How it works: inserters take items from the wagons only if there's enough space to completely unload all the wagons. Inserter's stack size are set to 10, so all of them pick the same ammount of items when the wagon is almost empty. Moreover, they work synchronized using a clock signal. There're a 8x8 balancer and 2 4x4 lane balancer. As a result, the chests will remain balanced, differing by 12 items max (stack size), no matter how the 8 belts are consumed. The incoming trains must have all their wagons equally loaded and with items multiples of 10. I made a test blueprint if you guys want to test or improve it. Feedbacks are welcome. Please don't talk about throughput, that's not the point.
0eNrtXUtvY7ly/isDbWMFh2+ykSzuBbILspnM5gaDhts+3S1Elg1JHsxk0P89kl860iF1vq8qCa4QLeZh2aoiWY+vWGQV/5x9WT73T+vFajv79Odscfe42sw+/cefs83i2+p2uf9s+8dTP/s0+22x3j7vPrmZrW4f9h+8/sX8l9mPm9lidd//PvtkftwQ3/y3wTdt9ZuLbf9w+Np2fbtYzTfbx6fBF92PX29m/Wq72C7615G//PDH59Xzw5d+vRvTx/d3X1/O33jczJ4eN7vvPK727HZ05s79Y7iZ/bH7P7P7vx2D+8W6v3v9i5fRndC1tXFVyNo3ov6YZLyZ7dZ6u35cfv7Sf7/9bfG43n9l06/uP28fP7/QnH36ervc9DezdX97//nr+vHh/fPt+vn94z3fp/7++DcvP3z8CpbIv89+/HgZ1+p1mJv9d8z+X9/Wfb8aLu/i/mXt93+/2d6+zmn2y2r5eHu/WH376ee3zyoL5z64PvT3i+eHeb/ccVsv7uZPj8u+soS2nEgGHuBQbvuf/X7AlSF5ekiddEjuZEihMaTADslE6ZD8yZCsbw0qfgyq//1p3W82852irTZPj+vt/Eu/3FaG5Q/CM6dmFSss0ojF887Q19/Wj7v/tpiErs1kJ9s3rX983j49b2sqmQXzSty8ioBF5liYbsRj87RcbLe7X1aoH/TFALQPbnSzdy7fvm/ne39aI+zfyNqaCpmD37x7Xv/W37fIuESMzsGj+/DHdtrFG4+T7QiyASZrM0E24mQjQTbhZD1BNuNkGZEVnCwhMtvBZA0hMotblSFEZi1OlhCZxa3MECKzuJUZRmS4lTESw42MERhuY4y8CBMjqMIWRgjLwfZFjNTB1kUsqoNti5C/gy2LUFUH2xVjVg42K8YHONisGIflYLNivKuDzYqBAgebFYNbHrcrQloeNiwmIvCwZTHhi4dNi4m1PGxbTGDoYdtiolgP25ZjpAXblmOkBduWY6QF25YnpBVg2/KEtILB9ke+sT1yNZqwZYWze7fg+E1s+EirFWQPG7yGhekgHkHAw3DTiBoW4DQSs90P9kAdoJ0laZhDrud1kSbzLqGoEkrQMsVOl1EayxuYWDQC+XfkxKwmawWpcXSqxNhoGr7Gw2syY9g0gir5hkkjiiwmnOGC6FnScZUpt8w5RIDpYtXiWfj8Y1fDsIRnct6DgXw82lSjakRLYnTST1bHVST95ERMLTLVpviT1zGVqFwKEp4u6CYadUxFExU5EeeVypt1XGXKW5iYaXDwCMRMWRRouE6lL9nomEr0JQsCD5s4OM1Ow6MggUcWBB6WjAqyyIfYrFLyLNh82EBOLGl47KdVIyo4h7WRHHjR8IDCzdIJWJB72CLYYFjPRebFanhANlhEwYR1GvdVPIUBhsGAIthpWEuKPlLjP8RAAOmDVX9ZfJu+clLORdpFBPBWt/EuRcdUFsuYToT9xqmw33RGx7WImIo2HcZqV9jp2BYZ12Ge//buP+eL1aZf1y3tNC9Vu953t1jfPS+2n3e/u//48tfFerPFL+mZ2Svx3YD2lzbN/oeHp9v17XbPY/bPL79+47Ppd//sB74j/1/9++3A10/ex/ciapz9z9wdQdOlxmUy0w2PO/p+Ob/73m+251a2cBfbTJebvCMu2HQVbEOwx/cGzQ4HWsud8OXO1+WuLvfpNc2dDjeXO4OWlcWWFUajKc3RFHA0SWHnp6roWqMxHa6K8aqK1eWOo+VuOnkjilF0STRjrIqpKC46uoN6TsujWMvLaNmb+GZkCVNdtGSCiqkwMjQElJurQdc0y4yg3JqmZhFQbq/LXV3ubmTITSg3KJRbqVsxbjSaJpQbFMqNeDQjKLe2NRqLQ3l31cTaalszWu0mpBxdVp8w/Oty15V7FDjZ5pbp6BL/OVPrxKY2iidsM2q2YHQjHoy1o8E0vZCVBDfaBJQNGqaygMpKToONKoy1ScNSFq4fFSqc9yz+6liq1jOKKFwzgLMghnuxKY8CCteEcIdD+HUzXl1tN4Jw55urjUN4uK52VbdH4alrIrgDETyIDW0E4K4J4A4EcHF2wo0A3DWTQg4/Vrkm3+urPXL4vunwnSRyyTpId1HDUxS5HFV7ndFwcZbZjXDNt3FNcvhdlCGqKxqmshDV4wBurumgql75EYI3G3AYjyO4uSY762Y8OkjzTQj3IIQbcb7LjVKvvonhHsRwI84F+hGI+2Zm0uMgbq7btvpyj05RQxNRjopDJ5bbXZe7utzjoKm5VTqqmj1na05sa+NwohkwezC2MeJNux+lJkPbD0mCGxOVgUZRMRWGVEFysc8oj6+DUTEVRc9HNcIT7uV6Q6duQqPAIjTjuIBCufiGjh8FFqEJ5QGHcns92qkudxhDefMkLRBQfr1VWl/uUaAamlAeUCgX3zMNIygPTSgPIJRb8VFaGEF5bOaGAn70Yq/7yfpyj9x+bLt9SRBjVWWsRtQAwerqdU00oJaLN85hhG+xiW9Rch8QqjI6EzpGp2IqDFgjAeXXE7WqZsURlMfmVYSIQ7m9HqnVDXl0pBabUB5BKLfiM7U4SsbGJpRHFMrFh2pxBOWpmauMBJRfd3D15R4dqKY2phR8ua+HmPXlHkdOzT3TUd+Wc7YmPt6Lo4AiNcPmhIY34u17GuUqU9MPJb5Q+1wHiCoLSTDjtGW1orYvtqjCZVHbF1t04XLCaxjc9RS1br6jMCI1o7YEArcTH6SlURiRm8CdcOB214O0+nKPgDs3D9ISDtzuepBWX+5xWNoE7gwCtxMfpKURcOcmcGcQuJ34IC2PgDs3tzMZP3Rx191jXfgjt5/bqigKYqIO2rMHNU68Zc1jrGkiX+Yb1Lg00bbJCBpOObIfmMl42aG/HlHV9WRkKqUJkpmISa5HVPXlHh1R5eYOLoM1GU58RJVHe+3SDEgLCNlefESVR/Faad42KfiVR3/dG1WXu4xUcd+o7H2AtZfyXPvyfsGDFn89Mqyr/yhiLc2ItYA3Rbz4JK2MItbSjFgLGM148c65nJ6l+/1B2lBX20t1CG7u+7vFLrKb79Tgy2L1ogbjMfpGmsjWFfWN5kFRNwJN/cuUpt68JcRo5X/6Yzey59X29aHQ14D0RblJXxGnPIM//YNfdwzsGYptgUVOYM2Q8X9TYi/Lu+n3NPAv/e1VJgPJ/tPfvWRNSZOijKemOIErbdEf4vl3azgveyQV83Wx3OEQ+YDx2yI/v5mj6Cnjvw1o7Iu2P141/lUlofbqwe/khHoTe1OlWuh3YqqdP23XaV5xSciG0HZGwyNjPKzsiZWM0HaaJ2LANRJ1gTpwyZJTG9sFzasu4MxUTxGD0k+aR1zAeWTd6zRZ8tyx7YrmXZdUTwNZ02moYjIxRvOUC8jD6h5VkVmNcbLXmxMyI697sSULEp920A3u/EvP+7K2PZcwDVGWeOT4PbzPdWWVPXqRlEKWPXqRdYIoujdFkmiqVuANDrn2hHSPt9bInvNA8Nla3csaSSIq63RMRfphveatjYxJKmh4YFgq6pY0eGxDZtI2aZ4RAWeWNa9ttPDaco/hxMMqVR8HF7XAtycWP73ezmhe18D8ilO9fIFZhJM9feHbMwFM3Xndexsi/1LpPwI9uIF4aRc1D25g1ueS7k0JGX465fMZMm8maiEyeFJCpCBeECoYMl3gZW9leBWce+VbGTIZekFmwZA24UWOpADO69zEDo7kob9fPD9Mv1BzYg5wKu60BMQ2S3mtj4I3QvLfzXHYw+N9//nx6+fHp373+7c3pKvzFLnBpBS5IPIhgytfBG9TXKD8Qid48uQS56l7cUCEYEEQMEZOTY86BqDvVlyi+HQvF8ggM9DI4oTAYkc9f2yzwMxKnpEnjwiCLLjVeXWi6nxuL1mXi+BpigucZ+QDePKcJIqceqdT02gFHe8vUXyOf0fhEqepahsvA5YYNO3URbFIlKRBvdJSEomfYvgc9dmxzbpIGwV95S9RryU5m6gTeOI9fuA8fhL0Kr9A4SXLN8C/xGnyOSny9EdUK6w7WE2Bb2N+ibKLmrbSMtxMLKCIM312VPdvm+VTNvHpKDazmkR9Lo3OnedO0Fb6AlU5G0G38kucJ5+POnfUUWUhOb88c2qD6akXNEG+RPkFQW/tS5xnVDX1lWFLTqr2uqJQIYtaJmeltRQWRJMUREc1+K5rXV63pRO0Gr5A5S6SnJVV5qyKwPOTd6+LE7SvvUT5SboiX+I8+bt5Z67Q2CoL/iDDkgcZJananIq8epF0z71EDeHrBY6v3FWIOkGRkOXqd9ygRggDQOulADiqaHemVUTrOt5HW+602HWi5rNBhT2u84JmqJdnDq4Lgh67lzhPgdfOpJ6KvHZS6mkWtO68RPkVQUfYC5ynoPDMFiqAcYK6s+NSkCpRTd/O3CIqanKlu9DhBgVm4PmfEQLtfl95ArS2dTXTmSBoq3mJBiBJozivlDlf+OK4S9vOZEGrxkuUXxF0AL3AeQpqAs+UBFYdtRU4au5k2llJ18ZLlJZTtPVrYZ6g2PC46LZKlL2+6bIUfowf9cNptYh3lo+ffUfqoiR+dro6DGclzQEv0QCKoOfkBc7T8W7Zc6fazkly4V53qu2cpFPdJcrPCTokXuI8vai/W/6/7Bb21+OJp9jt85zqTmB/OdMJ7OvtcsO1AnMusD3cwL5eblDse7tebL8/9NsdCiNiSqCYDmR1kupv774PWrsdZLaT10AVZ/8gENdOC0iBxAkJjNrumak2ibYpokhGSz5IoyUXzg/6zN7dsQ3iTqL4/7H+cD8P+8N1gwZxZG+3tslkrFFO+OiTU6VyCFb2X5+/zW9MpX3k5Wp0fcc2has23HGyAuxDL7KI9Ydw3mo6gwUomvFO17UriMIZWc31gWuU3JZxPmi6eoHrGTVdvUAeokK3w0yi4IDYiV5KH7QSE4qs6LgGEdfKU+lQAzNEeMHQbb9i1QsFq2v7JRNIcDquQoF4XbMxkcaHoGMaRExFnZ8OqcUo6KXjKpWzUPOxiOh71vUBk4mu6JiKRCcoHR00BouQ65cVj1ql+UWraQwGzoxqGnmgDtH2mqZjsZGqjZJGcJFclajhEVojT5rGYxFpCuZi1vAIGI+iazwmg8DU6bjKQuZkZK3HEB+dRKHE4cahyEcnp2Mq8tHJ61qRyfyn6CHOAVehnkZdnzDZAidd1zXhAmfdVGUKrGwwJ5Nq7jQt0VpYlinvYijvIqjgmpNZjCzpE9eRPLyGBwb3gjftDksFsoiq3mcip5CTovUZKB1NdzUsosmCVvNkeF9EoUXUOc8ieX6CC9SKVc1L5J6LUzVPk3nnInASjtN0QY3L3JFqGKn8FwMGJSn6gIELlBUsMFcgqCKZW2oWXvLwjKXE7DtdJyoJFPhO4gl04bcXVZCoElC+E/iBjpQe7wcM5bV9FzUdn6JMVkwq0hKex3e8W3CkyRY5B0zmgvIAz81BUB3gyTnw24FIzsHJOUD+3xsv7xkFzoG37kxykFi3ah/gRS/VqI4tveiZmqzzYYb3A+Rm1Auun5N7UU+9SMMcCXlrFa2HwPXhXYAxJAuvYAGKQADxJGYJLnYb7iTAW12TEpHZV56ZaSvvoQsLpL0C6+YukXjBLWbDZRq84O0ZQwKM4OkZk8lZ8GZuSU/rvIIFZiAuKBqdgLOIisYYjaSxd/xe3pLhqMsKFqAOMW9HDU5BAdKC12AsGet63o4tGYoKriHawMlA8M6LJX2q9woWmB0L7hfaMmVknsnFDa7NIEsiKHslgyTBoyeODPV8UcwCU8/QKWYBsjCKEmRsoQQvezjSXQenYIEZWfCKwtuWkQXech0ZDQkewHBkNERd4xtcBEVIZ0X9J7hAAjsmoyDBDT3HHa/6KMifkT5VcBvPc+cbfnAZjyx9iv+PS59M8ZOlTwGrbPLRs7UqsU5HcFoYPoDFYwoZNTwcxkPygr0heWQND3CtqJdqDxVOHqAtu5h4qBhyWF2ST0ZTl4Stk+xK4qFCyIkyt4Le/gOe4My8pgoJ0+SkqnTyEEYkVaUTOI+k4QHKQ1nYJNQ0WWFTBLi2s6K5o2uPfBVVstFVAcnWLFtdQY5szQQuwbWVo2pKkquFBx6YueagKyxyklvrXnbb8LAn9DJFEdYzISCblfVMXqSEynomkebLLiPapJOd5DaiJeGxqOqZQB5cPVNgdFByy/CQWPaNJEhR1TOBqxI1VUGYpyuq6iZwHpLqJs8FJqJLhp6aR+g6WVWRR2hLLNlSyBk6ZeWSxBuHzunKeUTRT+iUpUtexjXoKmtkCxx1lTXCqSbdVJ1oqlk3VaEuFVURiEioplPxFK2uMaq6A5keGc0L6pjbNk5RsgGy8AoWEFAHwR1HLtcSRHcc551Oz5P8XjY4q8zmhqu7+CC4pzjI2xporIKLigMeFuNhNHlbcB5W1/PJilyJdbJssUVm5DVZXHDVgoYHKP2oydmC80i6bLSVJE+CzZosrqlv84Lg/uKAKiYTwQXGQd4W5GF0eVuZRTqr42pkXJ2sIZVB1tHrMtFWApIu0JloW9VmwcXGQR4a1LSk4YF5GJd1uW2ZFIqOqZEwFVyKHKShsdUU3Ioc8MC0QtKd0QVyHqrDBwtF4V7VHAnkETQ8wLVStUpqoaWs16I90aVpo1B1SwIVVpVPxHiETpPzA3kYdvtTh46gDOk77LpECMoWq50oZJC1TDwEep3Etw/uUZ7t3DsIiLqG4Q3uS4IRQlenk7CWxHP/2pPYAe4scG2OT0iGKslCKnV9tpE+4a/bRmRtrEHGssOpZyqiI4fTIOPZ4cQ6HSJ67d7oTKvA4BrdeU3dx6M7muWYZqrSBLXfV0naKkk8+1Sdu6sSZdW/LphEq3+u0zmo/5fFt6mm8vN9Iq1Ny5JTa5Bx7NRM3UUk3Aj2m91XQtNqkXCbcB1BFoeBfboEJptwspEgm3GyniBbcLKEyIjrYJYQWcY7XBtCZBnHEkOILON2ZQiRZdzKDCMy3MoMIzLcyhiJ4UbGCAy3MUZehInhVAtsYYSwCmxfzEhh6yIWtcC2Rci/wJZFqGqB7YoxqwKbFeMDCmxWjMMqsFkx3rXAZkVAQexgsyJwK3a4XVmCKmxYREQQO9iyiPAldrBpWUZasG05RlqwbTlGWrBtOUZasG05RlqwbTlCWga2LU9Iy8C25QlpGXZrVd8SRcPvrWyd0NCA+n45v/veb6pJ+vfc7b6xUZ0U/uD3gJpB0vHRsM+mHW7kt8eb0KnbSVIZJWUmSRViFQ23irYjaFuStkGXoJtagqM3ns+R+qiDaJPCX+ccUANn7InV7EjaAV2CPLkEtOl8FCe0aSZiWTM5ddSWPo6s2sMsKKkwRcoRpnOghs3YGYJ2JGnDtjTpL49euj1LahIqHGE6loQKR8DQYdIg7YguwSRkOBR97CRkuEzMmIQMR8CRJSHj6HXLc0tgJv28J0zIkH5+cG0CdaCTEOdRWzKT/t2jEZyZdOueMJ0DNXAVI0GbhAyP2pKZhAyPoo+ZhAxPmI4hISMQcGRIyAhoJGcmISPQpmMmsSMQIZ0h/XuAbWnSvwc0gjOT/j0wpkP690BEcob07wG2pUl/GdBIbhIpImE5JFBEBoTIDUFE47hJvIgo9EzCRSSiOBItIoFEJFhENIabdPCRsB3Svw+uLICOcxLZImpCk149oXHbpC9PhMWQ24CjSwwTpEmUSPBGaHL+MN5MUmJCN3K6BPyQCJHQwG0SIBJrMNMUifCNdOYZNKBJqWcwVJtUxIxbCynijIdrpF5m0HgmvVAGQ7VJx5hxSyFdTsahhvSTGQzSJtEwg/gyCVQFj9DInU3B4YbE6wKGZ5PRWcHNhYx7BrcQMA85Gf8V0G4mY/IChmTT+4SC2wkbgRc8y0buGwpoOZM7xdShwGInKeGmQm4LU4djDbmbTR0YmU1mGVLHWstkMiR1eIhmHDlv1IDC5CDBiGwyk5Y63F7IDFXq8NCMTKwlg1rQlHdMBozNJjO8yRAGk8npEtFZIkmD4dlkcj8ZEGcm0+7J4AGa7cjpEshTSNLs3mbyyCgNbhnsr4+s5pvt41P7aosddcjezfGtT/W/Pt7eL1bffvr57ZMau8HFg7NVVr7t9+KPX29mi23/sK9wWD73T+vFaq8Dy9sv/XL32b/8fvvwtOx/+uvt8nZ119//9MtqeTKym9lv/XrzSi0na7MpXbI/fvw3R8d9wQ==