILHtOku4UcbJ0p4hTpDtFnCrdKeI06U4Rp0t3ijhDBiqIM3WgAvdG+OrI+68ussJ3R6bzu6Tb+9ehVt1ewE4ceQM7YapzuAjTnMNFmK4cLqIM5XARxV27ThR57zpghrx4nTDJBipwP0SDj3cpwahiAxWMqi5QQXVqziQjTHcmGWGGM8kIM51JRpjlTDLARMOOdb8xolnHut8Y0ahj3b9No0nHtn+3Ryez3q0I3BDRrOPdIWFUt4EKRg0XqKA6TeezEWY5nw0w0d5j32+MaOtx7DdGOOL4qlf7NadYvQqcqof/Vfigv4Y7jvfhf8zqevgfs4bVwFCrKYf/EWfJ4X/XnHa7Wb0KnKSH/1GtW/huyFrPrKKH/zGrWg0MtWpWAwOnWw0MnGE1MHCmHv7HtV56+B+yonNXH4b/MStZXX1dq/Dg1bTfd6nI4X/EqVYDA6fp4X9c626H/zFq2OF/jJIfjlCh5IcjgMnuwxGiuA9HiJLl8D+scTQCuc6kaof/MapJoQ5V6m74H2GGG/5HmClVNWCWHf6HZY52H/N5GUWbj/m8jorMG0CdiswbEEbmDQgj8waE6Xb4H5d52OF/jJp2+B+jltT+13UKj1jd77Vom7Htf/GjXca2P4BEE4/9/IKNBh77eR1FW439vI6iU1b7fq9Fp6yO/V4LXwz5oLUrPdmyF+AgKjpm9VFqI+sJKYmsbC/AYdQTShJZ1SslZDV7AQ6juhdKyBpeCCBrygtwmLS0DiBUtAM5zqTkLsBhUNaHXUQVfaBDVJUX4DCp6fMcovyZBVFDXoDDJH9kQdTSP8uEGjd5AQ6Tkv5VRpT2wMs1R3vgwHnCA8/0bE944Mh6wgNHlvbAoVbaAweO9sCvOVN74MB54uBCtZ5PeODIeuLkgiztgUOttAcOHO2BA0d74MB5wgPHWj/hgRNrPeGBI0t74Ne1WtoDB472wIGjPXDgPOGBY629B44o74EjynrgUCjrgV9iugxPEkV64EDRHjjUuN+0B44k74EjynrgUCXrgQPGeuCAsR44YLwHTmVO3gNHlPfAEWU98Os6JeuBA8Z64ICxHjhgvJ7EMnsPHFFeUCLKeuDXdcrWAweM9cABYz1wwHgPnMqcvQeOKO+BI8p64FAn64EDJnrGHvfz1Y2eLGwIziMrnJvs/cxKNgN2u+ZkmwEDTrHaHzjVan/gNKv9gdOt9gfOsHkt4Eyb1wJOdF3X8x6p0XVdznskekHk+3LeI9ErIr9q/zMr6pGUfGZFvcASqL3OlV2vh6pzZcDRuTLgTKv9gbOs9r/mhHOSab/v4hNbb3tOlhkwwIStv+NKjPcsz6ioQXLeH+EJrmdS8NhdzqRoyv1MWi6odr0IopNb0/4IEI1Jpv2JJJqSTPuVHQ1J5v0+6zZVBhibKgOMTZUBJrqUz7si2pIs520RbUmW876ITm8t44wKHkjKOqOC55F6Lnu0LVn3ey2amaz7vRbNTLb9XotmJtt+r0XbkG2/16JdyLbfa9EmZN+fh6I9yL4/nkVbkP28MaIdyH7eGNEG5DhvjGh+8kH7l0msprU/s7rW/swaWrsxa2rtxqyltRuywv3Iu3ZjVtLajVlZazdm6cM3o/Thm1H68M0oe/hmkj18M8kevpm07CmKUCN6r2QpZ1SypyhGZXuKYlSxpyhGVXuKYlSzv4aM6vbXkFHD/hoyavpfsE6s5X/BiJVu0r0u45qTpHtNnCzda+IU6V4Tp0r3mjj2+nbi2OvbiWOvbyfO9CcgXIvLn4CIFb5+8uGkgazkTxrIste5Q92zvc6dOPY6d+I06RITp0uXmDhDusTEsbeVEUfeVgaYcOOyHldieN7reYNEx72WM6nYMyGS3O1lVG95exlhujNkCTOcIUuY6QxZwixnyAKmytvKCCNvKyNM1lKCVmC0UVnO2yLap3w4tCOq6UM7ouTtZVRyeXsZYaazPgmznPUJmGiXsu1XdbRJ2farusnbyggjbysjTNVij5ZgtD/ZzxsjHKl8UGiVWMMrNGTZ28tKvebY28uAE+1R3hUacJJVaMDJVqEBp1iFBhx7Wxlx7G1lxOleodFajLYrHxUasqZXaMhaXqERa9jby6Duw95eRpxsFRpwilVowKlWoQGnWYUGHHtbGXHkbWWEmVqh4UpcWqERKnrlZDmTklVoSHK3l0G9p7y9jDBVKjTANKnQANOlQgPMkAoNMPK2MsLI28oAE+1HPig0WoHRdmQ5b4toN/JBoSGqaIWGKHl7GZVc3l5GmC4VGmCGVGiAmVKhAWZJhXaJmTd5Wxlh5G1lhMlaocESnNF+Y19n1BNflGRiPfFFCbKe+KIEWU98UYKsJ74oQdYTX5QQKz3xRQmynviiBFlPfFGCLP9FCaL8FyWI8l+UIEp/UYIk/UUJkvQXJUjyX5QQKvsvShDlvyhBlP+iBFH+ixJE+S9KEOW/KEGU/6IEUf6LEkT5bGW5EctnK5H1RLaSWTZbWdI1x2YriWOzlcSx2Uri2GwlcWy2kjg2W0kcm60kjs9W4lp8IlvJLJ+tZJbPVjLLZyuZ5bOVzLLZSlgPOltJHJutJI7NVhLHZiuBo7OVxLHZSuLIbCVh/GGcVqLPVjLKH8YRpQ/jSNKHcSTpwziSXLYSFoHNVhJGZisJI7OVhJHZSsLIbCVhZLaSMDJbSRidrcQV6LOVjNLZSkT5bCWjdLaSUTpbySiZrYSFYLOVhJHZSsLIbCVhZLaSMDJbSRiZrQSMzVYSRmcrcQn6bCWjdLaSUVXOVM7zmtPkTGXidD1TOU96tqFnKjNr6pnKzFpS+0Ot1k1qf+Ikqf2Jk6X2J07RM5Wx1uEQZT2vp3CKsp7X0+pypjLVasiZysSZcqYycZacqXzNWbebnqlMtV7heypzP7OynqnMrCK1P9WqSu1PnCa1P3G61P7E8deJcK2nnanMKH2fCKLCmcntplvhyOR+z0UTk/vVGM1Ltj2lypnKXOMmZyozqduZyowaTvtTlabT/oRZTvsDJnwv5X7bR3uT95nKWOZobzKfl1G0N5nP6yialCz7jRYNSpb9TovmJMvcY4abqUyYaWcqc5mXnamMqGgnsp7XUbQR2fZ7LdqHbPu9Fm1Dtv0vfrQL2fYHkNLsTGUuc7czlRk17ExlRk03U5nqtNxMZcCE+5APWhsyT6sme68go7KX2sh6Qkoiq9p7BRn1hJJEVvdKCVnD3ivIqOmFErKWFwLEajd5ryCTktYBiLI3iDCpuHsFGaQvEGFU0wc6RHV5ryCThj7PIcqfWRC15L2CSOr+yIKopH+WEZXlvYJMKvpXGVHaAweO9sCB84QHXunZnvDAkfWEB44s7YFfc4b2wIGjPXDgaA8cOE8cXKjW4wkPHFlPnFyQpT1w4GgPHDjaAweO9sCvOfMJD5xqPZ/wwJH1hAeOLO2BA0d74MDRHjhwtAcOnCc8cKy198AR5T1wQi3rgQPGeuCAkR44UKQHDhTtgWONtQeOJO+BI8p64ICxHjhgrAd+iUm3mzXBieNdcCj0V5a3wZnlfXBmWSOcONYJJ461woljvXDieGHJtfZuOLKS15bMsn44cawhThzriBPHWuLE8Z4419qb4szyrjizrC1OHOuLAyfayLwbAhlAyToCBMoyvoagIvNrCKpWwBMoqijbfSVlWknRgOX7VgKw6Nm7pQBsWmOA6rVkMo5A5SajcQhKVscTKFshT6BilTyBqpXyBLK5MwTZ4BmCbPIMQVFZmdZ5m4RzlmmcYeEGZwq8Wmqyih7qVbOMtCGouEwbcqpU4MRpUoITpzsNTpjhRDhhpsqMIWa50BhxosHKdPhjRbuXqZ+3RrR9mWaAFdWXtwBLhtGwVjKNhhwZR0POkLqZOFPqZuIsqZuBEw1W1sMeiSYr62GPRKOV9fCCjWYr2+GF34OGYMvnvdGDx+5WA6zgqbsF3iV9SN1MtZouR4ac5YJkxIk2Kvthj0QbleOwR6LhyvcPC+BGf7Rwt/JhZTIs2q58+DlhWFRdPvzOMSxqfo8AKyguHw7NzIoG5EuAFTyAP6hxZE3ro6QFIOujIMj6KAiyPgqCoqu9va72b0sCYGEv5XW1p4mwsJdyC8DC0wgjjzmlBYLFX9ICIVC8iXlY6eE2Zjms9HAYsxxW+irSAkFQlRYIgpq0QBAU/nQ2nxdl9DrL9zmwXVbYU6kBWNhTOT9mut2kewHFT9EBs+/HgZOde4Gc4twL5FTlXiCmKfcCMV25F4gZzr1ATnBdpxJYicFlfTf3cIukh47m508/fPrl0+cvO/vi2wEPQNG2fQr8S0Xb9oFiRduaef+LmaJtzRcLAznNWRjI6c7CQM5wFgZyprMwkLOchUGcaCuzHt6y0VBmXee1GE1ltsAeicYy2wiwovZK5Bmbsx+w7t3ZD8gZzn5AznT2A3KWlYb9GhTuYr5KQwLZCbEIsiNiEVS8NMQfplK9NOwIa14aMqx7aciPaefGYvHt4FgELSsNARS93vIuDQmUrDQkULbSkEDFSkMCVSsNCdS8NMRFGY9oBrZLHV4aMmx6aciPuaw0hOKHh8ceFnp4eOxhnYeHxx6WefTWy3zAVCcNCdOcNCRMl9KQOENLQ1yJ0UTmgzTELdKWVnTIioYyc+AZo03OfPihizY5XxUdcYpUdMSpUtERp0lFR5wuFR1xhlR0xJlS0RFnaUWHazE6P7YF9kh0gOyDomNW1oqOn7FIRQd1j86Q7Yf1HR0i2w/rO5rCHIf1PYZXKw2LPXV3OlWELd2dZlg4lFkDjxlPZeYALOu++eYxi+6bb2DVnzL5MZs+JzBLN/Q3D6kb+hvW1OcEfkb/nkdW9MbM+4cG/IzRKzPvHxpsWP49z89YrDNVAFStM0WgZp0pAnXrTBFoyPAHgqYOf6SMf7mlwx8Iy+EBtA9nGoYlGf6AeuV4s7MfQMXaWwSq1t4iULP2FoG6tbcINKy9RaBp7S0CLWtvASg8ePYl/IGgpMMfvE3C12Y+/B4zrOjwxwZWZfgD69WsR0agLj0y4gzpkRFnSo+MOMt5ZICJ9j0P+yQa4Dzs22h8Mx2KE01vpsMfK9rpfDjc49aI5jcfVAezug1/bFjyynqslbyzHjny0nriRBue5bBDov3Octgi0XZnOeyRaGazHvZIkTfVI0deVY8ceVc9coYNf/DeiEY2H9wVZi0b/mBWtMXZDnsk2uHshz0SbXD2wx6J9jf7YY9E25vjsEfCSc1XjXsDULcal0BDzzxMN1xGUw893MCWnnrIsHBn81U4Q73Crc3WDqAsBx8iqFiNS6CqRx9uCt707MMNrOvhhxvYsMKZ6jWtcCbQssIZQP1mhTOBkp6AyAXvWY9A3MCKnoG4gVWrxqleTU5BRFCXYxARNKxwJtDUgxA3BV92EiKzxs2OQtyw7AcrUKxhP1ghjvxghTDygxXCNDkPcVPoLgciblDDTkTcsKbU91Sp5WYiEica4MyHn6hofjMfXgLRFud9KCLXOtrhzIHlFG1w5sB6mjYZQbWyyQji2GQEcWwygjjLDkXkWkf7mTWwnqL9zBpYT9HwZjvsu/Ac2sO+i7Yy2+E0EO1ktsPxJBrc7IF3bjS32SPradqhiBvWkp7Bda1KNLA50oGTtEKnpE25ZXtbEKOKlufM8sqTWc3eFsQoLzuZNbSiYta0twUxamk5hax000qBWUneFsSkbGUCo4o8BzOputuCGNTsIZhR3Z7xGDXkbUFMmvaAxyh9fkFUvsnbgpikDy+Myva3mVFF3hbEpGp/mBllvfMBHGudE8c75x2fzRvnzPK+ObKKtc2hVsW65sSxpjlxrGdOHH9w4Vp7x5xZ/uTCLOuXU62sXU4c65YDp1qznDjeK8daV2+VM8s75cyyRjnVyvrkxLE2OXGsS04cb5JzrbVHjqimLXJGSYccCmUTnYRx/jhRnD1OFOuOc42tOc4k7Y0zSlrjVCXpjAOmS2OcMNIXJ4y2xbHMXbvijNKmOKOkJ051kpY4YaQjThhpiBNG60ks89B2OKO0oGSUNMOhTkN64YSRVjhhpBNOGG2Ec5m1D84obYMzSrrgUKcpTXDCRM/Y4/V8RZm1Eo5r9nlmhU3wfmZVmTarwGkybEacLrU/cYbU/sSZUvsTZ0ntD5z46Nm+5ySZCCNOdF3X8x5Z0XVdznskepvm+3LeI9H7NL9q/zMr6pGUfGZFvcASqL0NrdF6sJm1a0692cgacZLU/sTJUvsTp0jtT5wqk2XEaS5YRpiw9XdaiTXeszyjogbJ7YyKjp89kqINy3ImRTP1Z1JWwTdYBNGpsyntMdVpf8I0p/0J0532J4zMpxFGxtMII9NpgMnRpXzeFdGWZDlvi2hLspz3RXTebBlnVPBAUtYZFTyP1EDZu4vP0UIYLj1HmOm0P2GW0/6AibYh236vRbuQbb/Xok3Ivj8PRXuQfX88i7Yg+3ljRDuQ/bwxog3Icd4Y0fzlg/bPyJpa+zNrae2PrPCFmfX8jOF+ZDk/Y7gfWQLPWLR2Y1bV2o1ZTWs3ZunDN6P04ZtR+vDNKHv4RlKzh28m2cM3k7I9RTGq2FMUo6o9RTGq2VMUo7o9RTFq2FMUo6b9NWTUsr+GiIqOnx3nBwwnM++/YDdkZf0LxqxiZ6UBp9pRacBpNvANnG7z3sAZNu4NHHudPXHsbfbAGfYye+IkfQLCtRi+YrOc90j4hs37SYNZVZ80mGXvtae622vtiWNvtSfOtElq4CwbpL7mhK/STPv1Hb5J83X+GHCyHD8GmGIPqrgSw0NmzxskOmK2nEldngmZNNwkMqBMOYgMMEvmlK8x0dZl2i+iaOcy75d0NHSZ9zts2ZvWAGMvWgNMs1ICV2C0UVnO2yLap7wf2hk17aGdUfbOtUtMu9kr1wCTZAYYMFlGgAFTZAIYMFUGgAFjb1cDjL1cDTDDij1agi3an+zrjFpWoSVChROVrwKNUfKWtQwYeccaYYpTZ4SpTpwRpjltRpjupBlh5E1qhJH3qBFmWV2GSzDao7zLMkYlq8oYla0oY5S8TQ1KnuVdaoRpTpERpjtBRpjh9BhhppNjhJE3pgGmuPvSiJKkFsMFWLKUYkwqTokxqDohxiB1axqV2t2ZRpShVBhRphJhRFlKgwElmoXM211V3c1oRHH3ohGlSP2FCy/aayzHvRDtNL6qLyZ1Kb6Y5G5Ho2q7u9GIspTyAkp01GvbruVo3rFt13I07ti2a7m5G9CI4u4/I0qTmgtXXrSB2I+7oekvRAqi9AcijNLfhyCq689DGKW/DmGU/jiEUfrbEEbpT0MYpb8MYZT9MIRJ9rsQJtnPQpgkvwpB0JAfhTBIfhPCIPtJCJPsFyFMsh+EMMl+D8Ik+zkIk+zXIEyyH4MwyX4LgqRpPwVhks5ENkTpSCSjdCKSUTIQSRiZhySMjEMSRqYhCSPDkISRWUjA2CgkYWQSkjA6CIlL0OcgGaVjkIzSKUhG6RAko3QGklEyAkkYmYC8xnQbgCSMzD8SRsYfCSPTj4SR4UfCuOwjUewhmxZg18lHJtlDNpPkIRtBNvbIIHnIZpAKPRLEZR6J4iKPRHGJR6K4wCNRXN6RKC7uSBSXdgSKDjviwtNZRybZqCOTbNKRSTboyCSbc2SSizkSxaUcieJCjkRxGUegyIgjUVzCkSgu4EgUl28kio034srT6UYm2XAjk4abaTwBM91IY8IsO9F40IOFA42vA40Zlew8Y0Zlp+GhTrU4DU+Y6jQ8YZrT8ITpdpQxl3nYScaMmnaQMaOWm2MMdQrfJFm2ey08T/W3KcaEyW6IMWGKnWGMZQ7fIpmP6yh8h2Q+rqPWnYanOg2n4QkznYYnzHIaHjBd39uBZQ53F4/LqNtrO5hU1ORiKlJVg4uJ0szcYoJ0M7aYIMNNLebyTje0mEFLzixGUjSTmLZ/8eidkGn7no8OUc3bH53wfZDbjR7tG76OK+YKNzmtmEldDitm0lCziqlGU40qJspSk4qBEs0e1u07J9onfJ1TjBWOtgnrcf1Eu4T1uH6iTcK23V/RHmHb7q9oi7Btf9WjHcK2PWLMKQcUc4WXnE+MpOitj/24fqKdwr7dX9Hg4djur3CP8FU1L3ysKq/nY1KzoplRWhgyasi7+ZikdSGjltU+hBq3m7yYj0nJSh9GZXu8Z1Rxt/IxqMrTPZPk7RsM6upKPubYqzeYNOVxjUnL3ceHoGjrMB/LlOyphEnZXcbHIHsoYVKVP75Mau4mPgZ1+dvLJOlZpwQcaVojR7vWib4kH1nb1huW9q03LGlcU62ydK6RI61r5EjvGjn6jLKptXavNyx9TNmwpH9NtSrSwEaOdLCRIy1s5GgPm2tdtIm9YWkXe8OSNjbWSvrYyJFGNnKkk02cqq1srnW1XvYGZc3sDcq52VgoZ2cjRvnZSFGGNlKko72psbS0NyTraTOqOVObqtScq40YZ2sjxvnaiLHG9qbM1tneoKy1vUE5bxvr5MxtxDh3mzDd2duIsUqSy9ytwb1BWTG5QTmLG+vkPG7EOJMbMc7lRoy1uTdltj43o4Y1ujco53RTnYazuhFTpPavwKlS+xOnuYgYcrrLiCFnSJ1OnKhubK8rqOAKivojrRxZ0fTi+5bOrCS1P9QqPBH1t/AZcopLnyGnSp1OnCZ1OnG61OnEGVKnE0eGu5Aj013EWTLehZyoXkzruDfCEcY0zqyoL5LO75JVpU6nWjUXG0NOV7kxxAwnqgkznagmzFKi+poyo6nFtqckk8xCSlbRLMQUJ4EJE1SLqZ/2w4x2H9M8o6Jq8XZGucQX1slFvhDjMl+ESTcngQmTnAQmTHYSmDDFSWDCVBWqQkxTqSrEdKdXCRP081o+bogUPE63ekYFT9Pt/PLINyeBoU45qbQWYrKKayGmOL1KmOr0KmGivZf7X77hnyvaY7wvSGZFe4z3Hw5mRbXi/feMWVG/ehxRJSgV76dhRkVz5uWMCh6s77qaUdYLGcCxXghxrBdCHOuFECe6xtvrGu9Y67Af8rrGB7LCfsjtyIrf23h+xpqkjwF1D4ccX3wM4hTpYxCnSh+DOE36GMTp0scgzpA+BnGm9DGIE/6ONR/XYvRyxvf5vEceOo6fP/3w6ZdPn79sjYyJoLApUs//UmFTJFAsOQOH/oDNDcFBTHdmBmGGMzMIM5WZQZSlzAygRBuO+/3akzMzCBNczakcF2C013g3+HBfRKen5nRGRTvpgQfszomgkg/nRBBmOieCMMs5EYCJhh3LflVH+4x1v6qjfca6f/lE+4x1/yqMBh7rOi7BaOKxnTfGQ7ORfxDvghR/D6ODUts4/ytFDZJAoZazI+BPF80+9v3umLJ9ThjZPieMlIz5BhwpGZEjJSNypGREjpeMuDuml4wLWV4yImt5yYjPuKRkpLovKRmRIyUjcqRkRI6UjMiRkhE5UjIiR0pG5HjJSGtx3bxkXMhKWukxK2ulx89Y5LVRN+BUd28UYZpSeojpSukhZhilh5RplB5SlrosCijRlmPaFyYadbwrPVyAKVulh/simna8Kz1GVav0+AGbu0KKSt7dHVKEcZ9dI8Z9do0Y99k1YbL77BoxyV0cRZjsbo4iTLFKD5dgdGpqO2+MaPvxrtAY1a1C4wcc7jopKvl090kRZimFRphoqnHsV3X4LsZXBZLpIuAVvo3xVevnhKxim88bVrUKZPOMzZ4gN6xum+KbZxy2Kb5hTXuC3DzjkmcBRkV7j6+dFX7CaNTxtVe/QWV5Ftg8oH2nb1BVfkGwecAmvyDYoOw7ffOAcihDLsCRQxmQs6SzBJzwtNUXZ4k4SV44TpxsgxmZvv9a4R7kfVUyq9pgxoYlhzJgrbp0p4gzpDtFnCndKeIs6U4Bp9+kO0WcJN0p4mTpThGnSHeKOFVeYE6cZoMZvDfC9zjef3WZNWwwY8Oy96JTrezF6MAZ8mZ0wiTncBEmO4eLMEU5XESpyuEiirsOnSjyPnTCyAvRCTNlMIP3QzT0eJcSiIpmHl997Q0quWvWoU7RbmTe/65Gu5F5/zMfbUaW/baI9iLLfl9EW5FlvzGiYce63xjRrGPdb4xo1LHu36bRpGPbv9ujQce7FYEbIppzvDskjCoymLFBVXdrO9WpOZ+NMN35bIQZzmcjzHQ+G2GW1Kv9ipNv4bsZX/QqcZIdIpghGPCVle0QwQ2r2CGCG1aVGphq1dwQQeR0N0QQOUPqVeJMO0RwU+tlhwgyK93sEMENK0kNDLVKWWpg4hSpgYlTpQYmTrNDBDe17naI4IY17BDBDWtKXU21Wm6IIHGiDcmXIYLISVIDE0cPzOZaR/uS78/LKduZ2RuU/HCECiU/HCGM+3CEKO7DEaIsN0SQaxzNP64zKckhghtUdkIdqhSNPqb9yz+afMz736Jo8DHvt320/fg6RHBT5iGHCG5QUw4R3KCWE+pQp3pzQp0wyQl1wmQn1AlT5BBBLnO011jP6yjaa6zndVTdUAas01BDBBEz1RBBxCwn1AETTTv28wu2JTlEcIPKcojgBuWGMmCd3FAGxDSttQc+WZc35mxQQ0ttZnkpyawlL81hVPdKkllJKyVmZXlvzgZVtFBiVtVCgFnNXZ2zIXWrAxglR2ZvSFPdnrMB2YnZjIpOYb0f6BiV3AU6G1K25zlG6TMLo6q7Q2dD0kcWRnX7s8yo4a7R2ZCm/VVmlPXA1zVnWg+cON4DX/Rs03vgzPIeOLOsB061sh44cawHThzrgRPHH1y41t4DR9byJxdmWQ8carWsB04c64ETx3rgxPEeONfae+DM8h44s6wHTrWyHvg1J92sB04c64ETx3vgVOt00x44o7QHzijpgVOhpAdOGOeBE8V54ESxHjjWOFkPnEnaA2eU9MChSkl64ISRHjhhpAdOGO2Bc5m1B84o7YEzSnrgUKcsPXDCSA+cMNIDJ4zWk1jmrD1wRmlBySjpgVOdpAdOGOmBE0Z64IAp2gPHMhftgTNKe+CMkh441Ul64ISJnrHHy/mqJHyysCE4z6ywCd7PrOkyYCUDZ7kMGHGijcsX7Y+c5LQ/crLT/sgpTvsjp7q8FnKay2shJ3yp73mPRC+HfF/OeyR6PeT7ct4j4aGtpR5Z4aGtJZ9ZUS+wnGvfZK6M1kOTuTLkyFwZcprT/sjpTvsjZzjtj5zpMmDIWSoDRph40/K4EuM9yzMqapCc90d4fOuZFDx2lzMpmnI/k7oJquEiGCqohpiptD9iltL+hImGJPN+nw2XKkOMS5UhxqXKEBNdyuddEW1JlvO2iLYky3lfRKe3lnFGBQ8kZZ1RwfNIPZc92pas+70WzUzW/V6LZibbfq9FM5Ntv9eibci232vRLmTb77VoE7Lvz0PRHmTfH8+iLch+3hjRDmQ/b4xoA3KcN0b4osi79i/Iylr7M6to7c+sqrUbs5rWbszqWrsxa2jtxqyptRuzltZuxMo3ffhmlD58M0ofvhllD99MsodvJtnDN5O6PUUxathTFKOmPUUxatlTFKKizcr7KYpRyZ6iGJXtryGjiv01ZFS1v4aMavoXrCGr618wZg3pXhNnSveaOEu618AJpy1f3GviJOleEydL95o4RbrXxKnSvSZO0ycgXIvhqyfLeY+Er568nzSYNfVJg1lLusTAKTfpEhMnSZeYOFm6xMQp0iUmjrzCHTnyCnfkuCvcETPsQRVXYnje63mDRMe9liMpOu21nUnqSneqd3VXuiPGXemOmOoMWcI0Z8gSpjtDljDDGbKEmc6QJcyyUgJXYLRRWc7bItqnvB/aGZXtoZ1RxVmfhKnO+iRMc9YnYbqzPgkznPVJmOmsT8K428oI091tZYhJVuzhEoz2J/t5Y4QjlXeFNpBVtUJjlry9rEzgyNvLkDOkQiPOlAqNOEsqNOCEZ7m+KDTiyNvKkCNvK0NO0QoN12K0Xfmg0JjVtEJjVtcKjVny9jKsu7y9DDlLKjTghPOTab++Z5IKjThZKjTiyNvKkONuK0NMswoNV+LsVqExakiFxqQpFRqT1O1lVO/lbi9DTHIKjTDZKTTCFKfQCFOdQiOMu60MMe62MsQMq9BwBUbbkeW8LaLdyLtCI1SJNiNrOqPc7WVQ8nJzt5chpjiFRpjqFBphmlNohOlOoRHG3VaGGHdbGWKWVWi4BKP9xn7eGMl/UbKQ5b8oYZb/ooRZ/osSZvkvSpjlvyhhlv+ihFn+ixJm+S9KkJX1FyWM0l+UMEp/UcIo+0UJk+wXJUyyX5QwSX9Rwij9RQmj9BcljNJflCCq6C9KGKW/KGGU/qKEUfqLEkbpL0oYpbOVNSFLZys3LJ2t3LBktrIm4MhsJXFsthI5MluJHJmtRI7MViJHZiuRI7OVyNHZSl6LPlu5Yels5Yals5XM8tnKDUtnKzcsma2k9WCzlciR2UrkyGwlcmS2EjkyW4kcma1EjstWEkZnK3kl6mzlBmUP4xuUPIxvSPIwviHJw/iGpLKVuAhcthIxLluJGJetJIzMViLGZSsR47KViHHZSsTYbCWvQJ2t3KBstnKDstnKDcpmKzcom61klMxW0kKQ2UrEuGwlYly2EjEuW4kYl61EjMtWIsZlKxFjs5WbJWizlYzS2coNKrmZyrUCJ7uZysgpdqZyLfhs1c5U3rCanam8YXWp/alWQ2p/4kyp/YmzpPa/5tR4hrKfal3DIcpaz6xsZypvWMXNVMZaVTdTGTnNzVRGTnczlZEz7EzlTa2nnam8YS07U5lZ6Sa1P9QqfEdl2u+78B2VL9qfOEVqf+Lo60Q2tW5ypvIGZe8T2aCGmqmMhZpqpjJilpmpTJRoXrLtKcnNVOYaRzuV60wqcqbyBlWd9qcqNaf9CdOd9ifMcNqfMFPOVN6UecmZyoyK9ibzeR1Fk5Jlv9GiQcmy32nRnGSZe0xVM5UR0+RM5U2Zu5ypvEENOVN5g5pO+1OdltP+gIm2Idv+Fz/ahWz7A0jNcqYylzl6P2U/r6Po/ZT9vI6i3ci+32vRvOTY77VwH/KutRs+2ZT3Cm5QS0ttZDUvJZmV5L2CG5RXkswqWikxq8p7BTeopoUSs7oWAswa7l7BDWlaHcAoeYMIkx6DlYF7BTcge4HIBpXtgY5Rxd0ruCFVe55jlD6zMKq7ewU3JH1kYdS0P8uMWu5eQSZFL6vs51IN64EP4FgPnDjeAx/4bN4DZ5b3wJllPXCqlfXAiWM9cOJYDxw40x9csNbTe+DM8icXZlkPnGplPXDiWA+cONYDJ473wLnW3gNnlvfAkbWsBw61WtYDJ471wIljPXDieA+ca609cEZpD5xR0gOnQkkPnDDOA7+mtJvzwIliPXCqcbtZD5xJ2gNnlPTAqUrSAyeM9MAJIz1wwmgPnMusPXBEJe2BM0p64FCnJD1wwkgPnDDSAyeM1pNcZu2BM0oLSkZJD5zqJD1wwGTpgRNGeuCE0R44ljlrD5xR2gNnlPTAqU7SAyfMcNq/3YAznfZHznI5NeKEp7r+llNDTnI6HTlR3dheVxDlFVs0Rfm+lTMrer5u6cxqTvtjrbrLviFnuOwbcqbT6chZTqcTJ5ydLPs9Es5Olv0eqTJThhyZKUOOzJQhJ6oX0zrujXB+Mo0zK+qLpPO7pE6n07FWy+XUiNNuKqeGmKRENWKyEtWIKUZUI6UaUY2UZiJgSOkqAoaYoSQwYoJqMfXjfoh2ItM8oqJZyXw7o1yqjOrUXaoMMS5VhpiqJDBimpLAiOlKAiNmKAmMmKnyWohZKq9FmGg2su3f7SPo57V83BAjeJxu9YwKnqbb+eUxqpLAWKemImCI6SoChpih9CpiptKriIn2Xl7/8o2yXy3cY3xdkBtWtMf4+sOxYUW14uvv2YYV9avHGRWUiq+n4Q0qmmgvZ1TwYP2qqzco64UU4FgvhDjWCwHOsl4IcaJrvL2u8Uy1Dt9D+frabQVZ9zX++dMPn3759PnLzgz59mYAUNgMuZ3/pcLTiwPFsoYI/QGtIUIca4gQxxoi15x+s4YIcawhQhxriBDHGiLEia7rnE9rsd/C37Ue90i/hU2RemaFTZHAM8qhO1h3N3SHMOGc5H51x2OSe0xWZgZRijIziFKVmUGU5swMwgRXcyrHBRjtNb4afLwvomNdczqjop308wNGe455+4PWoz3HFyeCMNk5EYQpzokgTHVOBGGacyII050TQZjhnAjCBFdzXeclGFzN7bwxotnINs6oqEdyfsBoPrLvV3U0H9n3qzqaj+z7VR3tMY79qo5fIvnbL3wHzpBSjzhyPCty5HhW4tSblnqkqnpNWuo1ZGWt0JhVtELjZ5TjWrHuclwrcrpUaMQZUqERZ0qFRpwlFRpwwm3GF4VGnCQVGnGyVmi4FuOByPMeaVUrNGY1rdD4GbtUaFT34RQaYaZTaIRZTqEBJnq5ZN5TklJoRMlKoRGlOIVGmGoVGi7AaObxrtBwX/RuFRqjhlVo/IDTKTQq+XIKDTDRDmTZr+lo0rHsF3U06Fj2qzo6nbXuV3W061j3L59o17HuX4XRqax3hYZLMDqVtZ03RnQq612hMWpZhYYPGJ3K2verOjqVte9XdXQqa9+v6miqcexX9axagXSsc9NN44GsrpvGzBpagfAzTn2CZNbSzWx8xuis1odmNrOSPkHiM0YbkPezAKN0j52fUPfYGdXsWYAfUL/TGTVs558fcNrOP6P0O50ecIR7kS/O0gJOks4ScbJ0lohTpLNEnCoDFcRpNlDRFv7Nug1UbFjDBio2rCkDFVSrJd0p4MQbkWXPSdKdIk6W7hRxinSniFOlO0WcJt0p4nTpThFnyEAFcaYNVPDeCF8xef/VRVb4isl0fpfkJAMVUKucpcNFnOIcLsJU53ARpjmHizBdOVxEGcrhIspUDhdRlnO4ABONPab9nynahbyf2XE/RIOPdynBqCIDFRuUu88d6+Tuc0eMu88dMcOZZISZziQjzHImGWCiYce63xjV3d+OGHd/O2Lc/e2IqTJQwRsimnW8OySM6jJQsUENF6igOk3nsxFmOZ8NMNHeY99vjGjrcew3Rjji+Jte7Rk4xelV5FQ7/K/TB/0j3HF8Hf63YXU7/G/DGk4DY62mG/6HnOWG/xGn35xeRU6yw/+41uG7Iet5PfVih/9tWNVpYKxVcxoYOd1pYOQMp4GRM+3wv02tlx3+x6zo3NX78L8NKzldTbUKD15N+303ihv+h5zqNDBymh3+t6l1l8P/Nqghh/9tUO7DESyU+3CEMFN9OIIU9eEIUrIb/sc1jkYg15lU5fC/DaopoY5V6mr4H2KGGv6HmKlUNWKWHP7HZY52H/N5GUWbj/m8jpbLG1CdlssbIMblDRDj8gaI6XL436bMQw7/26CmHP63QS2l/aFOMzxitewxSQ3/Q0xWQh0xRQ7/wzLPaOaxlzOqyeF/G1RX2h/rNJT2R8zUWrvgky15AQ6jomNWH6Q2s7yUZFaWF+BsUF5JMqtqpcSsJi/A2aC6FkrMGloIMGu6C3A2pGV1AKKiHchxJiV1Ac4GlO1hl1HFHugYVd0FOBtSs+c5RukzC6OGuwBnQ9JHFkYt+7OMqHJzF+BsSMn+KjPKeuDEsR44cbwH3vDZvAfOLO+BM8t64MSxHjhxrAcOnGo9cOL4gwvWunoPnFn+5MIs64ETx3rgxLEeOHGsB04c74Fzrb0HjqzmPXBmWQ+cONYDJ471wIljPXDieA+ca609cEZpD5xR0gMnjPTAAePCk0hxHjhRrAeONe7WA2eS9sAZJT1wwkgPnDDSAyeM9MAJoz1wLPPQHjijtAfOKOmBE0Z64ISRHjhhpAdOGK0nuczaA2eUFpSMkh44YKb0wAkjPXDCSA+cMNoDxzJP7YEzSnvgjJIeOGGkB06Y6Bl7vJ6vBj5Z2BCcR1Y4N9n7mZVcBqxP4GSXAUNOkdqfOFVqf+I0qf2J06X2J85weS3kTJfXQk50XdfjHlm36Lou88yKeiSln1lRj6TUMyvqkZR8ZkW9wBKovcyVwXpYN5krQ47MlSFnSu1PnCW1P3DCOclU9pzkMmDIySoDhpiw9XdcifGe5RkVNUjO+yM8wfVMCh67y5kUTbmfScsE1WgRRCe3prTHJKf9CZOd9idMcdqfMC5VhhiXKkOMS5UhJrqUz7si2pIs520RbUmW876ITm8t44wKHkjKOqOC55F6Lnu0LVn3ey2amaz7vRbNTLb9XotmJtt+r0XbkG2/16JdyLbfa9EmZN+fh6I9yL4/nkVbkP28MaIdyH7eGNEG5DhvjGh+8kH7L2Q1rf2Z1bX2Z9bQ2o1ZU2s3Zi2t3ZAV7kfetRuzktZuzMpauzFLH74ZpQ/fjNKHb0bZwzeT7OGbSfbwzaRlT1GIit4rWc7PFw1alvMDRnuV91MUo4o9RTGq2lMUo5r9NWRUt7+GjBr215BR98X++cOfPlz+Dv7r3DEyELT/PehL+TW0/71hSf97JOBI/xs50v9GjvS/kSP9b+RI/xs50v9GjvS/kaP9b16LU/vfG5Y+q2xY+qyyYRXnM1PdZ3U+M3Ka85mR053PjJzhfGbkyMvbkSMvbyfOcpe3IybJoy6vxPA1k+cNEp3yWs6k6k6VG5K6zB3r7S5zR4y7zB0xU1m6iFnK0r3GlFs0ZpnLHpOUpYuYrCxdxBQpRmgFfkVVKUY2qCaP/RtUl8f+DWoo8xRLPpV5ihj34RRhkvtwCjHuwynEuA+nEFOUeYqYqsxTxFi5yEswWbm4QY2TxnuQeP/53bsfv3z889f/2x9++svHXz7/+PO3e5V/+vDD13J8/+4/vhXn3+bf5tf/7q8fP//6T0Sv9ds07a+n3PmPr//0z3/6+O1tdEV6/8OnT//1/+O+/ucPf/zy418//uHlHwX2P/4fKasUbQ==
1x1 unit
Substation has the highest coverage to footprint ratio. Can 25 solar and 21 acc fit into a substation?>>Tile usage = 25(9) + 21(4) + 4 = 313 tile
>>Substation coverage = 18 * 18 = 324 tile
In theory, yes. After some tweaking, i manage to fit them together.
Hereafter, i will call this 1x1 unit (18x18 tile) this is the building block.
- 1.png (283.71 KiB) Viewed 8390 times
2x2 unit
Rotate and arrange into 2x2 unit, rearrange some acc in the middle. Now roboport can be placed in the middle.Notice that every corner has 2x2 tile, these space is reserve for radar, and server as visual marker as border of 2x2 unit.
If u prefer, there are spaces for chests and lights too.
- 2.png (85.99 KiB) Viewed 8390 times
Radar and Roboport, beyond 2x2
Not every 2x2 unit needs radar and roboport.The next goal is make bigger tileable blueprint using 2x2 as building block.
>>Some restrictions:
>>-radar covers 12x12 unit (7chunk * 32tile/chunk / 18tile = 12.444)
>>-radar should always goes to 4 corner for any blueprint, this gives vision to the edge for future extension.
>>-roboport covers 6x6 unit (110tile / 18tile = 6.111)
>>-roboports connect each other within 2x2 unit range (50tile / 18tile = 2.778 -> 2 )
Below shows the coverage size and connection range. Each square is 1unit (18tile).
Notice that Radar (R) is placed on black crossing (corner) while roboPort (P) is placed on yellow crossing (middle).
While roboport can be placed on either corner or middle, radar should always be placed on corner.
- 3.png (18.48 KiB) Viewed 8390 times
8x8 unit (12.8unit : 1port)
Although radar covers 12x12 unit, i realise that 12x12 blueprint is not the best choice, because 12x12 is SOO big that it cant fit inside my screen. I go for 8x8 instead. (Also radar is inexpensive)As for roboport, aiming for highest coverage to roboport ratio is quite a fun challenge. This is the best i can find. (12.8unit : 1port)
- 4.png (20.23 KiB) Viewed 8390 times
other possibilities
Among some trial and errors, here are other interesting result that i found.
These are not included in the string.
-cons: too big to fit inside my screen
-cons:
>>1. not periodic, might be tedious to construct.
>>2. 10x10 is still quite a tight fit into my screen.
>>3. 20:1 is the limit as the pattern tends to infinity. initially the ratio is 11.111:1
>>4. probably overkill, who needs that many?
1st pic: 10x10 blueprint layout, blue spine and red branch.
2nd pic: showing how 2 branches cover without overlapping.
3rd pic: showing each red branch grows from blue spines.
This is actually more of a fun challenge than practical.
If u can find better ratio, please let me know.
These are not included in the string.
12x12 (12unit : 1port)
-pros: highest coverage to radar ratio-cons: too big to fit inside my screen
- 5.png (33.48 KiB) Viewed 8390 times
10x10 (20unit : 1port)
-pros: highest coverage to port ratio-cons:
>>1. not periodic, might be tedious to construct.
>>2. 10x10 is still quite a tight fit into my screen.
>>3. 20:1 is the limit as the pattern tends to infinity. initially the ratio is 11.111:1
>>4. probably overkill, who needs that many?
- 6.png (28.06 KiB) Viewed 8390 times
2nd pic: showing how 2 branches cover without overlapping.
3rd pic: showing each red branch grows from blue spines.
This is actually more of a fun challenge than practical.
If u can find better ratio, please let me know.