q
I was in need of a very compact 4 lane 4 way intersection, and I did not like the designs listed here: I think I can do better. I did one of my own but I could not make the test map work. It's weird, a locomotive cannot find a path on the innermost lane, unless the locomotive starts from half way up the test track?
EDIT: I found one way missing that I fixed - now half of the test trains works. Even though I copied the tracks with blueprints, so it should be completely symmetrical. Still, it works from all directions, if I start a train from closer to the intersection. This is really annoying
This prevents me from comparing its performance against the other design - can someone please test it for me?
Code: Select all
0eNqlnd9umzkOxV+l8HVSSNTfr8+wd3u5GCzSjDFjIE2CNO1OUfTd12kcO3Go+PyUq8F06jMURVISeT7y5+rz1bf17d3m+n716edqc3lz/XX16T8/V183f11fXD382f2P2/Xq0+r75u7+2/ZPzlbXF18e/uDxb5zn1a+z1eb6z/U/q0/x19nkLw398l/PfpncX27u118OP7u72Fw9+0n+9cfZan19v7nfrB9X+/tffvz3+tuXz+u77Tr2v7z8dvd9/ef5b4Cz1e3N1+1vbq4f/kdbnPO4/Ys/tv+0ZQv+5+Zuffn4X8uDTEeY9kKa88u/LzbX5zu5PeSP5RE72cfyy8FLB6XcbxH/+vt+KGV4QvJwsrbW0VKzA1lU0d6WrL7U2EhXR6o6KV3jigueeB2v0oVZsDjWPZyH/8rkGeBEYqgxPSnf2rHyk4du+nLzDji/hG0ebOKwVZA2882prlKLGFGelJlOB5RYUUQp+42qfkCJumPkN9fatbUOluq5bJSd5E3JLGgR5aWqTkpnEXueL57sGyMbds+dhFGPHC56qMAz6g7WTvuxFQ6bT/uxMVeJdW8A+dgAXGU0Bn+ImekY3jz4Pnl1+C29Bzhx5mT3DhKQZI2tO0UckHwp0dUrQiETDU2+jJnI2KGM+EI2EBK50ZEdngyjCXlRNKgD/bo2CCxecE0LRrXT8SQjt4pvuJUXDLP8umk72PgStHqg4F7Xd7Dh9HmQE4c1QQXg9DIf1rOxrN7ylkfMKLylcuWx2n/ntRmg02uW/eq8A1T9hKo6agmq5fuG75lS4YeUuz3FJnBOr1j3H2DnRXYfYEilsGeDsjey75DFN3rgK6Cdg3owstsAr6lyYgE4eOVvJgXVJlA9HP3NBCynqqm2ppt41a92g93xrjW1YtRw+lpTmxh+bRd/YxNA9fPHdnse++mLR10w7LEKvO1qAd4QBA20SE9gRQHN+HXBzW+2hC8IiiLRe+n88GAKyoO+FXwY+2tHDyYbC+mqoMHT7Xjb3ZWz5N2xfbr5dpy889Pt+BgKpwNdjxBU0WG3ube8tOs9sXqNskM942PT36IymR8ISn6gV23lz04PD0X3mgDsqFNUyZDAIfTk4/V0aF9Y1s726crYlOC5RC51P234Cz+QJGXwOqokbZ6B9YDwUTTAqTAKH6/SM/uFvoWOd8S1n84l9WAWGtSUFceAy6zKmmOIE9K6QLKbjJzPX3bCsNKydTexp91WysGhcFylHhwqThxq8s5WkGJRQnIMncst6WOZCcou6yCwCnlMPkycexe81qO7T9Hmau5xVHMHxIX8tv4yTP1EoXYcY+EB3sWpVDqhBh0j8po23mvXtmOfiPQu0EKzSdLeWMCwilJ1NsMocvrSGoaVpE3ohZ1fOKTAVspqyuopYRNP5wGjFXYBP1hukqK96aeUDfzN10aDlUNNGx1zt6JAJYmE5ZCBFlLgZ55bTo+c4DACMhqmBzhicuFg7C4KTieMxJnMJ7x2E5dUliplRkWBEhBTw7ACJyAmxAKKZawM36oXFEgT1HWWnWYUkVxdq1yGUXh2A0c2jSb4m2/8hKtwUGJOLPBnip9nMzsDknnMhSdzzEdiHLyHnCBbe8PUwRgUa+gc1xRq8cKefNTWSphkDQ5tAVAd9oHdt4Uy+4wSl84fVQM5oT9ROctUeUhFxxm/gRLQK+uNvXIPhtLn3nCiDngS0FdCDXPkRFFOQIcYxBj/CwHDsEIdP1aeDBxoNU++3kStIv/Cp7nOkjhP5qvXx9VPshQILqBKdIK78OemgtsCT+JKuBMFquB/MWMzSIKEnPYqUDpiy5wrI4lbsLhR4HjEVt+N68v7/quij9vhd6PLaWJ1bBNpDEXYHnhJQMKduCVKuDaD6yJhRpImYKacZQ2WF4Al2DoB6wI1SjHW5OuQY6yhLpQzpaAugd60JdTIUV0co7UXSbpEmVMSKk8dDhZdJoAE+SquuUiwPGUowXZGOF6EM/kZreJtzEU+4gxwKoCJGuBUDGzU/Z5WZ1iQS4npDIvBlc/9MlUnWJAbn+n8CnLvNZ1e8fbF3ELD1UZJvo6z2BKsfioRi9I7QpBnpEXZrcir155RK06UWtMjqvLldEyTCfE++HIadIR4MtHuAxX4MYTyHXqssEAr6bDhV6NAkLTYJ+sBXfokP/Jnk8AWNYNZ9X06VKLOmsXJpH0b2KvxV5Nvr4Zz6gOcDG+1AxjRfSIIFjpt4oSq2lylVjNsw1Rzgd9pxsq/Y2d0fT2J5L5BaHc9USdPvB2IWXeIwwnRpNYwKYm1ZNv3HClST5DEDyK/6UziLVeysj0Vw1bFktpkgBS12nG4HGiVVXfh5rMGEYf66YCFanJLiJ1/Ci2bLIv3OR/SDVKMPvFi1YK8qBZFNwynI3yzypMdWIqmAnZwUR10GrAHOmBHFZSyBFzMygpsxLUsCZYXoFyqnZFGEQbky7x/i9IlrOAniSQtrzcpzcdKey+sL21/78Htw/KHkwJbeblJguXVJt8Bqk0ACfLhWpOEmt91Xvst8sp7zms3r6sTJMjaGz1KBxveOY4gHf7WQ0HVmRDEJRsmHUmoBj/TFi5+DefGJUlxblxCxalx3z5b5TiCdDgxLqHivLiEusyymQfPnB5YzjUK6ZjOyUTmC2eT+VCT0kY9zTYRHSlzojeyD1RYpV8gbZvObnAxfQ3ig2ew3j7ZJUN6wwGGw5vmuARq134lbsEXtAGOoStPEuLLkt4D6drIkt9ld+7ht6CLWRK8Y6kM0cVo71qpewVd6JVsYCrUBYLf2xh7gPk4kzWd0dyHgF8qA7kS1PYAJk+FMymapUDb2wmp6RRodzvhc54UGrr2FqG3cOhTNZlXmvXBqZP4ux/DVPVE+jYkxcgoAUIpKoEBFLu7alY6lSea3pNQcY3Hb9sdC8cRpKs0CSeh4mSZhCozs11Lqi7mQvNviqQWaPpNQo00+yah4pNo0J8/cRxBugxTbxJoYSktCZPyDgZabBhGkK3DfJYESrvmC8ycpHIMdtQnxcN1igFwxUS/yRNKDEmfQgFCEejjoBt7KogKIm1ThXk8Sc4G70e+U6aOYQTZFpjEU0BxhwYJlL199sXaV7Vad+NVisH5joy+KBLjQmj157lkRsVchBCXcdlToIinPDkcSdyjScJOGbx+M2boDPZnjqCjLbrM8XMG9JxU4gzvRaK9JNaKAaqB9SpW3LPQD4T83S9znYXEZdO+QgLxLRXat1j4IDgVejoNtLloJEcY3utkn+IBFzpVXKrpPg6edSQwcFNNc/WfrjSuTBUTcZROEIl1WDjQ4buUo6oVTUs4bu7kxruKxyANjKBDPvwABjbH91EabUo8gIlTUbFp091sihXfJEvBBAGl9VNq9AEkfPeSWpnK6moeg0kDA0NoU1ndrhlCZz01Y1S0utBeLMpHaQk0Sdh9Q6fBRtqJRYPFuW0NFie3NVic3dZgywSsC4Tz25p8uPmI8lVy6v29B7wvLU5yK80sE2AXRGCphGwALJWMngCWykdPDCyVD5vQ5Cswga6hVtgmRUOlw8s11M5RXZwF9khRpMs6QSEA0Mg6pGigRqZKReHzohzg3GVNzoxBXZjCOq5oskEytQZKa0YaaueoLg4lU0vSRVYoisr040ip1EoH86xzFcBpliOtFSm92rLOVQAHeo7lne86H5UWjDRUWjEaWH3sHEeQjtaMJFQLqP+25EtgAAWwJDB/AliSzlwAz8OsMxfAWzbDqRP7dqivu6H624aHTigDPjJrpnBoma5K3fFr0Z+uzqdNKB18c8J0IEmraZKTOuoNnlkXhUM3c3GbEn8q+duUWEfvBsUsU3W/GEdapU0aR6tuU33M1VX3mTbmKjhMkA80wDomFCZjpsP7RkLi+55Ad86sawL1zDxH/44S/zuDvgl+UHXvqozxsE/BqxrB98CBNdCP6jRrWKZarotrL5N0cM0ajnkQJzu5q1IbTnALw2ly4XlzYWZmLpNDXn5P6nEBYSs6ZaR0LnWuMvx6npBrxqWxVtv+MOhc8FxMbecXDKvsfMWTx/zBWhkwIaq+6mpohOdgS0DHhApUl+lNaqA5OBBzBFPJoLVjh/O132iyTGBVZ9wlYbRgnMoTaM+5BfTRlaTHRudfSnpsdPyltn42/bINY6yvCV6grQpsmXzRV+lkAEMjnqQWWLK5Yd6QpgxMZ9WkXSak9YB6mHsvS+OUc6cDMCWdAhpE1lXaE5fVxaE1pgFMQSfI4oPUqVexxCzOuF9C7IrJoGRDH9qjG087HRemDEnPS+CoLg6j56Xh2l2v0UkOg7DpbtdCR4VpGsWDjGJXVFDYNxsWFQ1gGpEJzNsMCA8daGDmOHKBFiiesugSAnphKPtTQqTcDEGRJUycQS6O+gkFWDA9gAaSwS9hLSiyUZKDwLgtYeIgcnHYOBUThp8X0IYh6GrUJz8MwqOrxxjnknsShbtE/FWFBQUWj9IzgcBYYp5s6hL8JFwBPRri3hJcIJZ4688FEyyrsQicfBkpr2601mWqriWuVSU37Jd62mwMzvQarNts5hL8etmuxxjuCzQQkn49YaZsCmUEmcBeKoa71ZspqsRcb8uKFeGs9bG07llkOGkgwaYwAesCRXqnlMQzmG/WUGm2QEPNHNXFKfDOq0kHmy5qoI3xkTXQDsOwBLpgUA9G78MAzFFnKADPAXSFN/06J44jSJdhxUFDLZDmakJRvuRKUQWaQ6GtF56StyaVYAvpxJBdXbhnZsZEOhMKgAW2ZDhc2PPgwl7iHOPttXarC8+7PGZfzjT3HhDFxCfSQEr4ITmUssLQPBASOVSDMtJK60jIBVKmTKhfFtaL4aX3nCwVlEobbZlQHS3VpvLl4n6xfg37rjmvNeJGQXnCw47fYm6Bp1SeVag+UBXnmD0ViWzQzKZU+qXeSCJ6hxvALDMlMJNKYEXlJxw28fRB1ijZdLDwBhnbe/do0u2gYca2+VnXRjv+jHCwKyQ/r9Fou8YRThNdah9N04B9XziLIPlX8UYLoAOcPndcJIcH+sfZanO//rJF+nz1bX17t7m+3yJcXXxeX23/LP+T/3fx48O/P17efLm9uLz/cHVzc/vhe97+le/ru6+P4bs3sx6X0LbC/h/Anwno