

The simple
- minimalist.jpg (172.69 KiB) Viewed 4009 times
0eNrtnc1u5DYSx1/F6LOciFUkJRrIba+5LHJbDIy2LY+F9Bf6YxJj4AfY99gn2ydZqe2x5RYp1n9sJLM0DwnG3RKpripSVT9R/H+dXS0OzWbbrvazi6+zm2Z3vW03+3a9ml3MfjtsV2fr1c/r29uz/V1ztm0/3+3Pluvd/ux6vdrt56v+H8urdjXfr7dnf9w12+bst1/q8my/Ptss5vc/b+aHXTMrZm1//OziX19nu/bzar7o+9rfb5quk3bfLLsjVvNl/9d82+7vls2+vT5/aXn20LWwumn+nF2ohyLaxu18tz/fb+er3Wa93Z9fNYv9oAV6+FTMmtW+3bfN4yUd/7i/XB2WV8226+K5od3hqvuRR2MUs8161z7a5eusb6Yyxex+dnFuSu4aXzWdba7Wh23fJBXE9Km/0pOmSda042DTquCucfY1zqLGWamJ69Zd49rXuJY1Ti7YOBe2a9z4GjfPjX8Lq6Hzx73o8qdn49NPpuvppt0214+HdFfatbLfrheXV83d/EvbNdGdd9su9s02EINf2u3+0H3y8iOPR5z/1sfN9frQDw6rB0H46fj5avXY6a5vSvX/2zY3w5Bqu7+qsju03V4f2v3x7/7kB48RrMzCugpaWBeqKn32rSLDyxPc1YuFlci+Ly1fdl/ftM92uW23u/0lZvJd07dx+S0ajmNyvWm286eJ6bw7bX3Ybw5Yww8Br33eNs3q1G/1a7fR0ecUPLwK+bXGjV9/eOM70PinQ6x4/TUHfONw37gP7xtVYs6pI87RAef0/YDeqcvsHYV5x0W8U4W8o3DvqOwdwryjyoh76pB7CHcPZfcw6B417Z46lBQoxt3D2T0adA9F3EMh92jcPTq7x4Du4Yh7TMg9BnePye6xoHt0xD025B6Lu8dm91Sge0zEPcHUAMcBdcYBCuQBp6Nt5B4Xcg8ODOoMDBRIDFQEGbgy5B6cGdSZGRDIDFQEGrhQYk04NHAZGhAIDVSEGrhQYk04NXCZGhBIDShCDVyIhxJODVymBgRSA4pQAxciooRTA5epAYHUgCLUwIXKUsKpgcvUgEBqQBFq4ELEmnBq4DI1IJAaUIQauFBZSjg1cJkaEEgNKEINVBnMrHFs4DI2IBAbkI35J5ha49zAZW5AIDegKuafYHaAgwOXwQGD4IDqmH9C1JphcsBlJgcMkgNyMf+EuCgr3D8ZHTCIDjiCDpQKgVEm3D+ZHTDIDljF/BPKD5hx/2R4wCA8YIr5J8TeWOP+yfSAQXrAHPNPCL6xwf2T8QGD+IB1zD+h/Jot7p/MDxjkBxzjByqYX1e4fzI/YJAfcIwfqBAe5Rr3T+YHDPIDjvEDFeKj7HD/ZH6gQX7AMX6gQvWpxvmByvxAg/yAY/yAQvxa4/xAZX6gQX6gY/yAQvWpxvmByvxAg/xAx/gBhfJrjfMDlfmBBvmBjvEDCuXXGucHKvMDDfIDHeMHFMwPcH6gMj/QID/QMX7AIX6tcX6gMj/QID/QMX7AIT6qcX6gMj/QID/QMX7AIT6qcX6gMj/QID/QMX7AwfwA5wcq8wMD8gMd4wcc4m8G5weU+YEB+YGO8QMO8TeD8wPK/MCA/MDE+AGH8muD8wPK/MCA/MDE+IEO5dcG5weU+YEB+YGJ8QMd4qMG5weU+YEB+YGJ8QMd4qMG5weU+YEB+YGJ8QMdqk8Nzg8o8wMD8gMT4wc6xK8Nzg8o8wMD8gMT4wc6VJ8anB9Q5gcG5Acmxg90ML/G+QFlfmBBfmBi/MCE8muL8wPO/MCC/MDE+IEJ5QcW5wec+YEF+YGN8QMT4tcW5wec+YEF+YGN8QMT4qMW5wec+YEF+YGN8QMT4qMW5wec+YEF+YGN8QMbzA9wfsCZH1iQH9gYP7DB/f9xfsCZH1iQH9gYP7Ah/mZxfsCZH1iQH9gYP7DB/BrnB5z5gQX5gY3xAxvMr3F+wJkfVCA/sDF+YEN8tML5gf5Q/MCj7WNi3ojRAhuqdqqBCtVyvlicL+bLzaRQj+53C3nwm/3bNTzb/DtM/uvA5KiA0nIz3x5j6GL2ywywb8WnButldgqRCAz5TvXbmialw6aNXp/qT1lfDyz0Zp20N33SL4VYfcnrOi00rPtQw6RXbSnEykpewxp0TNTomLBoDw7toZIFx4tqUJLBoT2aMYVc2skbHbXQsippy1ZjuZfTew6Fba1i96ug9R04coYBLho5dYn2oNAehPnNiyhRkhFUexRpCrl0lFdvkISW5ZQtW/vEZAq56pPXsoyOCkJHhUZ7YLQHI4wOnXR0kEfLppCLTnmjwwota5K2rBnL0Jze18JZ/1hBynOu3/oVOnI0OnKkOY9N2r/Wo2NTyAWnvL5zQssmzTpGA6WXoCnkWlFefdtSaNmkuUMXomP1mEIu8+S1rDR/TRo8dCE6En45nbEn5gcXm+1DaxGdMMd1SVf2zqfrUsgFmLyWFZJKl3RlPwpjF85ZfNpJXssKUaVLuuJ17FFTKeSyR17LCmsal3TF6/RYCOVkPq0n5geOzMV16Lm7QzmuQ2tWJ+S4Luma1RmPkkohlzzy+k5Y07ika9bxQCnDCaJPrshrWhTSOrQgVSVKaYduFHYhTHNd0kWvq30qLIVcMMkrJFpKk9iky95+rI0lVE5vPhPpV+yxf62DDkB57jDKheMHBbqugruQZj912mFEPqWXQq7K5A8RIdR1Lm3jGp9MSyGXVPIbF2W2roYHR4124eAuZPRyIBaUZohYn1JMIVd18oaIKoXGVWkb13lkXk7vc+HpjmNLDWobdIDCBtCrMJcNIEVCHycNRvrh4pGKKeSyTn7/sdC4nLZxyafzUsg1mfzG1ULj6rSNyz6RlkIuqOQ3rhEa16RtXO1RWDn5ZOJ5FseeqDsVdIAVOsCm7QDjk1Ap5HJHfuNWQuOmXfyPY1mFqSZXUuPWQuOmXRKryideUsiFhvzGldY7aZfEqvYoj5zOrRO3wdizbxd6T0tRiabkcE1LMuw7ELBJ08fOp15SyJWG/P4T1jsq7ZqWvNIjhVwmyG9ckOm+CmHh4NBoFwruQpj7qrRLYiKf+kkhVyryh4gwr1Vpl8RkPNIlpzehCXPHFgy4IFOiCh1ABA+gGu2C4S6EeZBKu/gn61NYKeRqSN4QYSH3VWkX/+MRyWEmqI3UuCjTVfDSBCa0C3hpAgvJpkobT3DpU2gp5GpK/hARkk2VNp5g9sirnN7nwsBCx9YmuDroAIMOIHhtAkvzoLQpCWufREshl1Py+0/I91TalGQ8XHhiuEgXDrCQ71HaeIIrnzhKIRcy8htXmNdS2niCa4+ySXHyTkU4GTORR+7Hc/0O0MLcl9Iu/tn5pEsKucyQ37hCsklpF/+jWD7qjhRyjSC/cYVkk9IuibVXNKSQC/z4jSusdyjtkliTR/HjdG4NJ3DGxOblKugAlPsSXNNqIfeltGtazT7VkEKu8OP3n7DeobRr2tFwOUp+FHJ5Hr9xUaZLcL2qUaZL8Fp6Lc190y6JtfWpjhRyhSBviBhpXpt2SaydRzLk9CYULpKNi93AgkzJoNyX4PX2BuW+BK9NMMI8iNMu/k3pUzYp5CpE/hARcl9Ou/gfjcijLEkhlxDyGxdlugyvTTAW7QJem2CEZJPTxhNG+5RRCrmKkT9EhGST08YTpvLImpzc5yZeL7KRtQnHcwMOcOgAgtcmWGEexGlTElP7pFEKuYyR139WyPc4bUoyGi5HXZNCrkHkN66Q73HaeMJ6RUkKuYCQ37jSvDZtPGHJoyhyOn2HF4raKjb1B9dVW2num3bxb9knGVLI5X38xhWSTU67+B/F8lEBpJBr8/iNi0uH9Y9qhlYeJi1/h3QL9Uueh+ItP3+HeMuvkHiLmtCm8h4efDJghSWRThtJ2BFZ9tz8CrnOkd/WLxXSTXPd3jTbSKBrNNCfmn2HKB8oE2nVK2q8Mu5///2f7xMo6tvZ3HfXd1jtL2+36+Vlu+ramF3st4fmbQPg1H8uMiSialMjObeQW1/qrm9Wi/h1lMDHPXvbLvbNdnf8GajBD70be12EdnXT/Pn4S77f0kE7DFS4doerzg7HH+T5+dVz0dldxqppP99drQ/H32YLYvvJ27jCjPxK6Mj6jfxdwj808SKi/+CAtQj8QUOdirf8oDDqqYL4vYLlAwYhXonQwkAOSWgP8y72GO0KThPvcvkPDtgMlSEa7r4utBm6f+VwG3JhF/Dm9DXcBbrR0XBjamEXDg0u9y7BNbG7QXjzAljBZrhVtMwetUK7UHAXqDLdcPNgYRcMenW4fetbvDpatUMjxDvxtp/09EB0oPOke58b4dS+kcfvApeLPjgq8UizYP5Vvs+ddLztEVE1oZnlPTpgNXRJSokPHnRJynCbJWEX6AOJ4WZDsi4cvKEAnJg4hYaXeafwmpB9CqNAhy5jKOG0w6Evqpdw2uHQBYslnHYMtl4X+tW9k1/daCIY1Q00IXQoPT8QH+hsqd7npjl+25ZoSjHOe3TgJ8EvZePxWKNWe6e77ugVL6IJVRL/0QGrobOzQocYobt8v3qlTNgFvDCshLuAF4YpuAswk33VxZvCayqYQqFDJbycnGCLoHkjMdwFuuCINNxFhfr1nXKH0TJ0otEnE5sdiM8PxAc6W9I73Von1voevwtcLrxwBo61wWbAMovwO911R0tViCcUxPxH+60Gb6/L8PBR6MzLBu4CzWXZwl2gsyVXcBdoLsvvlJ5MrB45fhcIHXipJ5x6KDQnZDj1UGgFreHUY7Bh4Wa7/rydL5fzq0Vzvts089+b2GMP83/ynPbl+VL/8bJ5fND17TnX5Zf54tBctrvLTbu/vptd3M4Xu6Z/mLXbbw/LzmSPM1XX1XrfPD2iAp5vjR/a0ITKq//ovr/X175ZzO+v5te/X35ZLw69BcqftK7Y1rq7FxiyrIwjVyniust1Kqe0USVbx2XZHUK1Ucb26wqe2/m8WF/NF4v7x0elxaz79/qPy816cb+5W6/un8zy0H/RbEeWvOuOPX7xbL7jR+vV5XK+eWmyP3PZ7Hbzz73PZt7BO9jDURiTQ+yqP2pMaiQmJ9TOntTMBPHGVJW2stapqnMBcRdSVLvus7oLRFfZLg67oDM117bL5bStqx8z3hQYb69ATZ4DJfE2sdvr026ugnjro0lRVXdn6LqulOuSWMu1q7vPnCLTBaF2fVDWlS6JNf+g8UZovA0JWY43UbxNaNY/br4oiLfjTbQLrafbalk5Y6ib6pyxpXZlaTUTOV1rY+p+rvthJzhGA25ICfINVRBwU9sqPG2bILmhalNbba2yRivu5jPrurDrPuMuoyt11cVi6WzdRV1l2JU/av6m31JT8EcNN4OE28QasaclYR+oXjBovA1XduV4E9WwUxXrR6tP7Vvq0xxvf1l9mkq8VXB9qnK8gfE2US/U9oPFW/0WHpLj7S/jIanEm4N5SK4X0HibWO71uNH2x4k3Lt+CQ3K8/WU4JJV4g58vcK4XUB5STvCQ8oPFG4lek6TqW4zV5vQ1SVUQ8ydv4yxrvF/CHWiciv4SibW/Ay17ybNfHRTogPur7/4z/g6MrIM+LQl0oPurD71JSkPtCNFrqh77V+Xj9XdB3e6bZdfUVTd+Ntt21a/7WMyvmm6gzv65vv797B/Nct199qWLpGPjVCtdOapqS7qy9cPD/wDpOiVE
How it works
I'm not joking only 4 combinators matters here ! Let's address the 64 that do not really matter here, they are just here to give a number to the lamps. There are 64 of them, that's the number written in the combinator (4), the first arithmetic combinator of the long 64 array remove 1 to this number, so the last lamp is lamp number "63", and the lamp before 62, 61, 60 , 59, 58 ... and the first lamp is 0.
64 is a magic number here , because it divide in 8 twice, it makes it easy to do rythm in factorio, the red belts represent the subdivisions, and the lamp the smaller subdivisions of time, this is supposed to be similar to music software/ sequencer, there are plenty videos online on how to make sequences ( for beginners ) that start with this one so i did the same, but later we'll see how to expand.
This is like a track that will be played in a loop, each lamp has its number making it possible to place a speaker with the same condition as the lamp, and the sound will be played at the proper time and repeat, boom tac boum tac, boom tac boum tac

The missing piece of logic is how to choose the tempo, the number of beat per minutes, that's usually what need to be setup first, i think, they always start by that on videos, they never say it at the end, like if they didn't say at the beginning you are supposed to know or look it up. It's quite easy to find the BPM for a song, but in factorio the question is : how much time a lamp need to be lit before the next lamp lit ?
That's easy and not easy, in the example, in the arithmetic combinator (1), you divide "T" by 225 , the decider combinator (2) only let "T" goes through if "T" is less or equal to 14175 and the 3rd constant combinator hold the value of "T" = 80. That's the easy part.
What happens : the constant combinator holding the value 80 will pass 80 to the second combinator, the decider looping "80" onto itself, 80 160 240 320 400 480 .... until it reaches 14175 and repeat, that's how we make the time loop.
This number that will increase is divided by 225, and 14175/225 = 63 That's like a 64, because first lamp is number 0, and we have 64 lamps, so the last one is 63. That's very convenient

And the BPM in all that ? well it depend on how the subdivision are used, if a "kick" from the speaker is placed at every first red belts, this means there will 8 beats in 2.95 seconds, or (60/2.95)*8 = 162 BPM. This is not what i have done in the example, instead i only placed a beat on half of the red belts. This means the BPM is actually around 80, which was the recommended for this drum pattern in the video. This means there are 16 lamps between 2 beats to attach a sound, it's rigid a sound can't be played in between, it sound robotic for this, but each sound can be given a little accent since they have each their independant speaker.
That's a lot of text and a lot of math, it sounds like annoying to do that all time, so i made another version, with a bit more combinators to make things easier to use :
The automated
- expandable.jpg (145.79 KiB) Viewed 4009 times
0eNrtnc9yHDlyh1+FwaNN2ZWZ+KuI9cGe8G1v45O9oWiRPVLHkmxGszm7ig09gN/DT+YncXVzRmoyOwH8ZuyxUIPDOjxiN0AiE1X5fYUC/nb5/vZp/bDb3O8v3/7t8mb9eL3bPOw32/vLt5c/bHcXP6we9+vdxfuHu4s//NPF5v56t149ri++v5h/drP+6b++m39wsf+4vthtPnzcX9xtH/cX19v7x/3qfv8f94dmHm+3f/nazJcvHpv50qhqZnfazL/OH53/aX34yu368fHidnX3cPGHi/VfH1b3N4d/3a3vtj+uL/6y2X+8mP+f3e3q4WFz/2Fu4+HT8/e3c+tzK0+Pm+uLq4vrj6v7D+uLx4f16s/zPz9sHzeHv/zi0Nzj9un+5vLqcnP4BS7f/vvfLh83H+5Xt4dR2n96WM/Ds9mv7+ZP3K/uDv+12s3d3q33m+s319u795v71X67u/w8t3B/s/7r5Vv6fFVtY79b3T8+zH/2m/fr2/3Jl/nzn64u1/f7+fdbP/82x//49O7+6e79eje3/qWNx6f384AdI3h1+fOfdOjx8DsQX11+unz7Jk08N36/nsf5/fZpd2iSr0J2fzr8kq+a5ramZTKbpiuZG/fnGpe2xl0q/N5ubjyca9y1NR6C2bhc+bnxeK5x39Z4cmbj8+89N57ONR6aGufJDqe/inPj+Vzjsa1xtgMartJVnKZzjae2xsUOaJybpnNN58pc04M/uX/wP/czzf3cbHbr6+cPzGGZZ/Z+t7199379cfXjZm5g/tbXlt/NP745tvZ4+MEPm93j/p2avz9udvun+V++/tXHT7z5/jB5H9eHNt79fAk7ztLtw3q3+un6+mb+2vZp//CENfz58/F3v3/+U46/HR3+z4fden1/enHY3BzGYP7wZnf9tNkf/3u+ksxfZ/vzkuZPfD4z/IeW0PH3Y/wJG//88uN0Eojn8GQrPISHJ4zwMDg9pkp83GTFh/H4xBEfAeNDtfiQFR/B45NGfBwYH67Fh634ODw+ecTHo7f/WnzEio+H40PTiE8A4+Nq8XFWfAIeHxrxiWB8fC0+3opPxOPDIz4JjE+oxSdY8Ul4fGTEJ4PxibX4RCs+uB6goQcY1QOpFh9LHzCuD2joAwb1AdX8gbP8AeP+gIY/YNAfcM0feMsfMO4PaPgDBv0B1/yBt/wB4/6Ahj9g0B9wzR94yx8w7g9o+AMG/QHX/IG3/AHj/oCHP2DQH3DNH3jLHzDuD3j4Awb9Adf8gbf8AeP+gIc/YNAfcM0feMsfMO4PePgDBv0B1/yBt/wB4/6Ahz8Q0B9wzR94yx8I7g94+AMB/QHX/IG3/IHg/oCHPxDQH0jNHwTLHwjuD3j4AwH9gdT8QbD8geD+gIc/ENAfSM0fBMsfCO4PePgDAf2B1PxBsPyB4P5Ahj8Q0B9IzR8Eyx8I7g9k+AMB/YHU/EGw/IHg/kCGPxDQH0jNHwTLHwjuD2T4AwH9gdT8QbD8geD+QIY/cKA/kJo/CJY/cLg/kOEPHOgPpOYPguUPHO4PZPgDB/oDV/MH0fIHDvcHMvyBA/2Bq/mDaPkDh/sDGf7Agf7A1fxBtPyBw/2BDH/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQX/gav4gWv7A4/7ADX/gQX/gav4gWv7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD38QQH/ga/4gWf4g4P7AD38QQH/ga/4gWf4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQX8Qav4gW/4g4v4gDH8QQX8Qav4gW/4g4v4gDH8QQX8QK/6AJ8sfRNwfhOEPIsinkWrxsfxBxP1BGHwaQf6JrhYfyx9E3B+E4Xci6N8i1+Jj+YOI+4M4+DSC/BNDLT6WP4i4P4jD70TQv0WpxcfyBxH3B3HwaQL5J6ZafCx/EHF/EIffiaB/i74WH8sfRNwfxMGnCeSfVOUfyx8k3B/E4Xci6N9irMXH8gcJ9wdx8GkC+TTV6muy/EHC/UEcfieB/i3mWnwsf5BwfxCHP0igP0g1f0CWP0i4P4jDHyTQH6SafyPLHyTcH6ThDxLoD1LNH5DlDxLuD9LwBwn0B6nmD8jyBwn3B2n4gwz6g1TzB2T5g4T7gzT8QQL9Qar5A7L8QcL9QRr+IIP+INf8AVn+IOP+IA1/kEB/kGr+gCx/kHF/kIY/yKA/yDV/wJY/yLg/SMMfZNAfpJo/YMsfZNwfpOEPMugPcs0fsOUPMu4P0vAHGfQHueYP2PIHGfcHefiDDPqDXPMHbPmDjPuDPPxBBv1BrvkDtvxBxv1BHv6AJlAg5JpAYEsgZFwg5CEQMigQck0gsCUQMi4Q8hAINIEGQc04HSFLIRy/ioZoOIQMOoRccwiczQDhEiEPiUCTQ+dQTSPIZIYI9wh5eIRjZkOTqCYShMwI4SYhD5NAU0AnUc0lCJshwmVCHjLhmNlYiGo6QcQMEewTeBo+gaaEhqhmFMSZIQp4iIZSOGY2FqKaVBBvhijiIRpWgWhCQ1TTChLMECU8RMMrHDMbC1HNLEg0Q5TxEA21QISqBaqpBTHVAk14iIZaOGY2NotqckFMuUCEh2jIBSJULlBNLjhTLhDjIRpy4ZjZ2Cyq2QVn2gUSPETDLhChdoFqdsGZdoEcHqJhF46ZjYWoZhecaRcItws07AIRaheoZhecaRcItws07MIxs7EQ1eyCM+0C4XaBhl0gRu0C1eyCM+0C4XaBhl04ZjYWoppdcKZdINwu0LALxKhd4JpdcKZdYNwu0LALx8zGZlHNLjjTLjBuF2jYBWLULnDNLnjTLjBuF2jYhWNmY7OoZhe8aRcYtws07AIxahe4Zhe8aRcYtws07MIxs7EQ1eyCN+0C43aBh10gRu0C1+yCN+0C43aBh104ZjYWoppd8KZdYNwu8LALJKhd4Jpd8KZdYNwu8LALx8zGQlSzC960C4zbBR52gQS1C1KzC960C4LbBR524ZjZ2Cyq2QVv2gXB7QIPu0CC2gWp2YVg2gXB7QIPu3DMbGwW1exCMO2C4HaBh10gQe2C1OxCMO2C4HaBh104ZjYWoppdCKZdENwuyLALJGjRLTW7EEy7ILhdkGEXjpmNhahmF4JpFwS3C/LKLvxfBuXfWoLy9/+7Qdmtb16P8HOOl2Og2NQa8a+y4PFudXv75nZ193DmTbuv67Lj4aU7Y6B/7vLLKP+CQf7jySBj02XOk4fV7pgnby//cAmMKEl+laRyODPzyngN9fWEOPNVY7Rz42j7ZY92en2Cn5vUIEZz/PWLQGe+ez4AbmoMQPh9pTs5UoOY7QBQLQAmsztqDEBcdABUvpN7PYjucGqiFQAuB8CZJy7O/TQGIC07AOoQUSdqEMUOgNQCYJKCk8YA5GUHgFUAnBpEZwfA1QJgcoBzbQH4unB5mQEQFQCvBrFwE/a1ANg3Yd8YAFp2AJwKQFCDmOwAhFoAzGcbLjQGgJcdAK8CEF8P4uFoGysAsRIA81icuZ/GAMiyAxBUAJIaRLYDkGoBMI2qa8ReWjb2qnwnl9UgejsAuRYA0/S4RhKmZZOwynfykxpE20TwVAuAqSJ8IwnTsklY5Tt5UoNokzBTLQAmCftGEqZlk7DKd/JqENkmYa6RsLn3/9xPYwCWTcIq38krEmYbxLhGwubm13M/jQFYNgmrfCevSJjtmzDXSNjc3Xrupy0AvGwSVvlOXpEw2yTMNRI2d0ee+2kMwLJJWOU7eUXCbJMw10jY3vzYN5IwL5uEVb6TVyTMhSqoRsL25sa+kYR52SSs8p28ImEpVEE1Era3LvaNJMzLJmGV7+QVCYvtgrhGwvbOxL6RhHnZJKzynYIiYbFdkNRI2N53ODSSMC+bhFW+U1AkLPYTMamRsL2rcGgkYV42Cat8p6AH0QYxqZGwvWdwaCRhXjYJq3ynoEhYbBCTGgnbOwKHRhLmZZOwyncKioTFtqFSI2F7v9/QSMKybBJW+U5BkbDYJCw1ErZ38w2NJCzLJmGV7xQUCYtNwlIjYXuv3tBIwrJsElb5TkGRsNgkLDUStnfiDY0kLMsmYZXvFBQJO5uEpUbC9j67oZGEZdkkrPKdgiJhZ5Ow1EjY3kU3NJKwLJuEVb5TVCTsbBJ2NRK298iNjSQsyyZhle8UFQk7m4RdjYTtHXBjIwnLsklY5TtFPYg2CbsaCdv728ZGEpZlk7DKd4qKhJ3NAa5Gwva+m7GRhGXZJKzynaIiYWdzgKuRsL2rZmwkYbdsElb5TlGRsLerIFcjYXu3v9hIwm7ZJKzynaIiYV+ogmokbO/lFxtJ2C2bhFW+U1Qk7G0b6mokbO8xFhtJ2C2bhFW+U1Qk7G0b6mokbO8gFhtJ2C2bhFW+U1Qk7G0X5GokbO9sFBtJ2C2bhFW+U1IkHGwX5GskbO9blBpJ2C2bhFW+U1IkHGwS9jUStvdTSY0k7JZNwirfKelBtEnY10jY3i0lNZKwWzYJq3ynpEg42CTsayQcTBJOjSTslk3CKt8pKRIONgn7GgkHk4RTIwn7ZZOwyndKioSjTcK+RsLRJOHUSMJ+2SSs8p2SIuFok7CvkXA0STg1krBfNgmrfKekSDjaJOxrJBxNEk6NJOyXTcIq3ykpEo42CfsaCUeThFMjCftlk7DKd0qKhGOhCqqRcLSroEYS9ssmYZXvlBUJR7sKCjUSjmYVlBtJ2C+bhFW+U1YkHG0XFGokHE0XlBtJ2C+bhFW+U1aDmGwXFGoknEwXlBtJ2C+bhFW+U1YknGwOCDUSTiYH5EYS9ssmYZXvlBUJJ5sDQo2Ek8kBuZGEw7JJWOU7ZUXCybahoUbCybShuZGEw7JJWOU7ZUXCybahoUbCybShuZGEw7JJWOU7ZUXCySbhUCPhZJJwbiThsGwSVvlOWZFwskk41Eg4mSScG0k4LJuEVb5TViScbBIONRJOJgnnRhIOyyZhle88KRJONgnHGgkni4TnfhoDsGwSVvnOkyLhZJNwrJFwymYAGkk4LJqEdb7zpEAs2yQcayScJzMAjSQc8rIDICoAigOyzQGxRsJZzAA0knBIyw6AOlJk0oNoc0CskXB2ZgAaSTjSsgPgVQAUBxQOcIg1EjYPcJh7bgzAtOwAsAqAckG5UAXVSDjbVVAjCUdZdgCiCsDrushPtg2NFRI+ftcIQCMJR152AJwKQFCDaNvQmGoBYDMAjSQc/bIDoDiASA2i7YJirgXAmwFoJOHolh2AoGZAUoNou6A01QJguSCmRhKOywYxle9MogbRJuFEtQCYJEyNJBzDsmeAckH0mo092SScKiR8/K4RgEYSjssmYZXvTF4Nok3CSWoBMEmYGkk4LpuEVb7PmakG0Sbh5GoBMEmYGkk4LZuEVb4zRTWINgknXwuAScLUSMJp2SSs8n3OTDWINgmnUAuAScLUSMJp2SSs8p1JkTDbJJxqJMwmCVMjCadlk7DK9zkz1SDaJJxqJMwmCVMjCadlk7DKd2ZFwlyogmokzHYV1EjCadkkrPJ9zkw1iHYVlGskbB5hwtxIwmnZJKzynVmRcOEIk1wjYfMIE+ZGEk7LJmGV73NmqkEsnGheI2E2XRA3knBaNgmrfGdWJFw4QybXSNg8Q4a5kYTTsklY5fucmWoQbQ7INRI2z5BhbiThvGwSVvnOrEi4cIZMrpGweYYMcyMJ52WTsMr3OTNfD2LhDJlcI2HzDBnmRhLOyyZhle/MioQLZ8jkGgmbZ8gwN5JwXjYJq3yfM1MNok3CuUbC5hkyzI0knJdNwirfWRQJF86QyTUSNs+QYW4k4bxsElb5PmemGkSbhGmqobB5iAxLIwrnZaOwSngWhcKFQ2RoqrGweYoMSyML52WzsMr4OTXVIIZCBGowbB4jw9IIw3nZMKwynkXBcOEYGZpqNGyeI8PSSMN52TSsMn5OTTWIqRCBGg6bB8mwtOEwT8vGYZXxLAqHC8do0FTjYfMcDRbfGIFl87DK+Dk11SByIQI1IDYP0mAJjRFYNhCrjGdRQOxKtVCNiJ1dC8XGCCybiFXGz6mpBrFUC9WQ2Nm1UGqMwLKRWGU8O4XELhciUGNiZ3pRyY0RWDYTq4yfU/P1IHrbixLVmNibYtRNjRFYNhOrjGenmNhLIQI1JvamF3LUGIFlM7HK+Dk11SAWvBDVmNibXshxYwSWzcQq49kpJvYFJqYaE3uTiZ00RmDZTKwyfk5NNYgFJqYaE3uTiV0jE9OymVhlPDvFxKHAxFRj4mAysWtkYlo2E6uMn1NTDWKBianGxMFkYtfIxLRsJlYZz04xcSgwMdWYOJhM7BqZmJbNxCrj59RUg1hgYqoxcTCZ2DUyMS2biVXGs1dMHApMTDUmDiYTu0YmpmUzscr4OTVfD2IsMDHXmDiaTOwbmZiWzcQq49krJi4cq0FcY2LzXA32jUxMy2ZilfFzaqpBLNRCXGNi82AN9o1MTMtmYpXx7BUTx4IX4hoTR9ML+UYmpmUzscr4OTXVIBa8ENeYOJpeyDcyMS+biVXGs1dMXDhchrjGxObpMuwbmZiXzcQq4+fUVINY4AGuMbF5vAz7RibmZTOxynj2iokLx8sQ15jYPF+GfSMT87KZWGX8nJpqEAtulGtMbB4ww76RiXnZTKwynoNi4sIBM8Q1JjZPmGHfyMS8bCZWGT+n5utBLJwwQ1JjYvOIGQ6NTMzLZmKV8RwUExeOmCGpMbF5xgyHRibmZTOxyvg5NdUgFphYakxsHjLDoZGJedlMrDKeg2LiwiEzJDUmNk+Z4dDIxLxsJlYZP6emGsQCE0uNic1jZjg0MrEs+5wfeVXPU3VKyOv3t1XtVDiWhqTG0Oa5NBwaGVqWzdBqhsyprAaxwNBSY2jzYBoOXxn6h9Xj/s1+t7p/fNju9m/er2/3Z179OF3uGI+huNnsnv/Iy7fhbBcR7cLDXSS0iwB3kdEuItpFnNAuEtwFoV1kuAsGuzhdNNLYhaBdENyFQ7s4URyhrQuPdiFwF+jsPn1w29gFOrtPn843doHO7tNHb41doLP79PlqWxcJnd2nD08au0Bn9+kTssYu0NnN8OxO6OxmeHYndHafCszGLtDZfWqpG7tAZzfD9+6Ezm6G790Jnd0M37sTOrsZvndndHYzPLszOrsZnt0Znd2nhXljF+jsPqW1xi7Q2S3wvTujs1vge3dGZ7fA9+6Mzm6B790Znd0Cz+6Mzm5BZ7dM6OyWBHeBzm7JcBfo7HYT3AU6ux3BXaCz2zHcBTq7ncBdoLPbobNbJnR2Ow93gc5uF+Au0Nnt0MpcCJ3dLsFdoLPbZbgLdHb7Ce4Cnd2e4C7Q2e3h2U3o7Pbw7CZ0dnsHd4HObu/hLtDZ7QPcBTq7PXzvZnR2e/jezejs9vC9m9HZHeDZzejsDvDsZnR2B4a7QGd3ELgLdHYH+N7N6OwO8L2b0dkd4Hs3o7M7wPduQWd3gKeeoLM7wBcQQWd3hMtmQWd3hIt/QWd3hG+sgs7uCJcHgs7uCN9YBZ3dES4PBJ3dEZ966OyO8AXEobM7wmWzQ2d3hIt/h87uBN9YHTq7E1weOHR2J/jG6tDZneDywKGzO8Gz26GzO8Gz26GzO8Fls0Nnd4KLf4/O7gTfuz06uxN87/bo7M7wvdujszvD926Pzu4Mz26Pzu4Mz26Pzu4Ml80end0ZLv49OrszfO/26OzO8L07oLM7w/fugM7uDN+7Azi7X2zM2jb1gqBdwLM7OLQLuDIPHu0CrszRtWoMLyQTdK0aw8vhBF2rxvBCMkHXqjG8HE7QtWovNihrm3roWrUXO3A1doHOboIrc3St2os9lBq7QGc3vJBM0LVqDC+HE3StGsMLyQRdq8bwcjhB16q92Kijceqhs5vg2Y2uVXux1UJjF+jsJrgyR9eqMbyQTNC1agwvhxN0rRrDC8kEXavG8HI4QdeqvXhhtW3qoWvVXryR2dgFOrsZrszRtWov3qlr6wJdq8bwQjJB16oxvBxO0LVqDC8kE3StGsPL4eRkrdpqt9l/vFvvN9dvrrd37zf3x3dJznTizC74/IsxX1v++m7M4y94Oea7X/JyzL8dvrR9WO9Wz7/j5d/NH9k+7R+egJ7/5fIz9EKNfn1GbXJgvU3j0+FV76tLPjRufCK9fl3q/Ns1crJMEHqxxrXlztdr6jwwj/vV/b6YOS+68KqL87nzw+Z2v949HscAi/n19ul+P/d6dbm5v1n/9XmYgNfY1Ovj+fWrhSGUXiRs/L4RuYiOre9pbAtbIUg2xyQB2ezhbM7oiIeORtwVtj5w1s4G7mTdaeOYxJ7GpLAZgXk+jztZKAu95teUhe5kjSz0hl9j64LGM/UUT1bX18Jrw+c/bcTcoeOWexq3woYETswxQWqLBGdqAFrPcOvo3fVUin378SxUJc6Z8UzomFBPY1K6EtjzPrdn4WmKtGXhybpv6A3ixtYJjSf3FM+grt6FDQrOf/p8zE/WsTeOm/Q0boWN+Fw0x0SATGU4Ux3QusCtezSePVGqK2zr55IZT5TcqSe6LB3IZp635k5eaIC2KWjMQoBdycOto+xKPbGr3tg7F8jt/KfPx5xRvqWe+NaXRskeE4BvCeZbBviWYL5l5D4FUwOjFEg90bMvbAzo2cwW+O7aExmXjjU0Ty10DLArwWTMKLtyT+yqtjIOIap/KdQ8rd83IocyMPfEwL7AwN5kYEZrC+6JI32BGr3JiILWDdwTI5YOsjTPqXSC+gbuibPU1rqhdMTV+U8b44b6Bu6JxXxplOwxQZ9TcE88EwrP4oL5LE7Q6pN7YpXSwaHmuaBO0OqTe6rI1basYSplztlPG+OG+h/uqWoPhao9mFW7oHW19FRXl1aqmKtQnKD1sPRUD5eeDtvPggWth6WnejioJyWlgyTPf/r8uDm0ZpaeauZQqJmDWTM7tGaWnmrmEqfbDO7Qelh6qodL1GAzgkPrYempHo5qXWQk9S8FO9n6fWNs0bpaeqqrS4fQmmfMOges7RH4GYAD/KjAzwAcXMf1xATFeWDnOFzH9VTvlw6ZNc+QdQ5Y2yOwpffA2h6Bn0R5tG5wPbFKVA6/GOGznz4fc4/WFq4nnikdNGueI+s88MzUwWvcPLC2x8Fr3Dzqf1xPLFY6ttY8ldZ51O24njirdJCseU6s88DaHgevX/PA2h4Hr1/zqG9wPTFiVE9KpgIhnf/0+ZgH1De4njiydJhstMcEWNvj4DVuAVjb4+A1bgFlYNcTA5eOpjVPnnUBZVfXE7uWDos1z4J1AWBXB7NrANjVwewaUHZ1PbFrUk+oYuGpxPlPGzFH+db1xLelA2PN82BdAPjWwXwbAb51MN9GlG99T3xbOn7WPF3WRZRdfU/sWjrg1Ty/1UWAXT3MrhFgVw+za0TZ1ffErkk9GSR9PS/FvPH7Rl6gDOx7YuBUYOBkMnBEawvfE0emwrPGZD5rjGjd4HtixFRgxGQyYkR9g++Js/QeLCXLdv7T58ctob7B98RipTeu7PerElzH9cQzufAsLpvP4hJcx/XEKrnAKtlklYS6ndBTvZ/1E6rCHfz8p41xQ/1P6IkJcqE+zGbtl9C6OvRUV+fS3cq+N6H1cOipHs6l2WTPHbQeDj3Vw1k9KYmFCvn8p41xQ2vm0FPNnAs1czZr5oTWzKGjmpkLbx2w/Y5BRuvhEHsaEyqMiVkPZ+D5W4CtaQaevwXY+Ga4Rss9xZML8TRr+QzXX6mnMZHXdwVW71IXnkM3f98YW+A5XoTtawae40XYHMO7t0bqKS9cIebm84uM1g1x6mlMfGFMTFbJwDO6iK4c8hPwjC4y3DrqdqL0FM9QiKfFWX5C3U7knsZEXb1TqTI8+2lj3IDneNHDmQo8x4sObh31DdH3FPNUiHAy44n6huh6GpNSzZPNMQHWoMYIZyGwBjUGuHWUb2NPLEeFqxiZ1yxC+Tb2xPyk3qArrMYzPm2MG8DAEWVgTwADxwS3jjJw7ImBqcDAxGY8UQaOPTEwSWFMxBwTgF0TwVkIsGua4NZRdk09sSsV2JWcGU+UXVNP7EpeeZpC1Xf+08a4AXybYL5lgG8TzLeM8m3qiW+pwLdk8i2jfJt64luKhTGJ5pigNUHqif+odCUw5z28U27qif8oq2pXrU1Npbqh8fvG2KK+IfXEYlxgMTZZjFHfkHpiMS6QF5ucBe8TnHpiFS6wCpusAu/vm3piFVbP2wpvmhifNsYN9T+5Jybg0iiZYwLvAZx7YgIuPM9ib44JWjPnnmpmLtTMbNbM8P6+uaeaWT/Rl0IVff7TxrihdXXuqa4uEbbN0/AewLmnupoLz1XYfK4C7wGce6qHpVAPi1kPw/v75p7qYdFPGwp3q/OfNsYNrZlzTzWzFGpmMWtmeA/g3FPNLAVOF5PBpd1r8gT7fTcBrcN+H91z9sUf8O3Hs1DLi1nLo3vOvhj2b39MlLHXb1cX3ilu/r4xtgJkM/wMwDmgdfgZgPNoXvTEM1LgGTF5xgV0THrimRK92KziIpCF8Po1l4DW4fVrLqPx7ImzpMBZYnKWn9Ax6YmzRD9/KI3S2U8b40ZApsJr3DwDrcNr3LygMe+JI12BI53Jkd6hY9ITR7rCcxVnPlfxHshCeP2aD0Dr8Po1H9F49sS3rsC3zuRbn9Ax6YlvnXrK4wpV3/lPG+MGMDDBDBwABiaYgQPKwNQTA7sCAzuTgQPKwNQTA7uCIXSmDwwAuxLMrgFgV4LZNaDsSj2xa/EqZl6zAsqu1BO7Ov3GVeGJyvlPG+MG8C3BfBsAviWYbwPKt9QT37oCuTmT0yLKt9QT37pS1ps5HuGaoCf+8wX+8yb/Rbgm6In/vHoyqK+JuTRujd83xhb1DdQTi/kCi3mTxSLqG6gnFvOFZ43efNaI7hPM3BOr+AKreJNV0P19mXtiFa+etxV23zQ+bYwb6n+4JybwBSbwJhOgewAz98QEvvA8y5vPs9A9gJl7qpl9oWb2Zs2M7u/L3FPN7NVTnly6g5/9tDFuaF3NPdXVoVAfBrP2Q/cAZu6prg6Fu1Uw703oHsDMPdXDoTCbgj130HqYe6qHg3raUNg92vi0MW5ozSw91cyhUDMHs2ZG9wBm6almDgW/H0y/f7IH8Gq32X+8W+8315VRcbZ+PD8mX1t+N//4ZvPlj/lhs3vcv2sepu8Pw/S4PrTR/qXvDl/aPqx3q+ff8fIf549sn/YPT0DPf7w8DF9rLPxhh+Drze76abN/DsAxkmx8XA6baJ5+3L5DfK3Ub9bXm5v1rhKqgIbqp2b/H+L0L89z4O5htTv+NW8v//s//+sXhOr753YePr07Tqh3P+y2d+8293Mbl2/3u6f1r4vj1asP2KJVRbWcBKovUn3F1ixB2aV8xPz/4nXu+5Pr3OEt7i8Xuiugke9OGjk8JP+pEUaulmdGuzmO5rif7Pf8sNt+2K3u7lbvb9dvHh/Wqz+vz70ocLpojo8Df26of+78y5z8BVPyj79kSn6vpuQfjv/y0+9z+Of5qn7Mgp/j9+7H1e3T+t3m8d3DZn/98fLtD6vbx/UhSI/z5Lubh+x5Lsxdbffr5/F0wJSUwvb/8rz9/zzML36xh9vVp/er6z+/+3F7+3T48+Y77Jd/+3C7fb+6vf30fG24upz//+1f3j1sbz89fNzef/rp9/98+MF6p/7kj/Nnjz/48nce/2l7/+5u9fC1ycM379aPj6sPh8G9PJ88hCbP6ZOGkTwtyePIvlwff9Zt8gB7vp3KcWl6fpyBvUlPNXNj68DepKfisbF1YB+yU9Xb2DqwD9mpDGtsHdgv81Q/NrYO7Jd5Kl8aWwf2vTrVXU2thwm+055qgXGxbLpYig2Ux591erEME7D95mnaNKYmcinOcOvApVgmuHXgUiwEtw5cioXh1oFLsQjcOnApFge3DlyKxcOtZ/Ri6QaWoBdLX6gsfb+VZSBgh0kPT1pkJ2QPT9qTnZAbE//0LxiJ35T4hSOsXey4SiDkYHX4mkzIwerw/QTZfNnDxTey+bIPcOvAndbD9RMBd1oP137IZr8Brp+QzX4DXPsxcjAbfClm5GA2+DbCwFwN8FxlYK4GeK4yMFcDPFcZmKsBnqsnG2w23mDDwHD0BpvtZ93Hn/V6gz3ZibQxeU63lB/J0/SYq7B5tX/evLrT5EG21YevyYJsqw/fTwS40yb4ii/AnTbBV3wB7rQJrs4EuNMmuDoT4E6b4epMgDtthqszge+0eaAserEs7A7on3cH7PNiKQD0ZLi0B3YCfJGUba0DOwG+2P62sXXgUpzh24gDLsUZvtADu8q92Ny0sXXgUpzhC71DLsXwhf5kf7a2i+WLDU3GxbLpYll4hcT7jitLh95peazDgZMnFu60seM7LbJPIeFXfGS/IfiK75H9huArPrIvHsFXfGRfPHj9U/DAHjjw+qfggT1w4BVKAdmrDV5dFZC92uAVSsEDe67Aq6uCB+YqvkIJ2RsMXl0VkL3B8EUmAZir+AKZAMxVfJEJsl8VvkDmZL+qX7DCe/rdFge/8QLveaATxynEEDJFzsKBYk7s8jwvXYxRZIo+UIpOUp7v2k4Oe0x8e/XEyQ5mrfl2Mh/p95pvHnm+MtlvXB5/1mstGgL8QgGP3MFyh6jwPgF1nDuwbj6te8d9riV32N6X5PizpvtcmMhP880rS07z3Y2nyEQiMUyefXIu5zkykeYybeIo3+xtLv2adBuXqt8o3b7NSxW8uvkUFUfuNL0JUrjNSce3uQi/RiSjREJzp7AwXjpeGB/h93UljBIJK5FcAc2c/K5KpMi/Jt3Gpeo3Srdv81Il8Atgo7wGc8cXSiTfc4kEG283DCSYO6GAZqFjNIv+17x/N0qk3+j1u8WUSLDw9qNEAi9VsUBzsWeaw99kGiUSmDupUF6nnstr2F6HYSDR3CmUSKnnEin/mjcoR4n0G71AuZQSKcHCOw7hjV2q/FRY2zx1vLY5wcI7jvIazB2aCq/rTh3nDmyv01g3id3mPNu3uePPfk+3Ofk16TYuVb9Run2blypYeKchvNHcKbw7yB2/O5hg4Z1HiQTmjoTCS/qh49zBX1oeS27BEskV0Mzx76tEir8m3cal6jdKt2/zUpXg3BnlNZg7hdPKve/ZBGR4e4VhIMHcCYUSKXRcIsHnK73YBWGUSL/RzhxLKZHgE5l4vJWEXqpi4VIVe75UMZw7X0ukw8aJv8/cEehwxkKJlDoukbLAuZNG7oC5U7DXqWN7fXKY2uPT+8f985m35171/zlf3Pxb3a83Hz6+3z4dj/Okq5D9n8427tsaP2yfazTOV4dfMeRwvoPQ1sFhmy2jAzn89vP/4vkOYlsHIZgdHH/7+X/pfAeprYPkzA6Ov/38v3y+g9zUAU92gI+//VWcpnMdxJOj1YodsB3k428/d0DnO6C2DsQO8uGXnMd/nsGb/fpubuj9fLF42G3uD7v83K7er+er0uU/by++29zc3K4/Xdys77bzT36cJ9yxA07kYuaYArsY0ufP/wM2nX+n
How to use
This one can be expanded(or shortened) by copy pasting more lamps on the left with overlapping blueprint ( easier to add 8 lamps when copy pasting 16 ) for belts to match. It uses the constant combinators under the lamps for both easy wiring of the speaker, and counting the lamps for the machine to update itself after a change. There are more belts to help count and vizualize time. There is only 1 place for setting, that is the right most constant combinator. It only has 2 value "T" and "D" , increasing T or decreasing D will make the song faster, decreasing T or increasing D will make the song slower.To make music, change the speakers positions and sound

How do i export my mixtape ?
- Tiny Rock box.jpg (75.65 KiB) Viewed 4009 times
0eNrtWctu4zYU/RWDQHd2RnxKMjAF+thmU8yuCATZpm0iEilQVFoj0Af0P/pl/ZJeSn4oHvmdTINpFjYsUry8POfw6tB6RpOskoVV2qHxM5rJcmpV4ZTRaIy+VFYPjP5k5vOBW8qBM8Ugk3M3mBpdulT7H/lE6dQZO5jDp8jS1acirUqJhkj5u9D492dUqoVOMx/frQoJgZWTOdyh09xfzeRUzaQd7YKhGobrmfwTjXE9PBlgk05/BFI/DJHUTjkl23yai1Wiq3wiLUyxDZTLmarykczk1Fk1HRUm8yspTKlaSJ4RBKSc3PEhWqHxiEXijtc+xb2Y5NjqeiLiXUQGqc+UhRSaG9jQr89ZkyUTuUyfFARomGrCJtA3a0KVvnWubOmSr+B6UtZV0LJNqr1j9MXDtEEPgGA45L4hL1LbZDpG//z1NwwzlSuqywMXK8iv0i6ZW5MnSkMMNHa2knU7r24X2aSO/ZeVsy5DatYgOVV2WinXXnbA9te0foBY5LzBeG8wDvb7H+o+NulRqR2nk4NAXhAq+gmdq8xJe2DDnMC58uxFQWfTPFwN8CEM2IWKZls97wNA3lDRqV65pdILj0spfajzx963YHbE//kK6XczeJ0dIHwBW1gp9X4PPyHvHmoP75XoAPH8WuL5B/G3ER8eJJ5dQmx8gFhxaVXrPPbYW1a1nzpVDZ9wAodi/NKJQcNtEHpJZWTnVcbwBhzf9OnwcxcD2jVE52PAz8Mg2s5dWLOwaZ6nk0yOykKmj7IXBL4vpr5lb6beloYbK8PO6wR7O/7Hpns9nW/OZQv4Bu/kKQWnnKgyKZSbLtF4nmal9KCWsK1zwGPzNNXGyTVYV2vNcwSDXybi7fUknT4mTyar/BKDOyIo5mEUs5CKiJEgjDknIYljLgIWB4FglJAYIOY8wgFnIvIObxtokZlJmmWrtjQNEfw2fyRge1fF0ujVepG175D2K1yWcG/TsQWjaTI6ydNiF9KPzGVZpgvPCuqTT3yLfPiHfPa36f9MPt7Hr1lLrXJLmARObyeK8EY+5Eybsov8CoeutUXZCYoQANYUEgTVHr4/XWFBwMjccrLamohez4HxeY8CjC8ng/1XZNz3koHFSy5+eF0u+uENjh90LzPzmO0PF4foItf6e/rh72/z95ieb/CHJ/fiETHwQ9zTG6wr/WZHgPDKM0DX/7L4Ov+Lz/x7BLNbLAx5Uwtzf9y7fH4D78Iv2Qb4OvPCMDgVSigNIhIGIqQRCXDIA8oCTggRIiaMRphwgQPKMRfkXXoXfotw6HfqfVl9/RY9Vz+0UQ3IZK0jkAiJYmiLwA7HofCGF9oiGglCg3frfcXF+mE7/eBvWXii76Tw0DhisSAsEAGGchPykAjQDpyZoAgJzuAYxWhI4MzEY/oORAMmo3lhNu687BuiLJ3IzL/lU3o1+M1MHwe/ytxAxxPM1/q5CLMwJiHon4Uiqut/AYIjm2M=
This is an example of manual compression process

The hi hat had the same process, but since it is repeating on every single half note, it is possible to use the current count of position, and do modulo 16 this will create a clock that count from 0 to 15, and the hi hat speakers are made to produce sound when the count is 0 or 8.
The compression process at the end is not necessary to have some fun here are some creations that were made on the simple machine before i thought of making it easier to use:
"funk demo"
0eNrtndtu5LgRhl8laCB3mo1YxYNoIHdB7nK3d4uB0fZoxsL2CX2YZLCYB8h75MnyJKHa9lhukWL9Y2czkXmxi3F3i5SqilTVR4n/b4ub1and7bvNcXH126K73W4Oi6tfflscuk+b5ar/7Phl1y6uFt2xXS+qxWa57v9a7rvj3bo9drfvbrfrm26zPG73i6/Vott8aP+xuFJfq2wbH5eH47vjfrk57Lb747ubdnUctEBf31eLdnPsjl17f0rnP75cb07rm3YfuvjW0OF0czguj912ExrfbQ/d+Z+h2/5EnK4WXxZX7wxzaHzTdp/ubranfd8kVcTmfX+mF02TrGlPyaZVxaFxG2ucRY2TqifOW4fGXaxxLWucmmTjXNnQeBNr3HxrvA+T43JzHDp/3Av7n8xjP/STCT196Pbt7f1PwpmGVo777er6pr1bfu5CE+G4j93q2O4TMfi52x9P4ZOnizz/4t3Pfdzcbk99EFszCML35883m/tOD31Tqv/fvv0wDKku/OWCvW+7/e2pO57/7g/+GjGClVlY26SFdaVs1HkuM7wiwW2fLKxE9n1q+Tp8/aH7ZpeP3f5wvMZMfmj7Nq4fo+E8Jre7dn9vlKvFu3DY9nTcnbCGvya89mnftptLvzXP3UZnn1Py544Tfm1w47s3b3wPGv9yiFXPv9YJ33jcN82b942qMec0Gee4hHP6flDv+OIdhXnHZ7zTpLyjYO80dfEOYd5R9bR7mlQ2oQh3jyruYdA9KuMeSrmHcfdQcY8G3UMZ95iUezTuHi7uMaB7OOMem3KPwd2ji3ss6B6dcU8ycbO4e0xxjwPdYzLuSWZuOA5oCg5QIA+4HG0j9/iUe3Bg0BRgoEBioDLIwNcp9+DMoCnMgEBmoDLQwKfqHsKhQVOgAYHQQGWogU/VPYRTA1+oAYHUgDLUwKdYNeHUwBdqQCA1oAw18ClcTTg18IUaEEgNKEMNfKruIZwa+EINCKQGlKEGPlX3EE4NfKEGBFIDylADVSdTNxwb+IINCMQGZHL+SeZuODfwhRsQyA3I5vyTgtaEgwNfwAGB4IBczj8pak04OfCFHDBIDqjJ+ScF3hhHB76gAwbRAWXQgVIp8sYwO6C6sAMG2QHXOf+k8jcm3D8FHjAID1jl/JPK35hx/xR6wCA9YMr5JwXfWOP+KfiAQXzAnPNPir6xwf1T+AGD/IBz/ECl6h+2uH8KP2CQH3COH6hU/cMO90/hBwzyA87xA5XC19zg/in8gEF+wDl+oFL8mj3un8IPNMgPOMcPKFX/6Br3T+EHGuQHnOMHlKp/NM4PVOEHGuQHOscPKJW/aZwfqMIPNMgPdI4fUCp/0zg/UIUfaJAf6Bw/oBS/1jg/UIUfaJAf6Bw/4BS/1jg/UIUfaJAf6Bw/4BR/0zg/UIUfaJAf6Bw/4BR/0zg/UIUfaJAf6Bw/4GT+hvMDVfiBBvmBzvEDTuZvOD9QhR8YkB/oHD/gFH8zOD9QhR8YkB/oHD/gFH8zOD+gwg8MyA9Mjh9wqv4xOD+gwg8MyA9Mjh/oVP1jcH5AhR8YkB+YHD/QKX5tcH5AhR8YkB+YHD/QKX5tcH5AhR8YkB+YHD/QqfrH4PyACj8wID8wOX6gU/WPwfkBFX5gQH5gcvxAJ/M3nB9Q4QcG5Acmxw9MMn/D+QEVfmBBfmBy/MCk+LXF+QEVfmBBfmBy/MCk+LXF+QEXfmBBfmBz/MCk+JvF+QEXfmBBfmBz/MCk+JvF+QEXfmBBfmBz/MCk8jeL8wMu/MCC/MDm+IFN5W8W5wdc+IEF+YHN8QObFADA+QEXfmBBfmBz/MCm+JvF+QEXfmBBfmBz/MAm6x+cH3DhBxbkBzbHD2yy/sH5ARd+4EB+YHP8wKb4tcP5Ab8pfhAR9zE5b+RogU3Raqcm9awmJXt67PbcGzbWA6E9OLSHgSTVerlavVst17vMqftzw7HQebTjt7j5jrD52yBsUBWo9W65P4+Dq8WfF0CMOD1yetNrkEmUbCh2aDxetNDWbta25oi6TCUWeIoa1qDDpEGHiUV78GgPThgczZsaiC49Dr0wOBqhYf2sDesisjSVXD0qalkPDoqBupBsUDQ12oNCe1Cy6Bie+gyjoxmr4lze1Xw6XlTujpjikQ0Jra/mbP0mJnpTydWpopZldOQQOnI02gOjPRhhdNCso4MimjuVXBwrGh1WaFmetWVNRC6nkutaRS0rTOMGYkdztKwdK91c3BNcnba1ydxPXGr9pBHmegMtozla30WEbCq54lTUsl5o2VlzglEY+4kodjLL+lpo2VlTgRCiY/mYSq7zFLWsNLefdUkdQnSk/HI5n07kmz43F6dYtZfm9rOuu31M2KWSKzBFLStktn7WNesojHtNlkounhS1rJDQ+lnXo54jciqVXPcoalkU0Xq0HvUoovVoPeqFub2fdT3q9VjN5eKe0KSzorEQU+TYeAQJc3s/65rVu5hYSyWXVYqaFgW5A9Ed2dBRNUpyB7ox0i6E6Z6fdek9Ho29WkwlF3aKKmrWwmTOz7qw7sdaROqlkssyxY2Lslpv4bGBwlrv4C6EtNbbeYcIRdRmLu9xE1N27umCRiXDSAh1vZu3A0xMTqaSSz/FjevQAdTAA6hBu/BwF0KK55t5h4iNKdpUcvWpaIgoIcjzft7G9TE5mkouHRU3riy5G8oJzdG4qo5oyVzeIdL5HudW6pu0A0joADVvB0TFYiq5sFPcuCw0Ls3buBRTeqnkqkxx42qhcXnexuWYTEsll1SKG9cIjavnbVwd0Vi5nFvTFJVzK96NSzrACh0w78pcmZiISiUXPIob1wmNO++adhzLKv1YLjupcRuhceddryoXky+p5FJDceOCSHeoQyMsJqlGu4DrVZJm/fOuV1UTUVC5+MRPZP25NXyfDCOSZv3zrmkpKpFSyeWM4sYFue9Q60Y6gDTahYK7EGaAat6V+XhEUvo5Xa2kISLM7tS8q24yMYmVSi6HFDeuQwcHwYOjQbtguAsvDJF5swOyEZWXy/tcGtXo3HMJPrWngeJa6IB58wXyMRmXSi65FDeuQgcQ/GgCE9oF/GgCC/memjclGY9ITvM9LX02gYV8T82bgDDHZGAquWRT3LjS7G7eBIR1RMPl8g4xEcu5VX2vkw6QZoDzpiRsYiItlVxQKW5cId9T8+YL41jmNN/T0vVwFvI9NW92wC4mj1LJpYzixhVm/TTvqpubiLbJ5dw6Ye7cerhPvbmutDDrp3lX5uxj4iWVXGgoblwh96V517TjWNZpymuk6+FayHRp3vWqjsqGVHKJn7hxUaZLcL2qUaZLcL2qhVk/zbte1RRRLqku3tlLZ/0ms6p/PjYRRsKsn+Zd02oTkyap5DJCceOi3Jfg5+01yn0Jft5eSzPAeVfmoxF5Vkep5EpG0RAx0uxu3lW39jFpk0ouQxQ3Lsp0CX42waBMl+BnE4yQ6dK82YGpI+oql/e5icTK5+6RJhlGQu5L8+YLhmPyKZVc6ihuXPB97aEOjnQAWbQL+NkEI+R7PG9KMhqRZwWXSq62FA8RId/jeRMQ42LyK5VcKiluXGF2x/MmIKaJaKdc3iHSz9lYzt1dUnt7KyvMAHnelMT4mDhKJRcyihtXyPd43nxhFMtnZZNKrkIUN66Q7/G82YGNypJUcgmhuHGFWT/Pu+q2FNEUuZhbJ177tJn18POxCQcIs36ed2VuOSYaUskFfuLGFXJfnndNa3VMA6SSq/PEjStkujzvetWOmK5N16tOWq8OlL8Op5vD8V5fZmzcHqw/VJDIOY+wP8eqpHAKbffp7mZ72of2frFV8OX76Nk+lU6PyjiTKj7P5FfsqPT9fu0NGr3aRROPrUsPT7jIgxc93HP/BRc9sdtKejOVgdKS8GT165ysG5l49AlNCKYID09cNCpoNLxoJyIysKLRcKtmYRfw1vcW7gLe+97BXRg0AJtXCcCJfXd9erSgey8OT1ZoD3QDnuG+ssIu4A14argLeKc9hXbRoDPXcLvKlwTOeOppRlPPhJqP8PB4AA5kXIQX/To31Kn931R66WKgeyI63Wfb2rzkdEfbl5Ca0nWJ/jpxSeiDLzU8eFDFkWd70Qi7QJc9hjuyCLtAlz2G+5IIu3BoeOlXCi8zGrITG+THf50IL/SBihpOTRr4lXk4NfHwK/NwauLRxfUaTk08PHu9Tmoyfg2bJrZKSPw6Hl6DLdVll6TolS7Jj06SJi4p+uvEJWn0kl7plsjjYT2qGyde3xUfn7hsdAZX+BBDZ3CFDzH41WQ4ofbwq8lwQu3Biv/Z2wovCsGp8EqFDqF7VD87XZFFqIYffVJwF/CjTwR3AT/kzHAX6OxFr5TC6PHsM1rZ4ImkRnp8IgQNetmvdGudeK7v/F3idC14uvxKt00zvhFOFGLxXycuCZ15GR8+6MzL+PBBc1lG02VS6GzJBu5CoeH1SinMxErx+bt46Ch05mULWwSdednBXaBVNjdwF/DDhR7u4mlm2u23n/bL9Xp5s2rfHXbt8tc2t8Ri/k+W3Z7WoPqP1+2x3Z8D+/6Y68/L1am97g7Xu+54e7e4+rhcHdpq0YWhtD+tg8nuJ8PQ1fbY3j+OC63kNROjpLlfEHt+XrvV8svN8vbX68/b1am/uvon7S3p2tbK1OyMZ8/hftMoXYcmdKgFQp4aPg1Zm9WN5p6Kf2vk02p7s1ytgsvC5YTrCv/e/v16t1192d1tN18ervdr/0W7H5noLvz2/MU3u5w/2m6u18vdU5P9kev2cFh+6p2xiA98hwbbcOGkBJsk2Kb0Qu/1QN9KsDVosA0Bfwk2SbBNCFg9CFS9lWDzYLA9w/ol2ETBNgH8GnpDwTbYUFYabOU2urhiKNgmJM7vNxkXBBs7b70n3Siqua6daYxxjkm7xuuGVV2r/jNnNHtt+LxF6A8YbgoOt6aEGza3TexK/LDr8P94bus//j1ijdBYUyVpA6e2id09H3bvFMSacuSZmOuGXG1dH1FO1dSHHNmaOExwJnymrGJn/Y87tzEcbwV/oHObnog3/ZbyNo0GG5W8DQu2qW1mHraReSvBZtBg43InRYPNTgSbFQZb0xcGoaZ4LBXC/yiEWO0cWa1c+KQJX1ilnba1/1Gj7UXLCPxWo039/ssIpOqQoYUJra9BHWtTa+fZhlzONrVX2nOjdT+/WRX+qu0Pmre9aCWhxNvvtpLAjSPV1NooRS5Mbi7cmGpVa61DFBobbrLahM9CtGkKIfmjlgkvWkugUpaWtQQg2PxLatIyt5WaFAg2rl9Sk5aZrdSkSLA9rSQs993xLvTS3U4/qaaH0ZaItae2nsLt8MJ4e3yO7n4/me2u3d+/KX+1+GM4bns67k5Yy0jAxPSwqwUlC4PUi8o0kOyRG/zR3HX8wcD/mvl/jpr/DDKG9v/T72B/jdh/tMeBSroDfXtGPz3QqhqhOz52q/ux+8vj/CafNU+9xVX/fH+3+dD+43wp4d+H676/x1nie62YNssTF/3Q3nYf2r0wRJUX2uSh2VeIz6fAVFr3hnp2q/n3P//1HdH50PDuy/XZA9cf99v1dbcJbTysu70odC+fqedMMI+8Vk1PTmm3GtFWI+dNAu7daS53BlEVsX0fbdzKGu/fwUs0TlV/isQu3oFwo5T+8e5EB9yfffiviXfQyDroa89EB7o/+9TmKTSUPhFt9RKxv3X359/PAsd2HZq6CanSbt9t+sePV8ubNgT44q+nza9/+Eu73obPPoe559w4heTE+VD0h7zF2ebr1/8AvJBZVQ==
Trap (music) with the simple machine too:
0eNrtnd1u2zoSx19l4WvlrDj8EBlgH2Hvzt1BETiJ2hrrLzh2d4uDPMC+xz7ZPslKTto41ow4/yZY1CovzkHr0qQ18yc18xPF+XN2uzy0291ivZ9d/zlb3G3WD7PrP/6cPSw+refL/rP91207u54t9u1qVs3W81X/t/lusf+8aveLu6u7zep2sZ7vN7vZYzVbrO/bf82uzWOV7ePj/GF/td/N1w/bzW5/ddsu9yc90OOHatau94v9on36Sce/fL1ZH1a37a4b4ntHD4fbh/18v9isu863m4fF8Y/dsP0PCbGafZ1dX1Fqus7X7eLT59vNYdd3SRV586H/pWddk67rGMSuTWW7zonr3Ko6p9qN/G7XdW65zp2ucyKxc1uFrnPHde6/d97LZD9f70+dPxzF2t/8t3HCb74b6X6xa++emnS/tOtlv9ssb27bz/Mvi66L7nsfF8t9uxM0+GWx2x+6T14u8tji6vdeN3ebQy/i4E9E+OH4+Xr9NOhD35Xp/7dr708ltej+FlLXdLG7Oyz2x7/3X35kjBB0Fna1aGFXmdBw9m0y02uowMa8WFhn35eeb7p/vl98t8vHxe5hf4OZ/KHt+7j5pobjnNxs292TUa5nV93XNof99oB1/Ch47dOubdfnfjP1a7/R0ekkto/nbq5e/XNjBb9H3Dn1L++cBvNN4wTjJ9z4tswMwqx/PpMGU6MRvNN/EXUP/fLuSeDcyDgnSs4xuHN8mTsWnDs07p4ohROGcPe44h6DuSdlvEOSdyzunVC848DJYzLu8ZJ7HO6eprjHg+6xGfcEyT0ed08s7gmge1zGPWLYFnD3pOIeMKc5n20D94iBG44DYsk4TQTdEzLuSZJ7cCAQC60xYNZjMmlPqiX34MgglpyUQJhmMjQtSWkP4cggFqJDYNpjMnlPkvIewqFBLFkpgcCNMsAtSSyacGgQC9MhkOlQJi1NEq0mnBrEQg0IpAaUQW5JynsIpwaxUAMCqQFlqEGS8h7CqUEs1IBAakAZamBqMXTDsUEs2IBAbEA+5x8xdsO5QSrcgEBuQCHnHwlaEw4OUgEHBIIDanL+kag14eQgFXJgQXJAMecfCbxZHB2kgg4siA4ogw6MkcibxdlBKuzAguzA1jn/SPGbxeFBKvDAgvDAmpx/pPjN4vQgFXpgQXpgKecfCb5ZHB+kgg8siA+szflHom8W5wep8AML8gOb4wdGyn8szg9S4QcW5Ac2xw+MlP9YmB9QXfiBBfmBzfEDI+FrG3H/FH5gQX5gc/zASPzaJtw/hR84kB/YHD8gKf9xNe6fwg8cyA9sjh+QlP84g/un8AMH8gOX4wckxW+OcP8UfuBAfuBy/ICk+M1Z3D+FHziQH7gcPyCJXzuH+6fwAwfyA5fjB1bi187j/in8wIH8wOX4gZX4mwu4fwo/cCA/cDl+YCX+5nB+YAo/cCA/cDl+YMX4DecHpvADB/IDl+MHVozfcH5gCj/wID9wOX5gJf7mcX5gCj/wID9wOX5gJf7mcX5gCj/wID/wOX5gpfzH4/zAFH7gQX7gc/zASfmPx/mBKfzAg/zA5/iBk/i1x/mBKfzAg/zA5/iBk/i1x/mBKfzAg/zA5/iBk/Ifj/MDU/iBB/mBz/EDJ+U/HucHVPiBB/mBz/EDJ8ZvOD+gwg88yA98jh94MX7D+QEVfhBAfuBz/MBL/Drg/IAKPwggP/A5fuAlfh1wfkCFHwSQH4QcP/ASfws4P6DCDwLID0KOH3iJvwWcH1DhBwHkByHHD7wUvwWcH1DhBwHkByHHD4IUvwWcH1DhBwHkByHHD4LEdwLOD6jwgwDyg5DjB0Es0IDzA1v4QQD5QcjxgyDG1zg/sIUfNGB+GnL8IIj5Kc4P7C+VnzLFY3zu8P5cthMkWt3gtMAWmhNA2hZyNCdItLoxo/Wsxkv20HlRpMCNQOgINTrCSUmq1Xy5vFrOV9vMT7fHjjkxfbPjdyX9gJD+fiIktArUajvfHWfG9exvM2AON44pqVGp69qw4nBKw9aTNqwdzCbZsoMwhPkqb2uPThNCp0lAR7DoCI1SL3bSeolMeY5KXUSHFUdUGpZ+qYnYV3Sq9GXVWMsmdFJ4cFLEGh3BoSMYpTr8lNURiSm7Uunr77BF80hpWTfpedcMq0Gd39aSbGvK3RIl0hstOnMadOY4dISAjuCVCgqTnptczZ1KX7qMVUdQWraZtGU9Uy6n0te1Yi2rDePipC0bhpVuzlauppZt7TOrXiM9P4naWC9N2voNU8im0lecYi2bdJaNk05nBzJOIypWgoJUKy07aQLTSXRYPqbS13liLauM7eOkM79OooPKL+fr6UhEkXJrsURHkzL+j5MGGokp7HJuQTnXGtZkYr7LW1/JdeOks6+B1JMbWFC+Nw5LLjHf5a2vhL9x0lRhIPUkx9dc/STWsijqjWjWmVDUG9HMOSlzhDjpvHYwFdMgRxiBv8OCTsx3eQUpc4Q46dw3NVzRl0pfnok1LQqET4v3qKaOqVEifFp/RjmENmycdAo/nI31yGz0OoF0fShtO+kEvZ9rTMmYSl/eiTcuynxTDc8NFPomAw+hpL6pnrZEiKlac36Ps7Jomtz90YoyUsLhZKbtAM+Vpan0JaR44zboBCJ4AkV0CAsPoaSBiaYtkcBVxqn0VaxYiRglEEx22sZNXFmbSl+CijeuMrhLk+YivU6HNWnO7xBONneOjEQnOkAZASY/bQewRWcqfYEo3rhK6pfCtI1LXMWYSl/diTeuEuqlZtrGtVy5l0pfmok3rjbqj9M2rmNqtZyvrXIYanNPzmMSHaCN+qedmRvPFWOp9IWTeOPqiO+rYjpTNG7gKqlU+qpHvHGj0rjTzldNw5VBqfQli3jjgkj3VT0bXTJJNToEnK+SUUpk2vmqiUwllrNP0kiklNsLkMSon0jpgGnntMSWWqn0ZZF441p0Ajl4Ajl0CA8P4ZUSmXZmPpyRJO/OcUYrkaA07rSzbvJcqZZKX1aJN26DTo4AT46IDtHAQySlRKbNDigw1WLO73Mji3ZuX0KSdmwZWysdMG2+QIkrB1PpSzfxxjXoBIK3JlhCh4C3JlirlMi0KclwRlo5anXavQnWKY07bQJiLVdOptKXfuKNq4zuzLQJiHVMLZjzO8RIvJd7qp+C6ABlBGimTUms54q9VPrCTLxxlXzPTJsvDLVsZb7ntM/DrZLvmWmzA9twZVYqfUkk3rjKqN9MO+u2kamRUp29iyHvf/SZ5+HH7/IOcMqo30w7M7eJKYJybkSZZ3vKOcCIDlCyYTPtvHeg977KybkR5UDQ25wDxLzXKdmwmXbe69gyJpW+5BBvXJQNGzjvdSgbNnDe67TZw7Tz3sGM7CupnM8zOeLyPjdHoygjbfYw7dzYea5USqUva8QbF+XHBO/bdyg/JnjfvlNGkjTtDH8wI4/VWip9ZSVWIl4ZJdK0s3eXuFIrlb4sEm9clA0TvMfBo2yY4D0OXsmGadoMwtdMtZez+9zILn2f2eNw/K4gIyU/pmlzCm+5ci6VvvQSb1yPTiB4j4MP6BDwHgev5IQ0bdoymJHHijKVvvoTLxElJ6RpkxTfcOVgKn3pJt642uhu2pTER6aWy/kdQsZUIUdJjIipgjYCnDYl8Ykr1lLpCyvxxlUyQJp2ehuIq+RR6avu8MZV8j2aNrwZLBTHMjaVvuQUb1xl1G+nnRgGx1VtqPT1bnjjKiN6O22kEbgCMuc3rhFzN7mbnrhpISi5r/3/plQv9U3qtxl2wIrCSKqkfV4elKzWThsEBMsV2qn0JZZ4455kcIfbTgVHkwyN2z/Wfc4Mkd98zpfJHx+bdWO2i0+fbzeHXdfBH6HqPv/A/ryXHOibSEcLBr0qP1IPctgfL6BCIy8f8Y0Feyf0gty7XNDgRHwiOc7kG/MXdFLUSXlB8X0uqBn8Rhmd8o2FC4KrIJ1ckFFhE7wMUoKHQM9OOj3oWDkEenbS6Ym/yiE8KK7Tw1ffIK40nABy4sA3FsQV0Aui97mgweaTkRe1+MbCBaHn/5xekFIE6Pk/pyJQDoGuyvF9VuXBiaI08nIU35h3C1xo5vSCdDaL6Dp5ejiscghC3RLexy3D24Ucx/KNBbdY8ILS+4Qzw8O/iOJIvSS2tXBJDr2k95k6wxNnaOTdN6G1cEnombwJnzzoobwJnzzwyWwBHgI+ma2Bh0BX5hTfSV6DOWBHaiPwrXl5JXRtTnCAmdC1OcEBZoLfDoMDzAS/Bw4HmAlcvV6dqPAWeQ3enCc7UiCCby3Iy6OXFN7pktLgR9LIJbGthUsCo+ZXb1295ZLscFrbkWJVbGvhktA9cgafPugeOYNPH/Q0FYNG/4QekP3qtRnlEAaVl38feQ3fyRh571NozcqLakIv6Z2iMjuc1iOlF/nWwiXBO78dLAR457eHh0BXZ/NOq/Pw9RM7UiWHby04Bt1nZAJsNXi1bOAhIuqYdwo03fCuMVa2j20tOCa9YR+ozmoGpL+vhniL1Qa78mjk1UyhNW81g94N6J1mqB8uhiMJLd9auCR4ty48Qw26OhM8Qw26OlOEh4B3ZSZ4CDSWte8Uyw62FJAbSWj51oK80NXZ1rDV0FjWGngIdLW08GoJnwxo4Vj25GTA7W7zaTdfrea3y/bqYdvO/9Fmnpj2FWAu4rH5y8Pt/uNVu293R/E/fefmy3x5aG8WDzfbxf7u8+z643z50FazRTfddodVZ7InRXdDbfbt0zZ56El8HMyNkVCKb92P9/q3b5fzr7fzu3/cfNksD70FOk9+/+zTcnM7Xy47L3VX0F1K9+fNP2+2m+XX7efN+uvzJT72/9DuBlb53LU9/sN3Uxw/2qxvVvPtS5f9N1ftw8P8U2//GTvXTw4+1OrLFX2B+horb5suWDsW1k4s2sG0M1aG+qnM9IVqx6HaOXkKXLSj084IqWn8BWvHw9qhoh1QOyMRUHPJ8U6AtVPiHVQ7I/FOc8nxTgNrJxTtYNoZblV1Iw8d+dYXq6+I6iuVXB/V18jz3qeSkxeqnQRrp9zXUO0MGerIkx2+9aXq6+Twb62+Sq6P6mskbooXHDdZlGGf7soq2lFpZ6QsznPZmwvVDsHaKTE3qp0RTpQumBNZlE+fbsor2tFpZ3DAoxvZt8G3vlh9OVhfvugL0tfYmcrPZyZfqHY8rJ2Sr6HaoRHtXDAnsgHWTomJUO34Ee1cckzUwNopeTyqneEOITuiJrb1xeoLZdinO4iLvlT6Gjke9vn41wvVToK1U+5rqHYGL4KMnBAvtL5UfTmUYZ9ubC760ulrkOH7sdWKbX2x+kLfNLEnoVXgXwUYiO3jYvn02//45lK9UA79kXDUO/u+7R/R9I7plNCP9s1GWj+fFzaVXl8mR2/ZNOF/1UlnLDLrRo4zeT695EJnlH1LtlLEoxLPyOuJzy8jXqh4XvDsfXu3uG93mdU4vRZOfi1+7vZFRg8/oKPfX5/Y6Y5FPU8V8t9//6f70uaw3x7wbrdfb47r/s3H3WZ1s1h3fTxZ8fENi/1w11W//Fcz0t8tzjvw2tvJCzed7xb7z510FndavzqlX196fgfXPi8RLx5uOmdu293TyZzXs7/+gHO7tedt/hv1lhff2XfhLW+j2V91Pa6he/nIEw/SPfGofwsNJUvW1pGaOjSNbboEJjamW9uooSaQaZJtXEgudhGaif3BjD/hCt68ZVNbkZtKbiPpPyWl3HqNhZDMN9WRoRBjMCbZ0HjvmmgjGVP75JvaGvo51Rbfsl2gqE0Va46AcGu1ajuVWqTgTIopJZe8o9rYRJGSM9HELny1tQs/6+r2JtxpflW9YbnNyOpmtatbZ+xOWt3ts7tR1s6bzg/BO+fqbo1z1qXYabCmTpPB1zbV4edc3vyb6GeRmyrQHmGdrtbKzTkb6lRTF4iHTk8xdatYp72aPAWqqUlN7D6rk2so+J9VbUZVh+BYEOCosCadVxEwVXfBH9jOSdd5fyqr0DlV/U8kb/kBrK6KQn/AmDCA7X9995/jB3C6AfrjGYQBXP/rpUILdFKPUFcH4jiAWueZSs3HOiGDshB9cYqjQXrsvG9X3W+77abjdrdY94elLOe3bTfvZ7/v5tu/3LerTffZl06ax1/brUCuSdTE0GUFIT4+/g84brIl
Hip hop also the old machine :
0eNrtnUuOHDmShq/SyHWqxmlmfAmY3SxmM7veFQpCpBSSAp0vREbWtNDQAeYec7I5yXi4SlIo6UbaXxmLSooNVKMqw8PpYWak2//xYf+6uLp+3N7vd7eHi9f/uti9vbt9uHj9678uHnYfbjfXx78dPt1vL15f7A7bm4vLi9vNzfG/Nvvd4ePN9rB7++rt3c3V7nZzuNtffL682N2+2/7z4rX7fNm8x/vNw+HVYb+5fbi/2x9eXW2vDyd3oM+/XV5sbw+7w2775ZGW//j05vbx5mq7n5v4dqOHx6uHw+awu7udb35/97Bb/nVu9vggU7i8+HTx+hWLn29+u919+Hh197g/3pIuJdBvxyd9cmuy3ZpEvbW75PnmvHZztt1cqPbc881l7eZiu3mY1JvzpZ9v7tdu7m03j/rN5TLMNw9rNw+2m6ek3txfxvnmce3m0XRzqsRKuEzzzdPazZPt5pVoiZdumu+e1+6ev9392DcPm9vDaY8rm2H/i//akPxybOrdbr99++WS+RHmuxz2d9dvrrYfN7/v5lvM33u/uz5s90rH/323PzzOf/n+K5crXv392Fnf3j0eRw5H+aTr/7Z8cHv7pdWH473c8f/223enHXk3/5fj2Xpvd/u3j7vDlz/M3/68YobZQCYrV7pNumR2ayZ2rjGurYwq+buV2WTj73d+M3/8bvfNNO93+4fDG8zsD9vjPd58jYhlMLy73+6/WOX1xav5a3ePh/tH7MafFcd92G+3t4Xr5EfP0eJ30q+np56+fHI/1feE+ycN/zjQP0Ka/Rm2v3PD/gG1f6t/eM0/gvtnGv5h0D+u5Z+g+cfj/uHhnwj6J7T8kzX/BNw/NPzjQf9wwz9+0vwTcf/I8E8C/eNb/mHNPwn3jx/+yaB/Yss/ovkn4/4JP71/aAL9k1r+0fI3mnD/xOEfVN/kln+0/I1wPuCG/iTC/PO0v5X+iZp/cD7gBr8hUP9QS//4pPkH5wc09CmBfI1afM1r+odwfkCD7xCof6ilf4KmfwjnBzT0KYH8jVr8LWh8mnB+QIPvEMh3qKVPg8avCecHNPgBgfyAWvwtqPoH5wc0+AGB/IBa/CCo+gfnBzT4AYP8gFr8IGj5G+P8gAY/YJAfUIsfRC1/Y5wf0OAHDPIDbvGDqPFrxvkBDX7AID/gFj+IGr9mnB/w4AcM8gNu8YOo8TfG+QEPfsAgP+AWP4gaf2OcH/DgBwzyA27xg6jmbzg/4MEPGOQH3OIHSc3fcH7Agx8wyA+4xQ+Sxt8Y5wc8+AGD/IBb/CBp/I1xfsCDHwjID7jFD5KmfwTnBzz4gYD8gFv8IGn6R3B+wIMfCMgPpMUPksavBecHPPiBgPxAWvwgafxacH4ggx8IyA+kxQ+Spn8E5wcy+IGA/EBa/CBr+kdwfiCDHwjID6TFD7Kav+H8QAY/EJAfSIsfZDV/w/mBDH4gID+QFj/IGr8WnB/I4AcC8gNp8YOs8WvB+YEMfuBBfiANfkCTxt88zg9k8AMP8gPJLf9o/M3j/EAGP/AgP/BTyz9a/uZxfiCDH3iQH3jX8o+Wv3mcH/jBDzzIDzy1/KPxN4/zAz/4gQf5geeWfzT+5nF+4Ac/8CA/8NLyj6Z/PM4P/OAHHuQH3rf8o+kfj/MDP/iBB/mBDy3/aPza4/zAD37gQX7gG/yAnMavPc4P/OAHAeQHvsUPnKZ/As4P/OAHAeQHvsUPnKZ/As4P/OAHAeQHocUPnJa/BZwf+MEPAsgPQosfOC1/Czg/CIMfBJAfhBY/II1fB5wfhMEPAsgPQosfkMavA84PwuAHAeQHocUPSONvAecHYfCDAPKD0OIHpPG3gPODMPhBAPlBaPEDUvM3nB+EwQ8CyA9Cix+Qmr/h/CAMfhBBfhBa/IA1vhNxfhAGP4ggPwgtfkAaH404PwiDH0SQH8QWP2Atv444PwiDH0RQn8YWP2BNn0acH8ShTyOoT2NL/7DGryPOD+LgOxHkb7HFd1jj1xHnB3Hwgwjyg9jiO6zxg4jzgzj4QQT5QWzxA9b4QcT5QRz8IIL8ILb4Aav5Nc4P4uAHEeQHscUPRNWnOD+Igx8kkB/EFj8QLX9LOD+Igx8kVJ+2+IFo+VvC+UEc+jSB+jS18mvR+HXC+UEcfCeB/C21+I5o/Drh/CANfpBA/ZNa/MBrfCfh/CANfpBAfpBa/M1rfDTh/CANfZpA/ZNa+ketP5dwfpAG30kgH00tvqPWn0s4P0hDn2ZQ/6SW/lHrzyWcH6TBdxLI31KLv6n15xLOD9LQpxnUp7mVX6v15zLOD9LgOwnkb6nF39T6cxnnB2nwgwzyg9ziB2r9uYzzgzT4QUb5QYu/qfXnMs4P8uAHGeQHucUPgqZ/Ms4P8uAHGeQHucUPgqZ/Ms4P8uAHGeQHucUPgpq/4fwgD36QQX6QW/wgqPkbzg/y4AduAgFCbgGEqAHsjAOEPABCBgFCbgGEqAHsjAOEPACCm0CCUPS40kMaglu+irpoMIQMMoTcYggxqA7CIUIeEMFNgvahFkZQy9AtX0VdNDjCEtlQJ2qBBLUQnZtgkkDTIAluCmgnarEEtRbd8lXURQMmLJGNuaiFE9RydG7yuIsGT3BTQl3UIgpqRbrlq6iLBlJYIhtzUQsqqEXp3BRxFw2q4NyEuqiFFdS6dMtXURcNrrBENuaiFllQS9O5KeMuGmjBORQtuBZaSKoschPuooEWlsjGelELLiRVFzmHu2jABedQuOBacCGrGZ0j3EUDLiyRjfWiFl3IakbncLrgBl1wDqULrkUXsoq5HU4X3KALS2RjLmrRhayCbofTBTfognMoXXAtupBVRudwuuAGXVgiG3NRgy7wpDI6h9MFN+iCI5QuuNRykZ7R4XTBDbqwRDbmIt9ykZ7R4XTBDbrgCKULNLVcpDI6wumCG3RhiWysF8WWi1RGRzhdcIMuOELpAlHLRaouIpwuuEEXlsjGelFuuUjVRYTTBRp0wRFKF0haLlJJN+F0gQZdWCIbc5FruUgl3YTTBRp0wRFKF6hBF9ipuohwukCDLiyRjbmoRRecqosIpws06IJjlC5Qiy44PaPD6QINurBENuaiFl1wekaH0wUadMExShe4RRecSroZpws06MIS2VgvatEFUkk343SBBl1wjNIFbtEFUhkd43SBBl1YIhvrRS26QCqjY5wu8KALjlG6wC26oFZRW76KumjQhSWyMRe16IJaiNAxThd40AXHaNLNLbqg1lJbvoq6aNCFJbIxF7XoglqOcAkH1EVDujpGGR23pCvpuginC/xTAaD99l2xb7Xpj5YIYl0EfUcJ7zcPh1eH/eb24f5uf3h1tb0+rGw8Pl2+PScJP/ojrDUhE9pEgpv4LuUebjbX16+uNzf3jYd3y53XwuerKb/Fzp8Inf86CR0s3ua+cL/ZL33h9cW/XwBx4oSeON7JnBRealOKZa9fDREho3FT38YtexXpxi1Q08p3FXMz2F1O1xkbu4ugTTi4CW8LmtM79xg04WmP9JMeNGztkcFo3Onn6pFz1OnGFatxI9o5GO4cCW2C4CayMUS46xCZe9vT/sd6iHhjiPjJaFzqu//5ov/l4j1XMXdovSNVLuwd2oE82oE8oU0I3AQbw0j6DqNc9FHRgyZa+6gYjev7HgC5MG7lHZmsxrVmd6Fv40ph3FAMYpVYzq0BUJ118dYMMPbtgOINdKx1oJh7bYvOunGj0bh9C15fapekG9dKE3wyGrdvVDPH6VPjZt24ZDWuMeunvoXhHKdPjBumYmytmJtb47KKt4NRGVDf2MMXKV0o6Jno9KzcwLLyXcUBRhJMfUuzIt5dqJjbqnuDkQRT31ChiGUX9Jx6bRvJunFR7kuw4Awo9yVYNgejMqC+NW0oZmJCoQwqsLJcTLzyXSWMjMqA+ta9oVAGofLCt+regLLh0zW9xg6EsuHTld3GJqxZYt/qveiRLupzM2sLk1dDJFozwL6VeSgywKiTYLYq84hyX4KXEkSU+xK8ICIauS/1zRdikaNGKd5z+vqFcpHzyneVMDKyYeqbQcSCDUednrGVQUQPdiCG1y/EgDYBr1+IRgbIfZOUoke6qDNAtq5fiEYGyH1TklgwwKjnqGxdvxCN2R33TUBiwQBTwQClMtz51ttFXYWcjBkg901JYpEBHqsOaOa2UpJk5HvcN18oYtklne+xdc48Gfke980OUsH3UkW7WNlBMmb93LfqTgUZS0XW7yux3Joz97oDjFk/963MU5H1Jx1EilWZJyP35b41bRHLLukKVqxz5snIdLlvvZoKppv0fFmsejWhTFdgvZpQpiuwXk3GrF/61qupYLq5yPorS4SkNfPv1aw/G7N+6VvTpiLrz3ruJFZNm1HuK/CC+YxyX4GX/WdjBih9K/OiR7qsr5EU69qEbMzupG/VnYvsLleGO6vqzijTFXhtQkaZrsBrE7KR6Urf7CAXOWpOxXtOp7zSWpvg1SMUspH7St98IT/lvjTpZEysfCGjO7kFXZtAE7qTWyLchJHvSd+UpOiRNOlMRIxrE2gy8j3pmoAce9tT4+o5qp+sxrVmd6lv41Jh3JLv6bLdt2b1fVYdYM0Ac98O4MIBOt/zZI1uI9/zU9/GlcK4Ot/zbDWuke9517dxfWFcXbt4sRrXmPV76tu4oTBukfUHXYf71nx4ENUBxqzfc98OKLP+ymswWKPbyH299G3cIl92+lpeb5wPJ2dkut73bdxcGLeSLyercVGm62G96lCm62G96oxZv+9arx5729MQKbL+ygYM35rVD2rW74xZv+9b07oi63d67hSsmtah3NcnuAOh3NdnuAlrBti3Mi96JDmd8gZnDRFrdte36nZFdkc60w1W1e1QphvQtQlEKNMNDm7CyHRD3+zAFTkqFe+5yg600FqbELVDXomM3Df0zReo4L6kk7Fg5QuE7tsOBHcgdN92YLgJI98LfVOSokcS6XwveGuIGPle6JuAUMH3qJKjWgkIGbO70DcBoYLvUcH3YiUlac3qR6c6wJgBhr4pCRUZIFde5lZKQka+F/qWt1zwhcrh29Eqb9nI90Lf8IbKxFRHNcG62ICtWX/fwpCLjKJyImS0CkO2ZvR9Iw0qyDQX54xFPYGLrcUGMagOMHLf2Lek4oIpsS6ponU+nI1MN/YNDIpYpspp2tGqV9mo9GLfSo8LYM7FCV2VDcuxNR+e1HyZjWow9q0GuVCDlSM5o1UNMrqbK8I0htHdXBGmMWzM+mPfmrbokSS6pIrWWX0xZv2xb73KRe4klbeLVa8KOqsf0W0cJOisfhS4CWt217cwlEJ1SzGrXzl3IrZm9ZMeRtYMsG/sIUWSIvqUbbJiD0Fn9SO88kbQWf0Ir7wRI/eNffMFKeBN5fSMZJ3VFyPTjX3zhWK4o8qRUckKbwSd1Y/wqhqPzupHeFWNN/K91DcB8QXfq1QvSlYC4o18L/VNQKSYU/EF36ucXpNadQSSVx1gzABT3yK9qHBEXsepyTofbq3NlfpGUEUsU6U4YbISEGttrtS3vC2qF1FRFYZTJZluzYenpDrAyPdS3/CmqDxHRbUuzjpgTanhgKwCVmv9rtS3eCzinYJOz5J1Wtdavyv1jUaKWKbKsVLZqsyt9btS35q2qF5ElZ2J2apprbW5Ut+a1pc5dVG1t3IgU25Vts/qRtCAsuEEi9KAsuEES+tgVAa5b90bCmUQ9GwqW3VvMCqD3LfuLXrkHHW6ca0z/wHlvhne6hFQ7pvhDSvBmN3lvpV5KLK7qHPfbFXmwZjd5b6VeSi0S4jFe07nTrlV2T6r3CmgbDjDiwsiyoYzvEQiGtlw7ptBxIINVxYjZuv6hWhkw7lvvlD0SKpsb8jW9QsR3c2V4fULEd3NleH1C9HIAHPfBCQWDLBSvShbCUg08r3cNwGJBb2OJd/Tze2mqfWSVAmrtThX7huTFCWOKE0Ve1s5ibU6V+6bkxTRTJXqeG6yTv4by3PR1Dc+KAoYUWUhmZus/MBYe4umvvlBLHOjp0RBKmeeuqkxcb58WfGAM3qgb3lelDmiJBV7W/W5sUIXTX3r8yKaqbJVw03WqXNjiS6a+patRREjSrU8zqpbjfW3aOpbtxbV5aioyCWVQ2XdlFpjs7ppMYEA+IdAtynPFNAmYHGbojGO+ha3qcj+cy2DsqrblIzW7VvdFn1yDjvdus46wZ8y2j3gdfF5QpuAV/dna47Xt/7ORY6XK+O2s+rvbM3x+tbfqdAw2RWvulqfpNZ7MqoeYLQLwQsVsqBNwAsVsg0Ck+ubNORiW/dUoWTOShpyMFq3b9JQ9EmqzIs6Z12qkMFt3D8EsbF7JLQJeKlCNrI+1zULOfa3pz2wkqk6Iwvhycj6XN8sJBecOhesz9VGvMZiheXLigeMeaDzfcd3MXU1VVifi9b4NuaBrm9eUkQzV6rlOZes1jWyPhf7jt1iQ3+NPblsta6R9bnQt3WL3YpFdS5xlXyJptbY7FUPWLP/3LcHyuy/wrLJWePbmv2nvq3LhXVr0UxW6xoJL7m+rVtsWHSVvJnYal0j4aWpb+sWq5WKCl3iamNFa47cJdUDKAUmVN2yQykwTXATxuyf+la3rsj+XSWDIqu6dcbsn6jvXlqsu3eV7J+C1boo4SWGuwdKeIngJow5HvWtv12R41GFd5BVfztjjkfSt3ULDeN88arLFXu31iu4rHoApcDk4S6EUmASuAkjBaa+SQMVFJgqlIyspIGMFJj6Jg1Fn+Ran+TJal2Hdg90vQIToU0EuAkj66O+WQgVrK9S/8qxlYWQkfVR3yzEFZyaCtZHFf3OrfUKpHvAmAdy34q+sDdXinc5Fmt8G/NA7ptGFdW7uFK9y7GVRhnLdxH3rXOp1DCpGAAqNIpbs7ik0ihj/S7ivjlOUb+Li+oyUn1f+pYH1LkaY5Ev4r6VZlmwrlJBzbFVxxurfBH3TUmKaGaukDS2zqOflvl6vHo4bBablNY9ntr/R84OPHRR9038crzU3OZ29+Hj1d3jfr7Br266nD+4lDj9tvqM3yXG3PD8jLeHV7Mlr3a3iyXLra0niy05FRLD/PhOikGgZvP1qxWzM/iTTlZBPesn+UqX9OpKoZOKTsbHDWd63IJVVQoHKlcrPwk9Ten0J2WTbmX0NKWTxSrWJtB6OScz2tYm0Ho5J0sSrE1kMLxOZrueF14VyOJVrinoCTynj2uzCFyH5WSK0doEOqqeNvEcoxfHQ0qlLppyteIY9PSXkzkbq9XQ019OZp6sTXjUMXImx5TDZwXxrl+tOCagP+lMb/BYiayox1EEH5fP9HYut/lX6jEqVys/CR3FGe8a6NlnDHcNuC7GieSyNoGOvCe6w9oEOvLymbKpVOkNSe0NHh1VGc6UPDqqMpwpeTTfYzhT8mi+x3Cm5NGRSc6UKaVyrKnA2fWrlfBK6E860+suV/hnjurjormqnOdVRuXSY9Z/gHL1+k8K6KgqcNeAz44WuGvAZ0d7OCsP6Ejo4aw8oErb05nCqxZMeuigo6qH0wr4TGIPpxUBVdEeTisCmn95OK0I6Mjkz5NWkCvHGn2qQ7l6PbxOzrq1/aRwntcdkc75ls+Ux3Xo48qZHrdY+lwpxqxcrfwkdFQNcNeAz2wNcNeAz2wNcAob0ZEwwClsRFV0OFPqUWGupBPWiI6qAU4rIjqqBjitiHC1RzitSHC1RzitSOjIFM+UVhRl4qVSA1y5ej28Eqqi45led5U628tnyuOio1zCnYyOcgkPVZRNpjO9kIs6nSKVV/T61Ypj0PwywfllQkfCBGfJCVXRJ/UDn+eYsstW3hbrVyuOQUfeBOcF6GFbp0X/rE2gI286U05YqfS5fLZu9AxXYILTmAyPhHAyllEVnc6UKZWzVbW3xfrVimPQkTef6Q1eqQu1fKY8LlxJCI8jdFTNeByho2o+U45RlD4Q0afilKsVx8AVatCUWSa4Qk2Cm0A3NkwObgLd2DBNcBPgKqAfmnhOeFUKDSyfrYaOTPChdwxbBD7iluAmAmr0M72Qi3OZRXzFDatXK46J6E860+uucmTt8pnyuPDRbXgcoVv0HRxHDmSTdKYlfOV5bCJ6qqdcve4Yh46qzsNWQ0dVJ3AT6OZweNmdwJvD4cWD4jwaXuFM4SWVYBI1dNCDw+FVggJvJ4bXOooD8z0600LE8qwYkVhxw+rVimMy+pPO87qrHaOxfLb+uAQffALHEb4pFo4jItTo53khl3tERXT5plytOAYdVRnOuAkdVRnOuAkdVU/XqD3LMWWXzRXHrF6tOAYdeeFld0LoyAsvHhRCR94zLbms7YJcPlOMjuaX8CpBYXQkhNc6ysnmn/v93Yf95uZmc3W9ffVwv938Y9vaWRNeyCar7zuhjn++2R62+yUkvnznze+b68ftm93Dm/vd4e3Hi9fvN9cP28uL3RyE+8eb2WRf5Mzc1N1hu/y7R/ZtcTEV4XXVp1x9bO/HZ7+/3ny62rz9x5vf764fjxaYPfntbx+u764219ezl+ZfMP+U+d/v/vvN/d31p/uPd7ef/viJn48fbPeFVT7O1y4ffDPF8qe72zc3m/vvtzx+82b78LD5cLT/xWovOdm4ZYyv0yR2xJcpvirpOssLjh1GY+d0f8pPGzsOiZ3KTB1/mZdrxs6cgTlHMbnsJaU4ay6aPCfvY5Ys0WeRaU6HJ5/c5CWk4zKZv2CwCRxsMoING6ikmPqt7EVVrn6xg5lH4+s0vR3xZYqvSiL/BY+80NgJaOyc7vkYsWOJHV+JHf+SYyfCsTMEHho7xV6nysob5eoXG18JjS8/BB4YX6GMGH3lo3L1i42vjMZXGHk5GF+xEk3xBcfOySkdxtiJI+cGY6cohi21TGr96hcbXzA8TyMvR+OrgsrTCwbjAoPx07XtA26aYqcy8Z3STwQ3BSbpaYhAcKDKxUoKX2Hr61e/2MEMhud5iEA0viqDWU4vOHZQMP7DauwRO4bYkUpF0OWzFxs7KBj/YQX2iB1L7LjyAF99JFKufrHxhcLzH1YDj/gyxVex0NFzJb5Wr36x8ZXg+Bp5ORhflYotfxRkeaGxg4LxH1b9/rSxI1Ds+Ers+J8IIPjpOaujZASbIdgqyzjFuIxz+kWEw5QnIu8D5ymn4MhPnub/BaY08fzR/DdJU3SU8hTorxlv7jmzyiPeTPFWSePZSkfl66g2yXGcS1MIgYOb3Py3KUWJU/BTiJTnMMwx+L9qvNFzAOmIN0u8VY5B+ePQk59ofOPnCMsRb6Z4i5V4iz/Z+Ca2Gk/H1VxfYswjG1DKWf214r9PSj4dC09JyL+tPq9/zrY0GrOjlve/q7z/nbV/ZJLkaB53p+hdiinwFMNxIOaQKE6co0uBYqb8l9U24TkrZEesmWKtMhazeSyWOAeVzAOvn1/2zs8xNb/k+SioY3bz+DxxyHMgzpdQ8u4vOxbH56xKG/FmevdPlXf/9BONbek5E2Qj1kyxVplclfCTjW3fofRmvzt8nFvZvW2c4vAt5XTrZzgUwff9zt/j7+FPBODfTwLw64kTF6/nX3B3v91/yZBfX/zb/LW7x8P9IxbZSAAdi688TZYvL0i73KsnMJ1UcXm3fbt7t93XTX9cH42Z/o/bnsHu3w3u3JG+/NCn/+9//vdPmP2P+95/mh/vce7V7/d3N292t/M9vgTx83zyROEEV/fS0xs0JZJTvQoeH0xysgve6tj3u+sv48GvX4dNu8Efj16U44D6bvvP5YfM//7w5tja13Hnz5pdNwqZBK07HvW4WOJY8eJJyeFZffKq+jwp8lO9+fG0IuXmdHl8RAmy3oBNjrtvJZfLBvj49PM/fr0Bb2sgTGoDcnz6+Z+w3kCwNRD1Bvzx6ed/4noD0dZASmoD4fj08z9pvYFkQyKVCIrHp1cZxkkxnmoDlShKx6c/FsZebeCkNI6tcPdKFLH7bemuh+3NfJurOVG63+9uj2cLXW+utvMgcPGfu/u/fby7/9t/bG/u5j//Po8Sy70pOZlT3zkrJokhff78/wr6NeA=
Disclaimer : all the speakers will produce a sound during 1 tick when copy pasted, it's loud !