Put in the standard 6-6 belt balancer (who made these things? they are awesome ).
- Full output capacity: full balanced unload.
- Reduced output capacity: when the backup reaches the inserters, unloading chests 1,3,5,7,9,11 continues, 2,4,6,8,10,12 stop until the uneven chests are empty, or full output is reached. Output per half is still balanced.
I wondered if it was possible to keep all chests balanced.
Came up with this. Upper station contraption balances all chests, and delivers full compression when needed.
Downsides:
- 2 tiles wider per station side
- more expensive
- damn ugly
So very Factorio
Tested with creative mode mod in 16.25
- unload 6 blue belts compressedV2.PNG (2.43 MiB) Viewed 1760 times
Blueprint
Code: Select all
0eNrtXV1yGzkOvsqU9tXaav6Tedhb7MtupVyy3eN0jSypWu3UpFI+wN5jT7YnWbXssRS7qf7w4VUvSRxL+AiAIEEQAH8u7tbP7a7vNsPiy89Fd7/d7Bdf/v1zse8eN6v1+H/Dj127+LLohvZpcbPYrJ7Gn9o/d3273y+HfrXZ77b9sLxr18Pi5WbRbR7aPxdfzMvNLJF+1a3PvmJfvt4s2s3QDV37OojjDz9uN89Pd21/oDkHf7PYbfeHr283I+aB5NKUv4ebxY/Dvw7/OEA9dH17//oBO47wA4IlENJfCKZBIBwBkWUQXgMxymmCZtBIBpJ9/ITwfJgX/WO/PfxdxQgXRHPzPu02u+dxcn7CTJ8w97t1NwyH301gxRPWPDuZEJiT6bloICp6Ng1B1MrGbYwGA5pMxoo0aySaNY6aqU2dgfmJagiblpmfISw8yxCiHCEIZ1ZiVBMAzWyfh5pqMoMZkXXrAmiRzO93sAJsgcQC4KoC9FMIRoHwWVyTEMRG7mVTzToFBCYnwubt+yqTICaCxqXK01uIjRqiqUI0aZwaTBhZ4+PUhFE0RCvCcMwmHc5HOu+mGg1EbdyMfx1FSnRO4xRVlOgYj9rL5B0048ZEEzVuV000SUO0Nk8YSzQyYRRm1y51nc77cJ6x2kY0i7zRQFS04QmrLSJleMqjToAy6h6U9wp/t2IMXuND16Sv8ZoT4mf4pEDIEEJWeHwYD0WBAPEQGoW/B/EQjAIB4+FkyfsD6e7x27A8BuE+EY6vVOOvNM0UzdOcf2ofuuenZbs+fL7v7pe77bqd8lHfV+pQiTVFyeFmPLD8eD3kTBJLZzyv7v9Ydpt921fiAOV8ZL+K82Zxv90M/XZ9e9d+W33vtv34rfuuv3/uhtvD7x7eSf3e9fvh9lPw83vXD8+r9Sn++fqJZfu97X8M37rN4xgMHSOww2oMx6bxh6fdql8NI9jif//57/iB9fax2w/d/a+Yp681H772jyPVt3H27erh9ttq8zB+eziIar/4MvTP7ekTx18eP/a0fWiPOh+Jb14FsR+xzPjHY9+2m/MobfdwEHZ++foyqYWMa+F0hrlqgdNCqmlBFDUYAxsXDCs2AsNKV5WqVBpNRaXRCLSQr1rQaaGpaUEWbo6XDcsJVBquKtWp1NdU6gVaiFct6LTgaloIIsNylw0rSl3VUxCn4qpGiXfprrNENUtSdfnNstu+y7OkCFRqrirVqbRm+EniXdqrFnTLb+3AkIzEsMpFu0oW1+j1HK40q5pXkyS+5fUcrjSrUtOCwLe8ntmUpmBrShAHLtOMM5g0ofqABHCTJlQfIQRNqD4glz1JE6qHeMiaUD2kh6wJ1WM8EJduVqSHzNyUyxCIK7ZGhiC/cBMCyE1aKCO5RQvVLDdomT1nuT17EUA5mfP9c/+9fajcWb25n25qaS5yg5WtzEVur1Y2FYvcXq1sLha5vVrZZCxye7VOpge5wVrZ2l8Ii63PpTiFcDLZ8ZZ2s9wP293Uev92QeM/kBT4hTM+GuXYHT213/vt0+1x9H95c8f/HjnZtQ+//ub4w/uvYCf1X4uDpY8O9Ou4Fv/crLerh9/+Zn6bzJhtzm5Knlbr9XK9etpdvJ72tRT585Ns266X99/a/eWsRn/U+93q+PVJmo65pnbIhDWNZy5fQdoBlMWJ8LwsInOzCI43MfdlIO2MzouMy6KgNBNM0zTMBRMmA2OYaxOQNmx3EZeFQ2kGnKbHVprT7UJtpTGBuV4ApRlRzh3OeWJi5+B4MxMRBmnDVmZhWdgGpWlwmoaIoWIisJaJDIK0YSPDNwnrQZr4HnxWDXHRbtOc2dpIxPdAUSaQbXyLYeoePiyGs6MuCggHVX45TdDHYxCawiUQwiogQEFpCpdACK8ILYGCCor4GAgRFRCgoJJCUCBEVgThQEEVPgqHIRClE41MTEzlhBTC8qE+UEyOj1aCCJ7nAZRS4HkAESIfsAQREo+AbaheEdUFNV14BMyVmaiomK/6iXUugCr6iRKLecgLjggCafnIM6apQFi90CiDV0CAXARCNRfOkFAVfYgqUM+BylcHI1yAQlZAgPqSrw9G6KnGRgGBcRHl2740ahWtAgLbDSKxAgjjetErIEBdSHJ9rTmNfpJYVNzH1c71MSmu4EAhZMUdHKjKooDAJmRitnZ7wX8ANlpRruIYPRKwYxWXithal5xk9CfjRUh7xYVlzRQScZNbX9XiJERUQNTWhbMMqovJBEv3VktgkJFmtK72/c7WIoorONmIk80NTtYLyBqcrBWQtTjZRkDWwWSNQGXZ42QlKgs4WYnKIk5WorKEk5WoDLcyicZwIxMorOA2JtBXEZiYgKrFlsTpBdFNknR88MBC++VErtK8h+HrGICDQSQvnQ7BIFe686jlWslpzqMGcqCK5jxqMQjNeRTSjm0axUkOhNCcRw0GYRUnORBCcx6F1G0b4jyahFwEBQSobkmnk1PWkEVIM60wT5llhlghbZNVmJbCLIqDvq007SO64J6ImhpRJvhsPyzus8u5nWh9K4ExzB5ijVPEFAzWNVSTnYyZo9GkJ2OLCtEE1zrZ0kg1wbVe5URYkxUhElB0RRHHwCAmmt9eiMJEyXpMdL21WTh6q4DALIToemuF2y7R9tYKt12i7a1rhFwQdl6EEEnBBSiorOAChCDuma1MUERqmDNCCKPgAhMUkRrmjBCCOLYLF3EiNcwJt1giNcx5oaCiggsQogjLVZqK2+kbabVKM5Mxar2RFn3Mk7RMjUqVZ6qapkrNS2sw5tkN0lKReZKRqWyp8pyYGpwqtSytsphnt0iLQWZJhoapXanxHAxTZVOlZoU1JVVCTlr2MS83z1SpVAcYpHUT8wOM0vKOeZKJqUap8pyZupkqtSIsjZjlNjbSAo55koapN6mxHJnmQlViTlYHUqXjhbUa80ILRGFJdXhR1g3azjeDtlFxl4A9uxI1VwkgROHD1xhCahQBchBCcZMAImgS20AIx4fgQQTNPQIIEZggf4NQFl0f/LXuGYQyYcdFKBbmsuDDgUJ4V5A0dwW1ZTSLYoZuevSTgVyiy5C1VSVMQ1hVol5TT9S7ECsmOg9Z4RJOtB6yc55zZjLUbZifsJdEFRUxb1BUiYl5I8sT0XrIZtHqTfQeslkmntLw4WgQwSgC3iCE5UPFIILjI8UggleEu0GIoAh3gxCRDxSDCImPE4MIWRHsBiGKItiNvcNMZPM40VHFEck8zskQrCLUDUI4RagbhOCfEDK1BxI1b1BC1+yuSYrnOS0mGObVnNdLkmtn2NnOsK6p9ed1TSHuD66ChwVfeybKUc+PJ5HdUq+PZ5HdGktcnlynDzp9jKtOH0fcgV0FDwveVgXvFc8Fg3YbFI8Hg3YbiSu76/SBp0+qTp9E3LxeBQ8LPlYFn4mr26vgUcFbUxV8Ubz3ja1mZ8ms0ueuascqSf/B91vv63SB7bTqF4u6M5qr4KV2GqqCd4qn6EE7ZXwnK/KdbCCSLa7TB54+Vb9Y0gn0GkeQyt01VbkTwbkis1qir6JpZFZL+AhJxIRr5PlE1+kJLwtVt5vpJJtFc+esWkD4ulXN92P6xgbZbCQ2QtkBn+kaK3O6maaxXoag6BkLImS+8S2IwHeMxQCIhrFLIYKhO6GCAJZuhAoCOLpLKQjg6S4gIEBQtPNkqs3dWZEF8BbV9EJ6Vloxfnn5tjd+ovHrhjvTcsV5uDvOW88dOz24wjc5wZRGtX29cKQC0qhcMHzScG0/JBq7mnP7maTp+CYmoPQVfRyrow48TYONOvKpxiBC4hFAyWc+0xhEKDwCJqXYMKnMFqFs+IRjTDrRavKNmX4ojujLKswQiV7T7MOctxS5wEbg257W1gymP6tsn2GatdqatifPWEyvVtlqzbRqdSKLJipRrMwLJApR7Nzem6wmFZtqceOIWhQrO/9O1KIAmdjI6sp0a5WlvDDNWrNspiY+TRrkIfMIIA+Fz2HGeCDevrayfZSoSnGNSErE29e2yBAcn8EMSsnzCcwgQuB5AKUUeR5AhMTnL4NSynz6MohQeB4wKRElKE7mBRSjSJd2GIRVZHaCEE6R2QlCaPLcPAahyXMDIaICAnpkwJWkEBSoi6xIoQEFxWTpeAmEbxoFFw6DMAouQAirSJMABeUUaRIgBHOaPvHBvA/lm6BgC1RO5C/DQcElxWU4CJF5JkAxFQUTGART3pBEYjKKm2UQwfI8VF7l8ET72GWWSd7zt9cgQuARQMlH/n4cRGBaxy7j/PpXj6t4onPsUrb/Mbm2su3PNjwPmGaI9rFLmSNiLZ9XAErJ8XkFIILi4WFQSop3h0GESOdGgEJKfG4EiJBpFkAZFZ4FDIHoGSubqkQKmMzaHP/cMCgi/rVhEMDTCSogQKATVEAA/qlhUMmJ5gAEyPTztaCICg2AceA1zwwzrwx7bxSI1CHSW2Hyj590w73iJWFM217xkDCobtU7wtSLvt6rnm3i3Gav6LQISlLRaRGcDYo3mzCEoHhCGJMSk1oWZo7DQdFZsUrT8TR9jaYimQzUXxQubHF6oElIJr+8fL1ZdEP7dPjK3fq53fXdZmTne9vvXx8CzckaY4JxB8j/A2FhE8k=