Anyway it's tileable from 3 sides with roboport connection and from every side with poles.
25:21 Solar with Roboport (200:168)
25:21 Solar with Roboport (200:168)
The only limitation is that 1 side is off the boundaries of roboport. So you can connect ports in 1 line or rotate to get connected square. You can see the offset on the picture from the right side.
Anyway it's tileable from 3 sides with roboport connection and from every side with poles.
Anyway it's tileable from 3 sides with roboport connection and from every side with poles.
Screenshot
Blueprint string
- hansinator
- Fast Inserter
- Posts: 160
- Joined: Sat Sep 10, 2016 10:42 pm
- Contact:
Re: 25:21 Solar with Roboport (200:168)
Have you seen this: viewtopic.php?f=5&t=5594 ?
It is the same, but better. Next time you could try search the forum first
It is the same, but better. Next time you could try search the forum first
Re: 25:21 Solar with Roboport (200:168)
Usefull area : 2224 (96.5%)hansinator wrote:Have you seen this: viewtopic.php?f=5&t=5594 ?
It is the same, but better. Next time you could try search the forum first
Solar panels: 180
Accumulators: 151
Substations: 16
Ratio = 151 / 180 = 0.83(8)
Mine has 200:168 which is perfect ratio
Usefull area : 100%+
Substations: 15
Check the details.
But I would be happy if you make it prettier.
Re: 25:21 Solar with Roboport (200:168)
Your area: 2550
Useful area: 2482
Effective area: 96.94%
Tileable from 3 sides: Confirmed
Useful area: 2482
Effective area: 96.94%
Tileable from 3 sides: Confirmed
Re: 25:21 Solar with Roboport (200:168)
Ok, there are 2 tiles uncovered when you tile, but 100% of buildings are covered by roboport and there are no spaces inbetween.Xeanoa wrote:Your area: 2550
Useful area: 2482
Effective area: 96.94%
Tileable from 3 sides: Confirmed
How can you get 96.94% of effective area from 1 roboport and 200:168 panels, when the 96.95% gets from 180:151?
Last edited by huliosh on Sat Jan 14, 2017 4:03 pm, edited 1 time in total.
Re: 25:21 Solar with Roboport (200:168)
Do you have a path around your solar?
btw: perfect ratio doesnt matter. You need more accu than perfect because you'll need the backup when you get attacked (lasers)
blueprint string of a Book:
solar/accu/port 2 x 2:
horizontal 2 blocks walking space, vertical 1 block walking space. Completely filled.
edit:
accu: 976
solar: 574
want more solar ?? Replace a few accu around roboport
btw: perfect ratio doesnt matter. You need more accu than perfect because you'll need the backup when you get attacked (lasers)
blueprint string of a Book:
solar/accu/port 2 x 2:
horizontal 2 blocks walking space, vertical 1 block walking space. Completely filled.
Code: Select all
H4sIAAAAAAAA/+y9bY8bSa4u+Fca/nCwC1i9GRH5psX1BfbjAhfYr4s9ODDKZbVbmHJVXZWq5zQa/u8rKTNlKSNIPg9T5WlfnAamPW4xMkgGg2SQDMbnp18enu7vHn75+OGvT09P//jw1+P24f1fm8f9dr/dvHz466/Hu6+bD+9eHz9vdl92T4c/V582D/t375+fXg4gT48f/vrPD6v4/s/Dv7693//5fAB+et0/v+7ffXs/Dn55ftju95vdbFD4tTkOS9/OgPoslWOSipxjFdRJ9MFLxp5YWE1jt49XQ/e7u8eX56fdXuR9+Pb+83a3uT/919bi/MCV6hs2QVAmsBki0aQKRQBRO9IeqbWNAjq26EkjNcED6RgQO8Bu758ej5vuZfvl8e7hw1/jhPvN13fvZ7MdgA8oH8YeZpDBM7KmYafp8n0urEp9EoFfm0shiNgSpXFTlAYKs52GVNJsiCq6ktbo3VQC1vZmuRpYe3eZxadKZZMlbytCNj2c0DhYpiepQqYvu7zqoDE6SriLlydpFdbNXHBUz42K1LkdqlvsBgeJGdbYVgi+2RQkbdkpsggTnVSSHESVz4jBFHqm/49zDT893D1ufvl0d/jjfrP7pX5X0u8GJ/rjNuqulswjLt3xM3V55S15bbOxrdOhasQvUcTU+WfAkck9Miojt48vm12uwGI1jAFnOEE3DtzCWhkp4DaMQXELvRu3Thn58vXu4WG1eTj8sNver56fHjbFiS/QlMhpQbiGIrt1k924R9bLGJYoApMbzeiQuQAuUqRoCG4a3DvOseFAQe4Y0rW9pQ50b2dtQ9jCOd+k6lTaDhKYN5d9Aaxm0HDvEG0f2wcdlzwv0xwEV7wbR8OwvFhzE1qGYnD3Liiv8Bhb45UWfpcw0r9ouzO73avJvIqMV+CY/ma8Krf5US2euSyZFVan0naLsBcxLUwZedXbUAd695XqwAkUzW23AMbsC9V9Vgd6XVe3q6+eQmypxPZXxFxI6uTlPnhFr+cZtV1lsioyLn7kzVac2y0BjDEk0bsPo/cgFb0bIHq3XPTunMhYjahtMySWdB0EEgI5QDDJE1EfRqbyyN/uXvYrKZTSKgP/+fT0efO4uv9981KOXV3kozTYZgarItR4KUlOStIMO9ujHzZdNuTh7utzETJhbIoMm6JC7cv+6XGz+u1193h3n+E+ponjr803aEDo2QEtO6BmB0R2AEs0SzNLMksxSzBJb+DAEwfecOAdB74mSSVpDSSxgaQ2kOQGkt5I0htJemOJXtsNEIxcOe0Uu181q2Bb9cS4AHCRxWD2Y8nsM1mXlCXlwLBUypKO6MCTYx48fsZ6PiU48DSlB9dhTYSSHNsnck3ZKewRcuqDLMxyo9/ns10wYTrbVXItY+tlTSMPtJ0zF6q1F9XkHejdj1HZj7YvJzDHyvzm+8qXQg7ZzhYyyGpO9qLIQ82PwsUg3j18CnsIAy1O5JvDydJ8s1AsDS3I0oZiqXdDBWVDiQegkEAamDqtIZHpokHZomrSFMUs30UgYop91DKaKF7KdjAzoRxaPYOW1w4pZkjLTaJoebeIskO0zKq7NI5IfNIbF9q3bHWlA3t6Y8wNkZV7dODkdC1oqZ0rdiXxCBLslGznPqW1x9w5UFKGIMFOxefU45p9kbYaZfp4O5HZLy27iGLh3DeaC2EmDT3jFHHXco02t+aumZlr9GDv3HUFVx4bp+wVLWtocis7G5jJPwf2hZMQNs4pk9oxUdrqEfOGI+PQa0dyLcGIft5pMQpBFLC2nTkgavEoIZZYCtSY1zVK909AV8Epzv6o4BFX+FLZ+v3sJgETI4voLN01SmY07ALWykESKUgmA4lim3Bs0zUKYJoRpG92OxDIAF4F7M3wlH2Cj9VclLCE5JhfvEJHix15pmjzKcASeSBy0TqRqnG6G+cU0UV3wujO7i7V5pDs3hJIR0Fi7ewtwtneh1BBnpQgjTQBVNYdMJJxYcru8IF1A/AEtW+C0hpDtdWmqPoUU0AJVvaBmUMHPq/sfTkcwOPTONiPy2eHUuvbkGv085oBgep7MXJDQXjsGgNE1pTdqxz/HdJfkAflxMyh5LOYoSBEdqEEJ9GYzXe6OhFWKdGnU2JBjrCqV+xISq1y9OmhWBA88wToKJnMTz5MqSV89/QIfFF9Yp478O4tp9PPzS4PI3eHzWMbSmi6hrXT+K6LxbU8UK/XRMmIDBlRxkY77Qg3y7UzmDAEPPCAV305vEImqxReCcMr8Hhlq2IO6egR/RLaW4j0TNRNpLJdRS0IghS9Gorsyo4uNUARXMjXhW6pURgtkY2ALYOy0orHyI1QtrfiNLoJh/SUpgsVr8uLVISUVG6UTKQUoTX9G2/BrKufScyF2dN/7PSZVPoMd5fmuPzuph/ujhyugb13YOMd2HoH1t6ByTswegcG50D3+nslzrv8XnnzLr5X2rwy4xUZt8T4xjmX3TmbkzgnL51L7lxxp0A75dm5z5271auOvFrFqze9itpri7wWxWvCvFbaa6S97kT06genvESnvESnvETnukennEWnvESnvETvuityBjjOxYaGk+MMNd29Cs1ijRpn9OTtGl++Hv779vFLsU/j+VD1dft4gFl93m0fHgouy8HB4quJxrpvtFJlgL6IhiPIxRy5lvlAYTxGXIatDRwp0gpsJ3y+40gCek3QwcBeYmHHtsa2oJQAtMMYp3D2DJNIzGKGGdEPpeInzOcjJBlkhIMP+QIRbJhLhJg8OAG2DtGpvaLTMqLTOESHzJ9UPAfyaQiJAel3kF9ozWtSP19/e0nQNOK8i4hJLNMcL9HqkbSP+f1mynYzPOLMm/6eBKQeOVYUWrfj6wT6MHOmwWZ+iXoMoHqseMnxvEwwlB7gsCRacY4Wphm5WbJJcFEB3a4Zl0BBIQnvcXxWs3pnE5bQiMTmofUhaVizgygh1GBRzJgQpoXa2zmvormQzYZLN2HbeJvv5cBMDlQl6HARe6e8dIS8kGjFOVqYEuS9QwftBOk85dl6YEqQcQzB4+0Jljg1EaBrVgmyQZN2GOO07YxxDw7rHpY4hSQr8vlwIUcjLHOmgWLuZsNcIlR9SEXnAtB2sSI+in5zQhSJoZa5i8VS9bHfQ6rDz7/EhSHV5D6W+d68qfNZhSoR/PyWykIKfCB4eZD8LEi35ECzkAF6YF3ctVng2bYRnvDz4sh68FCXaOKSg7ZmWWh9vWD3VSXZY4qrkhuDhCPwIwLvbh4i74Ytjc+j8u2gP7nJTzekvllGvBo7BxWS48wjRYXR5fIinHh8C6/CUfFm9/ZY3Apd6+UNCCg0/9uHroVrSZCSvqmHtNCAOhWMi/xCo9CF3tEyBSM966q5RrRjdLv4M7imJFWJJCrRNDUySUAY2LvNir2bWT3lVlPQ7G8dUfYf45obqigh7ApKs4N25VaMvXA3olypZFsYF8a0zu0CvuA6ebFNNLKNjCsQfPXuiP4W6sR9roJmf/vQrNCNC2BfuKXTI4UuQVH10J/c5KcbUt+YcVvJa6ESn2jcNLFfTrMPI4ID+fvAEqjfeevIb4afHPT95X+7f/r6fHe//9+L4V+Tx/X4eBkk1u28fMoGvlDWL/vN3dfV5vHL9jG725yf8iIyrumd45zz1c75aud8yTlfcs4XnfMVXtyCxgVtvuft82a1f1oNG2E+Mn8GpgVHBh+u3qVwDcvf9EJG5U+/IaOCb7Lgm63wXBk0zDdb8s2WtNk06aorQyxn4OM8Jkj9DZs+f8PvO96fXnePm53Qw6Sg2b67LJ+etg/ZgPmLivrn1+zn54+Vqp9v8j2tf76Zv15aBJq/hKrjkC99DY7UYpz6SO3tvyJJ8yeBi0Dz1091HLQHufSRWnC5iNi8orkINH9bVcdBey5TH6m9l1lEbP4qcRFovt11HNhd22TbqgREbe1G3drayFbdtepIda8VSGqR/d7O97umalstA2T7xWDBajuXeMlARFQR93lUnVHh0khRhUed5/X8oT1Ax3qwb/L8hbFTAoD9gA+Mvfb0mayILRzmj8UCFsPFQe2NOUDPM3TPnwmWjQFMt/aSH6DnGeyzDSkaAxh7de/ZFoLBPtuQohlBsW/VvWfreQL7Ftm17XzX2nrekZBqmTtLbfkdabUf3PCcgB3Ra6sSoPbppmZH1B09gsYqJXbE+LilzaJIIzO+rMKMiPQygNizq8UiwpIaimy3OqYxA1JxvQohZxaTxMpxPWOm7UKhl/SVp3tsDw+dRHnnx3bEAmq9Ao5R43wkpVHe/LEdIpiSRFDifLalUV4hsh00FDnlqSDbl0MnUR4Msl0ueE06AiPnO1qN8m6X7X7BlBDqoXG+Ztd41UrL7PiW2PGt87WuVntgr/h2Uzs0RUfxcu7f1vmKWDs340a6zJktcybLnLkyZ6rMmSlzJsqceTJnmsyZJXMnydw5Ml+KzJchcyXIXPkxX3rMlx3zJcd8uTFfasyXGfMmxri82OyAXoCYJc7UrJg7KZYY5/4SWIp2WhHRfgZj+uEohk2wMWyCjeFpUiroCWMYAQwTgGFkMKwZDBsAwwbAsGYw7BgMWwDDFsCwYzAEhL+ZC7/pOFsfZHZKOxd+09k1Zm+BndJWuR5TA43eOCOTTmKijPVQkm0pYiOxVq8BmN6GaQIAUwEwCYCJAEwDwNQADMDDpgVgAD43AJ9bgIftbC1M0famSplyQ7AhTDvWvGNdUC9cIax8c2RXXrT5/PTPze6XL5uD4rk74qKUbBbCvEOysbk8Ij493O1Wz3ePm3nd81g+c9Hm4+7+/vXr68Pd/mn+AEw9vLN1gL58aUuBTyR84ODTmoTvSHiS3kTSm0h6I0lvJOmNJL2RpDeS9AaS3kDSG0h6A0lvIOklySWpZYWZpLUErvb8hPRThLVTTeHbUtA9BT0+PQyDRw6cIzRwlAaO1MiRGjlSI0dq5EiNHKmJIzVxpCaO1MSRmjhSa47UmiO15kitOVLrIqmSIip4Sq+fXvaDzyU4Py3p/KDwgYM/Oz8ofEfCk/SmIr0iOxNJbiTJjSS5kSQ3kssbSXpDkV6RnYEkN5DkBpLcQJJLri5JbZFYWTRJUpmP19S3Wwq6p6DPXgoIHjlwjtBQpFRiYuAojRylkaM0cpRGbk0jR2oqkirxMXGUJo7SxFGaOEprblFrjtS6SKq4qTlK6yKlZogG8yImVVeD3x5u8NQQbIXDDvfiQNh6DguETED64hrHI7YELMG3mPENCGGA9IUGx2O4vonBEmzLuGbHFGrOsmK8iPAuqanv4pIc8A0ScPkJOIPPhhHkWICRiNkelUFxhiV8Z5xtFUZawvfFcHUeAq1xhtW4UjubD2xb1NwiT+YjIjvubD4iGcEG4c/qDf0++fkSuKEwEL7UFBrnXYiBnyUbAz9LCwjOIfNdAirKgQgQbIXDjg4EBlvPYQGJBekbHQgIj9GBwGAJvsWMb8AOA+kbHQgIj9GBgGAJtmVcs/VBxekDDLymOIfLZ8DFPuBSEXC2nRUSRtnoFiBIxGznWW4BAppweT8rT4y0hEv76BYgoDXOsBpXVWdFD0ovt8hTh6I1so8mo5B6xiikHoKtcNix2woGW89hbaOA0jcYBQyPwSiAsATfYsY32yig9I09kyA8xqZAECzBtoxrplFIWIJoxa11hHdJTX0Xl+SAb5CAy0/AGTyZD5RjAUYiZnvUMB8QaMJ3xmQ+QNISvi/GhmwIaI0zrMaV2mQ+wG1Rc4s8mY8W2XFn84GmEgMHf1Zv6PfJz5fADYWB8KWm0DjvQjCcHinws7RwIWyUhWcJoMLSCYOtcNjRgcBg6zksILFUWBrDY3QgMFiCbzHjG7DDqLA0hsfoQECwBNsyrtn6gAtLg+A1xTlcPgMu9gGXioCz7ayQmGAzhETMdp7lFkDGG5f3s/Jkgs0YEj0MWuMMq3FVdVb0XLAZVtwDfZfNm62CqoRGJhMJHzj4qaAKhu9IeJLeVKTXLKhCPx9JciNJbiTJjeTyRpLeUKTXLKiCP0+SG0hyA0kuuboktUVirYIqmNTix3V/G1A4NYVFS0H3FPRUeoWCRw6cIzQUKbVKr8CPR47SyFEaOUojt6aRIzUVSbVKr9CPc5QmjtLEUVpzi1pzpNZFUq3SK/TjRUpNd6ZC1NbZn6Eypwm7pVfhsOMZF4OtcfrODgaYfDs7GCh8R8IX+Q04GCg8SW8g6Q1Fes0zNbSu45kagl3joC0hLSQzKF5k1JmnbyKnC7Ei4Bsy4Ps84Aw+G2KMwWdDDIJHDrzIZtsQg+AcqYkjNRVJtc76yGqmzHhYZ30IFFfZNcfnmuPz2eBF8rozCj8ZEBi+I+FJ/CcDAsOT9AaS3kDSS6LPYV9T0JP2AsEn7YWCRw6cw33SXig4R2riSE0cqTWHe13E3XKXY0dpD/QWRJp/23KXMdjBXQZha5y+s7YjLzjC8F0Jfvf06enYy2QOPIl4Q6ou8rYiDF9E3vJ9sUUafF8Mdo2DtsTSk8ygeJFRZ6pk7Lv4Ngj47gr4pg04g8/Wg7v/h4JHfGOdXQhsX0UO8cQhnoqIG54stDYp0+uGJ4uB4tr0bLe48gTYtgz0QXeYznaLKmWIxA07DHa0W8QNO4y+s90Cs+Fnu4XCdyQ8iU8g8QlFfExTRNy4w2DXOGhLrCbJDIoXGXWmKSKKICBWBHzDBHwfBpzBZ1OEMfhsikDwyIFzyCQOmVRExjIv+A08CHQ0L/gNPEw8W4oTNcfn7yaDvFWHwp9VMJnKh+FJ/M+BEjKVj8IHkt5A0kuiz2FfU9Bn/cLlW1HwyIFzuJ8DJVy+FQRPHKmJI7XmcK+LuJsOJ3Tn7aw9qLxiJG5kYrCjw0ncyMToO2s7Mq8Iw3ckfJHfgLYj84oofCDpDUV6TYeWuAGKwa5x0JaQFpIZFC8y6kwtTuQVIVYEfEMGfJ8HnMFng8PlFVHwyIEX2WwbHC6vCIInjtRUJNVyl/GbqRDo6C7jN1Mx4ef4XBf5bBnHcHkfyqohDmRHahg+cPBTDTEM35HwJL2pSK9ZQ4x+PpLkRpLcSJIbyeWNJL2hSK9ZQwx/niQ3kOQGklxydUlqi8RaNcQwqcWPq3YfUTg1hUVLQfcU9FRDjIJHDpwjNBQptWqIwY9HjtLIURo5SiO3ppEjNRVJtWqI0Y9zlCaO0sRRWnOLWnOk1kVSrRpi9OMcpd99FKrQIbQQbIXDDud3ELaew9rnd5S+4e4rhsdw9xWEJfgWM77Z52mUvtDgeAznaQyWYFvGNfM8HbhaBRC8pjiHy2fAxT7gUhFwtp1NGFizEWAkYrbzjLuvEGjC5f1sVZgqAgyJHgatcYbVuKo6K3quigBW3AN9nFEAU0hnJUtmteHvk58vgRvuNaMwMDTOu5BLYILgZ2nhkoIgTyZpodpyBjS9MCi9BMFWOOzoQmCw9RwWkG6QvtGFgPAYXQgMluBbzPgG7EaQvtGFgPAYXQgIlmBbxjVbd3DpUpAXEd4lNfVdXJIDvkECLj8BZ/BZzYEcCzASMdujlrOBgCZ8Z5xVMkZawvfF6GwgoDXOsBpXamfzwWWQ0V10NglUVjgQt00x2NEkELdNA3XbFKVvNAkQHqNJwGAJvsWMb4BJoLK0GB6jScBvf2KgGddsk8BlaUHwmuIcLp8BF/uAS0XA2XZW9EyfXgiJmO08S9FDFxxxeT8reiYbiiHRw6A1zrAaV1VnRc9lQ2HFfaKPatNL3sckrxtytw25fA2RriFasnJ3ErmLd9y9Oy7CTN26ozpxUqFo4sodceOOuHBH3bejotAQEoO7gIHiDItzhtk7jwpAE3fl8Kty+E055qIcF3smrskRXViJEDV+Rw6/IoffkGMuyDHRaQSDON+OhhcB3S2D98GkcpnANH67Db/cht9tY662cTFp7CXL82MuXHUUCh4o8PODtVxpFArOkZpKpNqP1XJlUeSNOBScozRyixo5UkOJVPuVWq4eCgXnKA0cpdyacoSW6DSfp6WMJvTpmvlyywD3DPD5ZVqqsgmEpmgMJSLNV2mpqibuIiAITREZqZWMFJWpRKX5HC1VzgRCU0QmisiaWsqaorIuUWm+Q0u5ElxnZ+aUSTZ2Jvs6k22dya7OZFNnsqczexGU8zvYa6Cc38FeAuX8DvYKKBe7Ips5k72cyVbOXCdnrpEz18eZvBdLeR5MF2f8uE41caZ6OHMtnLkOzlwDZ65/M3mfmHJSyNvElJNC3iWmnBTyJjEV+OUaN3N9m7m2zVzXZq5pM9ezmbxbTbkp13rk693Dw+rh7uvzXKENKSkbEoWDPzhMjeXXj64UU/gVKEcKhQ4M9OhGodAdBU1RmSgqE0VlpKiMFJWRojJSVEaKykBRGSgqA0VloKgMFJUUkRSNnLhSFObAmgKD8vmgrqkJPFsCtidgR68KBI4MMENeYOgLDIGRITAyBEaGwMgQGBkCE0NgYghMDIGJITAxBNYMgTVDYM0QWDME1gUCVX/nUq8YuaVEuSYodGCgR9cEhe4oaIrKVKDSSiqBn44UkZEiMlJERmopI0VlKFBpZZPQT1NEBorIQBFJrSRFY4FEI42EEoh/uCa+2xKwPQE7+hEgcGSAGfJCgT4je4R9ODL0RYa+yNAXmfWLDIGpQKCRNgI/zNCXGPoSQ1/NLGDNEFgXCDTyReCHC/QZIQ7M1g9KqwG/e6yWwq/G4xfj8WvxzKV4kKpTMSJ+IR6/Do9fhmeuwoNUneoQ8Wvw8CV4+Ao8cQEefBeBWdUI7oCa+CYqqQEV/oBKSUAZOhoykEcBnD7WKCDKooRK/WhfMIISKvOnokP4Kjx8EZ64Bo+JfM0s56D2e2QnjWq/o6K4IPSoptBvU5/OgVUFgPCiJhAYdxcGPEouBjxKBQjMoDGt9Zow8WsIskIhTyYeg6yvIU2ZBKk6mXgIg5OJxyBhTsUKpWrcOyBVJxMPYXAy8RAkzKgWXqmcJGuHY8A1wStUAgMq1AFd/YAyalQuGD0n041MH2sUEGVRQqV5VIAYQQmV5ZPpRgBrlEU1qnRGJQ1KJ7Ocg+kOTEfyEAiFftnCwdDoGOhJpYOg9QzUTheDpJ20OobESa2DoDjD4pxhdh4XJO2k2jEkTrodA8X5NWeXmWHlUqwYFyK6J2rmq7DkBng7BFhkAszYKbMJsiqgGMT5dtQtAgSZ4H0wJR0xqhK8C05WAYKsYU7VsOKa8oFcQhBV4CfSmNfRApowCxT4pMLQr3MfL0DrigF/+QrEYdpxYMQ5MtCThFDRXpR307IzUdyAgVYw6OARYKD1DNQWUSaUiyExeAQYKM6wOGeYvZ2YeC6GxOARQKA4v+bsMjc+FdQFoWuGZbBABljKAywJAebXpHaImC2EQZzvMsPQQwYZFu9JPRKBWwyDHoWsYU7VsD6a1DgVvYX18om0y/vtRvVPQCOAiQMPFPhUm4yCdxw4R2oqkWoVAaEfjxylkaM0cpRGblEjR2ookWrVAsEf5ygNHKWBo5RbU47QEp1GSRBMZenTqr8MKJaaQaFlgHsGeCpEBqEjBU3RGEpEGkVE4KcjRWSkiIwUkZFayUhRmUpUGrVE6KcpIhNFZKKIrKmlrCkq6xKVRkkR+ukSkda9KagB5eSfMDnHiDdHxUBPB1IQtIZJm1wGMJ81uQwoeMeBl/hsuwwoOEdq4EgNJVKN4y+2mqfjLwa6hiFbXEI4NjBcmBNmnZPx3CjEhABvvgDv6AAzdjKvGGMn8wpCRwq6xF7TvILQFJWJojKVqNTP5NAaprll0M/kGCSskmuKvzXF38mSRe6+Kwo+WgcYvOPAOdxH6wCDc6QGjtTAkcqhTmFeM8CjjgKhRx2FQkcKmsJ71FEoNEVloqhMFJU1hXddwttyeJmeSxGtz0+zL1sOL/4+DAhaw6RNKo27KQeDdwXw3dOnp+en3X4OO4o010sRxSRwiIcS4pb7ij8pg4GuYcgWX2+ODQwX5oRZOhf7Kiz1Ad5KAd6fAWbsZBqoO2YodIR30eQUUP0GQTQShXQqIW14o/DbMxDk4I3CL89gotsyPKhL/LUsEtNrPjI1ARG/2oWBDhYJv9yFkTZZJDDBPFkkFLzjwDlkAodMKCFjWRn80hcGuoYhW3wNOTYwXJgTZlkZvJgAYkKAt0eA91yAGTtZGYyxk5UBoSMFTWGSKExSCRPDdMDXwiDIwXTAF8MweWwZHtQUf8/2gLvyhYJPOpbLjMPgHO5TIIPLjKPggSM1cKRyqFOY1wzwpEeoXCYKHSloCu8pkEHlMkHoRFGZKCprCu+6hLflNjKPWEUqc4dfF8RAB7cRvzCIkTapNC5zB4N3HHiJz7ZK4zJ3KHjgSA0lUi2nFL+miIGuYcgWlxCODQwX5oRZWprI3MHXGjFIeEcHmLGTMaEydyh0pKBL7DWNCZW5A6ETRWUqUWk4vPBlSghycHjh65SYrFP8rUv8NYxeurznY/XS4/r8wuCBAp/a6XGtfmFwjtRUItVsqcclP2FwjtLIURq5RY0cqaFEqtlZj+v5C4NzlAaOUm5NOUJLdFoN9qiM8OzTmi1HFEvNoNAywD0DPLXjo/r6otAUjaFEpNWSj0qlo9AUkZEiMlIrGSkqU4lKqzMf1eAXhaaITBSRNbWUNUVlXaLSatBHFRfAbsGozZiKgVRDoBUMejpog6D1DNQ8aKOkne5sYkic7myCoDjD4pxh5tEXJe109MWQOB19MVCcX3N2WUffRGX9QeiaYRkskAGW8gBLQoD5NRknsO4hoBjE+S7T72xCkAkW78liEBl5DIMehaxhTtWwPprUONdolcnIJ0rjgwmbSYtymWL469zHC9C6e0woBgyHacdRCUIQepIQKvEGcmOUEKYrY0LD+ifFBj0KP/gEEOjgE2Cg9QzUlmaQtMEngJAYfAIMFGdYnDPM3nkgaYNPACEx+AQQKM6vObtMHUHlIkEuRHRP1MxXYckN8HYIsMgEmLGTKgNZFVAM4nw7Gs4DApngfTCpXIyqBO+CwXlAIGuYUzWsuCbTQOVl0S0z6Xsm2Vrj1yQx0JO+B0HrGait75n+rBgSJ30PguIMi3OG2fqeSX9iSJz0PQaK82vOLlPfU+lPELpmWAYLZIClPMCSEGB+TWqcaNgKYRDnu0xX4xBkgsV7UuNEphHDoEcha5hTNayPJjVOZRphvXwijendWnPXCVHwUTPBX+c+XoBW/TuIIzWDw7jjQOhRkkHoUUJQ6BImloQwLRxrJi5c4zfJMNDBJ8BvktXMTTKUtMEngJAYfAIMFGdYnDPM3nlMXBhDYvAJ4NtgGOScXaaOoOLCIBciuidq5quw5AZ4OwRYZALM2EmVEQFkCIM4346G8wBdqIL3waRyiQAyhkGPQtYwp2pYcU2mgQogz3hg1B7VaBV/4sADBT7WHsHgHQfOkZpKpFq1R+jHI0dp5CiNHKWRW9TIkRpKpFq1R/DHOUoDR2ngKOXWlCO0RKdRewRTSXy6Zr7cMsA9AzyWFKHQkYKmaAwlIo2SIvDTkSIyUkRGishIrWSkqEwlKo2SIvTTFJGJIjJRRNbUUtYUlXWJSqOkCP10iUjrlAmldia3g2sgDIMHCnxyO7gGwjA4R2riSE0cqZEjNXKkRo7UyJEaOVIDR2rgSA0cqYEjNXCkcpRyhJLSy5FZgNaP61DKjMGhZYB7BnjyUagmwig0RWOgiAwUlZGiMlJURorKSFEZKSoTRWWiqEwUlYmiMlFU1hSVNUVlTVFZU1TWJSpfvt49PKwe7r4+zxXaKZq0tiFRuPMHv73fbx82Lx/++iuf8PDvb++H79w/Pd7vNvvNu8OXC4CHL4GAPQrYoYAtCtiggDUKmFDAiAIGFBBdmYSuTEJXJqErk9CVSejKJHRlEroyCV2ZhK5MQlcmoisT0ZWJ6MpEdGUiujIRXZmIrkxEVyaiKxPRlQnoygR0ZQK6MgFdmYCuTEBXJqArE9CVCejKBHRl0IVB1wVdFnRVYBODKhNUtFFGY3DgcoBfA5EDaQVZB64EuLCgnIBiB0oxuivQbYbuW1QRoJoFVVWo7kOVKaqdUXWP2g/UIKEWDjWZqA1GjTrqJaBuB+rHoI4R6mmhrhvqC6LOJeqtou4v6k+jDjrq8aNHCPRMgh5y0FMTegxDz3XoQRE9eaJHWfRsDBy26zV4fB8A7QU5wYGfQ/DrUfx6EL8ew68H8etQ/DoQvw7DrwPxa1H8WhC/FsOvBfFrUPwaEL8Gw68B8atR/GoQvxrDrwbxSyh+CcQvYfglEL+I4hdB/CKGXwTxCyh+AcQvYPgFED80vFqDx7YaO7bVoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP1IqP1IoP1ImP1IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP2IqP2IoP2ImP2IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP0IqP0IoP0ImP0IoP1AzQdoPTDjAdoO1HSAlgMzHKDdQM0GaDUwowHaDNRkgBYDMxigvUDNBWgtMGOB5jpA3NBMB4QbGqdCwxhgFAMLYoA+Muoigx4y5iCD+hdVv6D2xZQvhBtoGcCycbBoHCwZBwvGwXJxsFgcLBUHC8XBMnGwSBwsEQcLxMHycLA4HCwNBwvDwbJwsCgcLAkHC8LBcnCwGBwsBQcLwcEycLAIHCwBBwvAwfJvsPgbLP0GC7/Bsm+w6Bss+QYLvsFyb7DYGyz1Bgu9sTJvrMgbK/HGCryx8m6suBsr7cYKu7HzFXS6gkq6oYJuqJwbKuaGSrmhQm6ojBsq4oZKuLECbqx8Gyvexkq3scJtrGwbK9rGSraxgm2sXBsr1sZKtbFCbaxMGyvSxkq0sQJtrDwbK87GSrOxwmysLBsrysZKsrGCbKwcGyvGxkqxsUJsrAwbK8LGSrCxAmys/BorvsZKr7HCa6zsGiu6xkKO4IkcO5BD53HsOA5GMbAgBhTDwEIYYOQHC/xAcR8s7ANGy7BgGRQrw0JlYIQRCzBC8UUsvAhGZbGgLBSTxUKyYCQbC2RDcWwsjA1G/7HgPxT7x0L/YMYES5hA+RIsXYJmmsBEE5ZnAtNMaJYOTNJhOTowRYdmOMEEJ5bfBNObaHYYTA5juWEwNYxm1sHEOpZXB9PqaFUCWJSA1SSAJQloRQdY0IHVc4DlHGg1DFgMg9XCgKUwaCURWEiE1RGBZURoFRZYhIXVYIElWGgFG1jAhtWvgeVraPUfWPyH1f6BpX9o5SRYOInVTYJlk2jVKVh0itWcgiWnaMUuWLCL1euC5bpotTNY7IzVOoOlzmilOFgojtWJg2XiaJU9WGSP1diDJfboDQXwggJ2PwG8noDe7gAvd2B3O8CrHejNGPBiDHYvBrwWg94qAi8VYXeKwCtF6I0s8EIWdh8LvI6F3mYDL7Nhd9nAq2zoTUDwIiB2DxC8BojeogQvUWJ3KMErlOgNVPACKnb/FLx+it7eBS/vYnd3wau76M1n8OIzdu8ZvPaM3hoHL41jd8bBK+PojXvwwj123x68bo92KwCbFWC9CsBWBWinB7DRA9bnAWzzgHbJAJtkYD0ywBYZaIcRsMEI1l8EbC+CdmcBm7NgvVnA1ixoZxuwsQ3W1wZsa4N2BQKbAmE9gcCWQGhHJbChEtZPCWynhHajAptRYb2owFZUaKNrtM812uYa7XKNNrlGe1yjLa7RDtdog2u0vzXa3hrtbo02t0Z7W6OtrdHO1mhja7SvNdrWGu1qjTa1Rntaoy2t0Y7WaENrtJ812s4a7WaNNrNGe1mjrazRTtZoI2u0jzXaxhrtYo02sUZ7WKMtrNEO1mgDa7B/Ndi+GuxeDTavBntXg62rwc7VYONqsG811rYa61qNNa3GelZjLauxjtVYw2qsXzXWrhrrVg02qwZ7VYOtqsFO1WCjarBPNdimGuxSDTapBntUgy2qwQ7VYINqsD812J4a7E4NNqcGe1ODranBztRgY2qwLzXYlhrsSg02pQZ7UoMtqcGO1GBDarAfNdiOGuxGDTajBntRg62owU7UYCNqsA812IZa7EL97f328JfjY1Iv2y+Pdw8f/tr/+XyA2O43X9+N0Jdv5R3gHz9v/vNokskRkR6R6BH1t4nC+pfT77/82y/H97yO7Ng87g/sOL2bNYDsd3ePL89Pu/3q0+Zhnz2NODnjn7e7zf3pvx8kABg6efEQcOOdxY/fRFrnH9p7huaTRoKfPcbPwiwtMUvHrJqDC42X8/41W7JkYToYeoc2bkFp5w/ibR4On9lt71fPTw+b4pDLV/meH7b7/Wb2gN/w7uAVoC0SLS9LGQW2SDh43Hg57F+b5QJR+4em8tDXg+Lffdk9Hf4sDa6nsYMBeXrdP7/u32ETpxxlTGWNswojX/Z39/9YbR9fNrtMRMc5r2iN7w8Wer97evj4afP73R/bp92Hv+63u/vX7f7j4ZfP4+DftruX/cdre/nHdrd/vXs4m8zTj6u7xz/3v28fvxzYcLT9+7vH/eEwWB3+8vX5bnd8+PLDu/9+dA0Ovz4OSBys5r+/C+/+48Nfu83ngwU9GdM/P24/H93O4z/E1vYwNLoZWhCe7yMfnr5sX/YHpXL/++Zlf3AmXl62f2xWz7unP7afs0/F6VMQXwLMlwJbGKOVGHVWf4PYVuAahlJhz2ADCyvcQqgWdkz7t94xhwPHpWRQMkiJ4OEAdDmRrikXKMqCtsPWvPHahEazCIAFc0ypWyHEgEX/0OAYWo8jOUsZJwHYPl6tP2C04s9jtJruameIjzinOQ8BUxNvZ2oiSE1doEbzl+OcLNtuUMCRMTLRq/Ljz6Py28UqHxSFNnKikEmCtBWynWAbBBC48SrHRlONiLGTdB1gBhwKebkVqNxDPWGiepyTgF6DijLl5Py97UV/7czbxK1/ItoqnLZcmKhTWHUz07jGaOs6v94drWQFztQSvvZUWMC72tV8U9r2teLta77MhF1e/zxmuV/Dol9QWX9z2vqlLgco+f2CPcbs5f56h5n+B5iBocxc47XDjdMKu833YpfBnzAQkhQHQdh8/fRwkO/V17v7g5xvVnE2vh+HHwZvj9vk/un5ebNb3d99eti8Yz50WtT2+4cGD/jp8SiWww4FQ8AaQfZABw+rbByRc/COcxCYlPnK2ZfTXu9+bcpj7EW91Zo2Tk7Vyjgbe0y07R3tzgD697M/3SOkmFBNUFvs+u3uYGEkj7PKMGiJgULaTxvYLhknIGrE7Arrwx9pV9paaYjHbPaIj3MRfBN6R8HA1aPAGsDHb4UIg8KdnDkQU/O1oLXTku2Wyz6EdS76WD5QVS/2QEGjKYgWtAlEYEGZgBnPAVN/vlxIVADFFGPNOO1vRcw2m6pQyDqKQfp2hq9NYj0bYWtHT856XAZcJTrSrTlyROYY5EA1o8PEJzGycyPRyRkYcYGYy4OlsdR5cgmdC6itoNyZTUFfmBzINj2gYRZEspf5hWG5XygknUzdJIwDql5c1UsFPgtBQ1O5CGlJwImJnkCln+ib0JyTTLtDS6QslxXGr3Enl4QdafonDkzPzxP6VMAyDRCXnKNXyvzmOAfBC4YJWJrafLhZRwr8IqZqi2qOc0uR2wIJ9tW0G4KHBnrI6TYOsoAEYEpSSauykQJeyZwMkOAz2bZgKdIKzrbxS8IBHvNrly94xjnIV8mkhLA+XtfTaXscaI5P3nr3/rKgZLPY95RKXLGDeYOdJ1trIuEc3bDHaDCOtso4TxyihaW2NI7jWJxhiZ+micM0EXvkSc8oJ8/BDes3LNkRmZhih2mUgcp2N8fxnM93N8H6+ea29Zg7LbMsP9svVoDC7TzQiepu40QJSFjDHLfBVsNiMX5aV3J52BO/IxMV53PjNzRhAkcJ8EUU4FlgLmKO3HKhy1YEzuq4t8vS3ZptEzil48h3aJrJHOfM5zhEfdCg7ly667r2gnEORBcME7CEwhVgtZaXi8uWzV9GJRWKg8Y2mEFI0GoGMMNiB868kTMPDxeNc3Oe4Remhe1ltGNr3uDaAtl1h9ekW3Ko1C8v/JFuFdkD+WjLyTH0TNgq8wFeYigmSdhwnrRWlp/oYVTMsMYdzMtrzrbvt5g3GmtsB1e8WmT4etI9dWvYokzXou2WyzDsJXokQVUv9kBnkNJBYEELMR6mv1GG1NcDjC8GvvAngEW5pioUIm9qwDLQhT+BKfxxNasYlwFXiY6QY44cHqpkGuCg3JrTDLpZy0UnZyAZ8Ax44Y8+TzlWCTNQ27z2wEWFP/iWCOOiOXXTstBjMOvnbffOWZ/taQO10khG/LtioTMbBgyeYIwb8YnHZVwBv20pzTnJtDu0RMpyWWH8Gm/8S9qRpn/iLkx2twD0DNTGQcEluHtgaSakQ2bRdiGNMmfYfO+VOfWx/LLbbB5/GT/64uhjeSpFc62W96LUKmhXpSzFV7hY5tImq7X4IeaI3HuZ0HkH5gsGDsw5576rCM4Y3etcuOboSAlpEgo0AFkqHN6VcovG8Nq1yxXRLqcBIwXLJLlajTIb4OwNSuDibHD3+Y+7x/vNZ08AdlAE0McEcnKug6ZSY4OtA8AGoqtxgTDg2otSWjTQ7fhXSxdv2cW4+aVjeXpzw4Mr1M2Wnr9vp3197VzF3jlOvUyLaILpvo17/cN4x9AOJw1a6wLy6+bz9vWrHjObXx2SsEgzuIenA9W/3x2M1GfxwBrfyzd6hDFrxzSVMo3IrG7GK2At8aUEGN9jfJ8vvtaziaMmwdSIPIwOeaPXV7sWVh4xvwpmz5GUOWyiGmgp5xvNXqJu8Qph0jPfCrY+pIAvaIbOTki9PKIWpouZJROjjmHv705XHim7MF2U0iM1yBER4ZdAb5+NjwyL+4zDLbVCjgVS1gc4sCGsshcvQksniUucCQtwzrvNjmiU1VJGeO5hzG9cG3FT/y3N8UQZlvlnYal/PLpeAhrA8VQYiejLqiQcZKgppBwJ12rUCjGozhaaLAKqEGKFlm9YZ+iDB2VNCg3Ee5H1vM3r50yg9sJttoJ7J2gbwT6gewZq0gp60DdQHV7s48K95t1q1W2UTgWrHNtC3gCdgtguMbTCLlSUTy6MmO7xbptlhrO7hezn6pYI5jjGhYLM4Xk1n34P43YpypIxtLDDfYnpwlp7qi1HhcceqAS+odGpiAWnXMW+UaboDW/vC6XQaEgtgqHytcx7HcdKHojG4+xFW8scBMNn9hw9L7DL5BVfnWwiopLYe2APCNMqn2RnugETtuibLdu3zC5K+CotUl8Nwu6GFdHax7FxU+OwqJY5GRdHIedw8hUGarkQtTGglBZJthFpZHTQlG+9/DSwqDWE/9rKGsVeSTGTF+FPY8C2fHk/CJAtyqKiHWrAmZJzG9Q0hknGkO8moSZ3qJh2dYsNkGGK2wO38Ne3QDzbANaidLwqaxFFprSksM5UDvFd+4aNrXO+U1zsuD7oNKnjuvl9AS/g0HU90n/mKn6HOnIR3UIGC+YukSI6PKRsHnew2IVudmWeObVJ14uKEjgcZtpfhXsTQEy6yCdGBDonl3rnOG+XkFbmrWk3UQlP13JqxlU9dCitR+yA5uJdEX1cVLpzlAU7+cU637a8VDs1lVM2Ox9TlZ0nWej+Wpipt4TGDfvpbofd0My0i7Xmui6zz7MhMNvvyD1Xg5LGO1Dp92LHNV0Da+/ArFkMOtDZ4ehkijzjvKvYO8d5F9+79t6ld6+8c5xz3Z3TOZsLOZF08tIpKk5JcW4E5z5wbldNrwDHnuuRrpRVzqaZE4TcRiucwG9yF223+azfRPu0uTsgNyNpqHI7uAzHuY6wxz+PNnZzwPDr0+fXh80qvXt/f2DJ/jjZmVXP2+fNav+0Grg12ypDzZPglRzcha/b+7uH1fPD3eN8k6UJn0smT8GLh+2X3/erp+3D6n53d/+P42OMM7wPzsfn18OwP7b7P030Z1O3I9IaTDOHEV9krueQtguSsq+XliwtWrLiQtUATAKXPuQL2GpfD6WvF1dGx7KlsGxGaBTLnvp6l389QiNTVRD/88ij4O82v20fN7s/Z+OGbXNd/5jH/I4fOOyQ+83BU7/p3kkU91ObU1mrMr+qBwIrXuiLnxtX6FafG993uNHn4i0/Nir48CYKPgJ64yIrByj+UFb8v2/u/vjzdorfUF7unOg4PtrmYVRAAVBpCIy+EA0A0wNz9aXvGEpQyP4CvOwArNc2TCqKqqGa9C8C65K6Eow4a5erb10hprV3WyOln0PpWl+2Jt8NyOr18eC+3s6KrOqhEg3sNroaFuISXCt/HpgchIfTgYmir3Z78Oqu5/W0Axw8Spw5TY4zGrSu86FYM57BD7mmNVKiF3LRiz9C9AZVcsldoCIqpvkgOeEcqdUbjCcMPlh5HHxdEEmbhpDtN6RqrKFQywixp8iwkgjoGExCpfHILvxlWiaTBIdME0gUh0xANTOki4Xo4VWgQ6Ay1PYNJaVww6DAwMbn18xbCwWFeBj/uN89PXz8tPn97o/t0+7DX2P45ePhl8/j4N+2u5f9x+uwzm8Pr9vPU1zn4fXTYZWPNH87fvFlf3dEqqkOf/n6fLe72x8+/O6/H0NLh18fh8kPpP37u/DuPz78tdt8PpB5CvX8+XH7+eARHc5gqLdbsBDqITjbyaI/WtkwxncyPWD7mpJpFz1ZVHDXmvUXPU7w6ynT9HpIiVMVqbhmuvcrmW/Jy9VXMnVzbsj+7HGL3+RAPoQLjh3b2M8BFq1uRlwBV7ZDgC6+ZPmS7UQX2794cn+F+DlA9vgBAtkmn9F5hXMUfRfdKceCKntPaU63ElLyiJzsjerSE9dzxDQjOjmrXflU9+numFL/803CKqtYkgRo9WLQVg8Y2bvObKOv0rtubY+DXZmqyZP3zTwOFriFHAkcPS6noUJvO1UmQ0Ew4s1kUu03q6pDYKTQIU6JD3t1g7itQmFHg2vWz1UHAN2BimZY07a8pi+vD7+97m55ck+IqgRgMoMtxuZvvZC1towaq1tNox/gT9VZn+787Fb2gapqzHEutbz2q8ZQaToKGOnYZAWNSr0zLvDWqFEIOpO0psNRU2z2QIFSTYBDQfTjTSVYjXcU9o8edh8NbHu73Lt+jDi7Ekz8Rv9i8VyiJ8QkkRCP9joGLYVBwUOwj/YGBpk9A4ILgnQDR3tB11nZ/Fmf9B+ezUf5k1pNtdppL/NkNR7mHQUveK6rEWzom+e6WgSowc/c7SQ6fH+gcTmkqmspKzAOg285FNxD+OGFMQ4gkofMLFSlATEEslx+GkZ2rgw5lrfPgGkhjJtUlk3RCV2+43rOoRJQMwdC4hx1eUffIs5Rxq+F3OYpLiFc+wNGuq79VAWhooa6bqT1boRDQS2j4YheYzAyq6CbkEiGULj6AyIZwgIBIwWp0CIZt1ERIQEqImRKFAhVoPd4+vm39Y7Kc1TFyEzSRFCP6dgsqUo60/ggscbxditc29q9ntNrxzsEzf5D4h282nbrwIIGZBqUet4BCwUzwcQ6eB00hg48VLqtYfBa4BFZgUogziFYh1vFOYrRDXX3hdZWN7Gob4ow4DaOBfX4Qy95GAQDjMt9Pr3S1/haZodEGNACJXUnS5W0Ol9StshAWED/YpHTRrhA0GtidYJ1neasZ98uuiDcy3j76IJ6rWYCwl7YnM75wp0ZpFDX81rrODRROLp6o0zxAaQfOVKoizZ/SoWTA1WoK5GLBxuiYJduJJ9AaIV/wnkaKQiVHGzQ98QIVIPedWyYLRSDl9gYFgj2aJ2TUD2DHP8FLmPFDK6Jw9q9LcK6sJGp4IHAZ+AwLahHYKQiyFYFAP4IyZm8cvy0sCGKm0ZESF00NYDSaZpoqBo4uMh398fK2TfQQ+2ckUBlWDcfoxKYbAIXFi4XwhZ1SZvNYBpmhSvgg0XfwwhQCCJjl01gqrd3Kl5VHQBHaYcOCgWNiyZI1m59W9i4cHeF4J41qGbNPorz2jZEr7INmYpQKgTSDSsEgNv5ulMTMz8fOJ0LiuqGp3P0Pu2Rmcjdh67/9v7qKkSfXYUoHvSBvgIGfykNGgv+PnXJuGOYcrwQcsmV5ngnVedKD1DclzhnVFDAnnoqyr0R6ki2NcwPZvAFCrSzQeYSyB08jjvslpcdHHeB8csO6oXoKZAAAQXMHxs56b4+Pn3gAiesdCK4XrOYTvGhFDzwXXaQEAHOxP4e/ynNuaZVCji7SpSP3Op9+gkoYjZsKgKY3di7VToWvxoMtIKYrgZHbGPEoG0MLBIQltxrgFvnrws7ghoq9EPAgg4+GkPPrEUoKKkWE9CxXqAqe1lLBdS6wh0pWQ6ZDdBqA27camaVbXxtRZpccNSYYFNSPfrZV5BK4Iyr2scKUIKZBZXz92/iDWTCYyfrBQ38Q5L1go7U2wOA6i2TSuBI79Jna782C5WmgaFDvTivfcT2v0QGCtiYVBdU6C0kDG7FAJj5AHlWo/1xNP8SQwN6T6fMpovhA1BJxkJKCbgyoGPQUhgUXHHgygD6dfVgIn4d7T9V0BTElQFB2/6wKwNov6tW04fKIdfRHwDO0q8FS/XmSXq1WcYIxPW4ElpVGCX8F3NgR+VqSRm+qzFVky0Ue3VAxBk4VvsfH04hQ/z2aXbjHsLacN8HxebYYeJpXe0LMp3odemPTeFDVjZeEC37VC00kAGO44JoAOdpodkKchIXtjlytPbsvpCrSSqr7um8990fcmbVBR7ZI4V1UU6+t9k6Yb5ZkQIAh8QXGAvr0mk5i/FJOHFeYW7+cEYXmn8tzJvbFQECg0qGGlBnDQBTWv8SiKU5CTGqgO/N3RAg3iHwTgxaODeQXh8AL2CN+1lepeRVg7niZW4CuFsYOuxLKFgmSB+F6KVRs9xAsIFfxTG+ofSDM0oIYJEc4PVGecDenRwNSN3GpLiqP6I2H+gdqHMkU7J6aT7QhxBpVaiinZBVKvrDeqAAbtWZSnwzjuc6RfMjI5AWJ+zB+Uh+A4+qHr0zG+ai4wEcNhC6NPyQ2uluQJr2jdN01HNW8gsdLYCRFxwGKttdGObuIh4jaDKG+i8AdOAipmxOR8dsodvWj6vgF0RCPPfr23GAQRuOxZyFP7SxodF7rJnRa4cT+BZM40BP57/BO3A921Z5lcFwrPds72Gkv8Ohv8Ghv7/hv6y9obA09kBHs6MxFGH02EuzvYAEGjpXmLmfzaTf7L8ARIp7ChpM7wWg9K/SD9HKShTO8GDLplXJI1KDA47uTnMjKJy4wfa1raLif0QxAa+SvYoq5PqYOLQ7tHGuF5mzviAZ5vmZ103DOHc/Rc9SaNbYLk1447aGpVgBuKfD3BmXggYACDqlZkTtgToic31mBzgEh/lfcL1BpwxYKNsHjYxsxPwAhRmsqPkcUtwEaNTYUTyd/BfscsT1lZEudcbliMSIfJpvIf1iAkVnKq26Hn8x+iwOtxIcrU2Veg1HVwX4TgLSORGBaSAnYIyZuJ+XH8dfIATVWDTO2wj1ksFNRql0k8GOCwhdduCrCK0hZ7FzypkYdUA6FlLP+o7xCaTL2HAVAJTIWIj8oGs8mO7W3xEAb0kaevdUYZ1LIhMmQJvGhTySiyXRQ5eHgO1VDi0vQ6GZjVEKERy7wawUAFs7Dadpoc/VD7rF31KMnatl/So9yoZksuGWhYRzO2Ye59E+hrmGAdL4b2L051vGOniTXYw7Ql2EStFKQDG/RxWGSlkJ83CP8W04X7sb6sEWIQSNC2jNPWBOw9zuyhX3N3EgMssogejt55jdXPAB7GJ7HcO5DrXPikqf09J5Tqd+brjtE6fgk9snM0FHWFX2Qv/Rtyiy1zP0eCe8+bIrRzbHrXTxaIW0n7u4Kw/n3FN5Bd6+kLqbUWUfGH2Ns4YFE9s0AQlwV/uY8dy4ZF6h4Q2cyE5CzPTH1MijS1vQA8gx9TZ7K67tvTXAoK2pYlJ21Q9IoAtCYx9+Hd3WYlC2JXDwFXpIQedtcWNBR2jftgy5xqTO0J5+n2GtqCAgYS4ogbdPmDs6M4ZczUOvATp1gZF+F9a5oCFKSkS/g6+0aJuBN4Quza2VmeWmOsuBXYQqjsK5eyMehm+8zLWyyGb6XHKbfkD6XFhga5igfIBDtktZhlzDMz37HL1Kc+VMpMKFcfZR3cXWEFS+mtgKKtJOo0su4Q95HVAQBjmScBMfL5b0XAmE6uknMPIHFPXrlLQFPV2KM+ggvT1Rb34lzbkq1elTzelgq5xK3NKDADo58wOrnSUWlJhcpH+TVpfTXXgA5qKTAhowkJrQ/LAafaEXhT1QaKMBVNoLLSSQZvt4jrrJiHPVyzcZwlQDfBeT6hmpaIRCajfz43rl82eUlBSJkK/mAxEGqh/fG3XjE2vuDQKaGQHANX9vuMEjoePNPnegwqMAzi6M88jv2cNjRwJ3gMKxKCHXrdg7TkN84o2a9gHdDOAdPPYFAIrxwcZEq/l2B97V48r8o6PfaW7pvosOmvtHVZiy8rfP6NeFpSkFTnQQQAiiDcKISWUjVXL09BCO0nGxEB1RZ59bfStm8i9sXyhoYbMtgffGgUN35zqfuHHgsGwhN4nEjQMHosFrvYPTXxh7C/CW6RQqecNWiNKFA1V1hNbckNHWGJMjpIHMT4ZmMERg1b/ieQM7NoI0R7TDJ1T7RLx/49zWSyCgBYmabwa/joDV/x8fQ7is/+9brP6fa+aI1v8HRnYSs6Rp7uiI9f+OxqNyLckbvkgA9EwEQJi3CBa+RHCBDVL74X2FoFbGmhGChc8GVIZMxM4nE1Lwweh/tb5eYCkCAIBUmJjEIIuJOU5oQ4SUFUjrbccIhBZGSDWCa9KQBWPxrv7rOXM9kcbQy6w2j9/eQIPAZbk24DZ7JCRTusNs25pn+kDAAg2YVl2+jdV79EpPZ+1EqjTcUk+eKGrKxi+XMAAt/G8iBLWlJmvYCvp2Ti9zxjzoOXqUZvoFVWprt80NFaiYrFOfC+9JX7hm9HboF8TATKarkhhae19MludGCXa7M77esC3k31Dr9B18G10U6n7Z3GcRDmT2kQ1Uf1Fxj4UTlD53wXNTj1jCzjHq+IVH2X9Qr3ymU77HfNVVRqJ5HEKj+yekLp+8eH7Y7gtnivrXoyRS76C7U7loGiNlfLEzodnrHs+v+c3d9YnUY9hhv3t6+Php8/vdH9un3Ye/7re7+9ft/uPhl88j/G/b3cv+48v2y+Pdw4e/Bt39x3a3f717ePd+nOj04+ru8c/970fxO335ZX93kK5QVYe/fH2+293tDxO8++/vvmHhjr7PX8SUK7NrSoBiky9CCYR6fHFIG8NvqKHye1LtqFjGivjyyUC5KqZ7Zpa1PIuwF08HkfircFNLn61VZlOvOMP01F6uNfJA3WHPhJuK6ARb2EMiGNAT8tgTym59/V0TVkgBvRzUzN2Xw9C7x3/MHLLDoBpUPvW18pE06aif/9Z6tCb0aCDWIMhrUD66mblO7q3bswkDWBCvI+f19TPD6+OLufQFb1CuFUdBu9/NPNbm0EZrfIrZvizr7NMRzaWyQ/BREAgnUNPZ4BVudKbE2x9G+1pGpHBMBeU0ZIKK3U6euxzqHJkvgOjtmPE0Yk+szxpkqWnWzG+4SLO+fjoIxmnI7Y5VBNdStsfNqmymKFtVy6d0EFOSTTyTlkZpuGX7l1NesMlk5e9rnbv1lYxaKbP1nDw+fjeciIU+BC/7zeZhddgpL9nU3TAKo6qlqKoHz8z3AHkzDM5Zwl8IF9qkqMys5+PAivmYjft7C2rfXHvEsqAkQlD6mhKUAIq/bExWsWfQ60nHcHUyJOgpI6yv/dK+u/ZL22hUeAxhCrVFygBSY+rzFJmofyL1ub5WNCZtP5NpWPfM3jh5SUU9yFVlxCTtMaaf4skrFO7RyqojMkf0dcCXvvJYvBgITbG+3qp2SMzVkmsYClk7NdPfz78CVghk3hU4LvM4/t7Gbl3VoLELhFe0rhLzVXAfrCtcBYY2W/e/+To0xK6qr02hDVzDyjWITianXEPuZXqfi6hBSvtrrkiRzEzr/82NYyGqmQcUVceIkoBs47jWP1ODDuXd/Vwe2jpWmNIj3PJ1DPg3UTUaelSNdj/XVlmHNUpZ5pcQBVAufyZkbqJjR2QuEdaVJDtLYndeguw6iXIYIiHcCRTuEAnpThUqAyE7R/zNfYQIi3fIjNzfnTTmBDi6NEttVMgCWh4XJTS4MxZmAYpCHmOdQ6j5CGGDmrkJppGt0gZMHKecu4QcAUq1ogTVizxUY/dUiDap2QAw7HSK2rc/kUltArExh6h9u9jrP31GeGpLbhXanwbhiQGpF7meGGhBxtXXh1X0QhL8EmuTcZoYKPDWDP8LHa3N8H/7E5mipsO8kiH8j4pDw4tDuhYHWfDjNSCSWrjBHg3WHi2VY+b77m8tDFxp5mz/ShkK5FWLGK8BzXB/9/Mwdd1VjE2JKRM0z8W6JOtLM6AuPG5oBNTB187W7bVqGGRCzbwFXDhCP8ef6RzkfpbX82hPm2H6NxfjUuWkWp/agbs/tDNAPX6OClrHxpjxZ9FC7lV47oHWhAcUvB5QT0zSX3NBPZhcg2qfzawgGkXKtghfFNP9ZMZilvzUKkmzraVsxh7cYT2xv2bOghlIdAhvyMwRpFwzXY4HDgXbYTI4RJDDIeIsPohRwHmcnVjsU2RIjNob9dWyS6aZe/M3N3vrDl+BBteJowUBCptO7o/jxeKo7Dl5ttPpqkfwOp2slXd21dpU11G+lye04yuuga13YCcPRGom156+FqcFWXtjJIKE2XcehTea9YHROzB5B2a7COycmmH693YgQhUb+rjZl3Q6FR45sWnt2Cmn+YWB5kFV2GHGQbWHOVnhB4gTPi4GBB8DQqYNmUuea8/ATI0yR2RBMZlH5P7n8RVClWriyNnK62CcgGEJTkzxYueVi/raZbCB19xBe7l6CplpBGnrCdJ6hrJMtD10ZRIE6MCekZ/62pYY5+yfykzW+FbNFCam2rP9RBTdCGrWOPM6XNWQ2S28xxEreiEystfA5a9B8e1U2jOnhbihKoyzjr4/lTlrIuFKhuww4KovqZ1rkvmR4LgG1/CjFSHORgFtazdAo43tTge24OhMNo4UeldLXTvWv7rnGzpcuZ9V8I1cZyO5vhods3KBWudArXPPfLqffbm8mv61DPlS4n3WpYUELulHgglDIzqH0ISGmaWZs1oP3gWpdZoehZN4bYTkXHtm0D9w660TNNVSK3jefh1GKr1I9OKEgHY8GaA9z8YM+s39yM31SOYc7sJ2GOl6hZeSj0DJR898umfWVWOUPZDpl+OaJRCzRBbWIR8hF2b8MODZBMOEnpdOc54T7h4qbKFhmF4RwOoWtgcyfTs8s6S59gSsAXptbYBGr/MNFsDxpO04Uri8AmhJz5zDSNecFA8DxcOe+XRPfHnYvg5GDQMdfAoNQUtoKEk78RTM3o7QVPVycJcvB3ddmmvOYaRrToorgeJ4TwODeAzC6C1O8fApNAQtoaEk7cRTNGI9QMMRjWb4tleKPanpQRbdSSffnBRXAsXxnvl0T3x5EEYHo4aBDj6FhkGvmRGut40+NeZTmnnLI1M2En7GZOjgXC1pVxWv4yrlIg69M3RUCNBH5qSDTDsdf6MQNtBH5tiicwb/Qp22NsRq60P6iuuHt8q7UCEnHWTaWlkng9TeTWlOJ3gnMl+kq3EFaP0ZvwKEeIBxC9ewrEu3sXuJg7b9Dcwb9xKHXLCYHqH4IlfEGqoaQh3oVUpRExtV3LyqN+WGDpvRbSFP79a51NYwpaOR7Dgyuc250v/fGOnpyj5YYM+cw0jXnDmdIIdSTidqgXvvnKdrjRqHiv4F2i4+5lxE8cpXjvJGPCs3jPRIy2BpXO8G5NiCdIYcW/0B94pZuVygVLFYM9/OScZc1JzJGKsqpyh5BckrRm5ZMEVBd1E8JHoV6/AsiYPG6N1iYZ2hqvk1AziaKPDqN7d6i15bGL3m122V3IYw5T4GiGru1oADO6dKcrtDbg9scPocNA4DPTZqwNXRSmf03IRmOlAIp3E+W9yMg+0KNsANdHQqGp05D9NiPifl+vjYPeg9iGNQJEZaOMCP8rA75KTD17R6N77WSpUcH7WJVlWAUN0M12IPbF68O1Se296DD/XGu1jubRU1JWYbQMeMKVe44Iytd8bemLFkL0E5dZuPwWLNkPr2fnt/qnT+67qI+vgwyVRBffVO52HAQaL+8/ieqDJk9u7MNCiqg2ZZkmnQ0Xk8I/LLv/1y/PYv/9f/+B9HOT2VZG83R/yRhNRxWVbRVYXQ+YeGfCisTE+6ZT7YcQN2raFv4FAgPXpbOPtY2GocVEc27pG1e2Ryj4zukaqMaSML8gUmOQsMsgrmQ/9rYUGw+WKBrUzB/Opa9XH73jV0mNVVU9ppQ6XLCGFkLlqdNiomtP5p7ebE2s0I/8L5md/kc1LKBi4OdM9TayMf7j4VtQr8+K72cctaFcbyxqr0FUKXOQaGXFiYGYWB5X068Df96tDVySvTqkhnAtPM5UVf9ZI0OtyDgqLFuNJ6B7pVhFsrhQKvqJGegvDGPbJghayHrEP3a0HYwPlabT7jIFtaTIfqcRu5UDBy837Uyl2uOOkuzBcqKCzQi1I1FuB/OVgT3XprNQ713CKKg6JFLxTG6J8paEPVVi1hxNFzLBuXMi60tpOf6ro11Wv4Iy7ugqECwpaL0shc4xpn+EVzVOYOgRlHurjGuYEheMDR3bZ2i9zazQC/mPulPHOlAOgLHgpSUBAC8I4Xs0gFrYbNUs2JLpNR5VSAlsi7HAUVjw0sbPXWoC5payQ3inExxC2f6pb459PT581jsVvJ2Wx9utudbszbqisUVu07dXcvL5uvnx62j19WX+/uf98+blax6AAf5tqNb5Sf54Gmr+dCqQFn21YDbjXC7O6o7XwugBd9xovd0+Pqy+Zut/rn75vNA8aSNUNlTwDHzHbYNI1jFtIUM90DOKYeTVLQCDW+6KNfC193GZ1TtN/FAH75dZv/ozt5vO4yLcDdw/aw/1/uD/++36ye7+7/gSet++lj5nHM+lIHfwlxVT2dWkZ/UxgKsHZQPrdibZszpBUcWKATfSYq1vRBnp5c2fOOdyNfkcivbyNLa7colYQZRR7fUkKCYArNCIjb/G4ppdVQOquZf9tGp54PUd3lquyKCeFyCpNMDE23mgK+5KHmSldOF4SyRVGTYNv5FmRP86HRheMlqMMEqKD+Cb/cwyu3rSpp5+8jrUaBV5KG9fXH5aawmIyv5bqvPA719CmP9dKh6MX00VvrOW9tWOj2u0tx6Uys0ndj8PB0+Mzvdwfb8lmMKq1HhIu0al2WRQY9PH3ZvuwPcnM6Pq52m//5evgz/0g3fWSE+Pjb9uEAdizoGeuMxtqfwWO62+23v93dH1h4fzCTpw6OeEPvEePiMw1sUWaHf0pr4TzjX0utWpvj0DIyNLqlgAzJoYDJH+yGWEDCopghJx3SUpPHJz3DJT6jVDm2WD/nziCaKyrusOrmM2vA/RxYpKidQwLOFQd9ob4kHwl5wapmpg6M4gwos7LFt/0bR+uSqMm0+B7tHDXBqwE4nQla+RQwVmB5KFxrFNp+kKcDh6oogJEClUA991wzq4fUwvNBDqNu6OMIP2fdyPgzufBOM1AGCmf76OhzrBpG2y1dExq35PlwJQdlH4B7fry0PwTGoYHUSynK6qrROCqsM5NbaRYcdNS3r+eaEQFvzGjBiJJQngUEpdZzvHSv21Xt2+VDqZT9kqGuxmmdNhRgaosytc3JQ5vHhrmEYKHQVrg9I2EY3RhmvgAAbQt87cUnMOhkzFUiWZ49UeAq47cJkqnEpSSOKTEkD13uPefe59/F2jlSmFPLC0vMNAxnYe0kRw3yV6SLcJoHUdBsaL30WavZjpqWe5aYpyTwz1JFJPDXGqGAkXcIVMkWc+4BerlhBE+oeyCUG8OZ3+SJ9iU7UqP7Gm6sx/HwzZIun47zFFy3ZvqlQwWEdV9DuOYJOzWcKIQaFQXE2eGuCl3uJt278fMkzvGC08AJdtzWBTlxpbALu8oZUC7J35IvIcQpUd3zJjzZByLQKewgNLeMymNDKfeGlynUHNSauEtxUwaTTLZtJxttAo6RWC2yHJm1s11xz60GXnsXzLiZW2bWrcO4W9g1zLnAe3nJ1Zo+LBwpIKueC4QFgoOpkp2MRJ1RbpOAsKm58rr3AMxQE9KYuxq2py/d+wIDsDVqjotu29LwZwLqSIGTh0cXFTQLd2aBrywN4HEuB4Us3IgUVZE7nTqqW9YYCGXS+Adc9226fCh3HHE/07doqIAwXhsgXD/APyBcecDPKYDwIAcPdEuM4MiWGLU6BFrNQTVHeO3Yav2cWdcTQPP2DJLqjjCqDqjrTCT0xUJL3nNWoyZWHaCPWfHAwcYhkxnbgfVeaWLXMTMGgr8LcLpjqHQrRFUdAp6n59nL4OFsrlRgT1XSlJmnWpiV2peBWrOzAWR8sEqlKIB1AIVVh27JljwFzLM+u0lsYVqMcy4B00hvDZu9AijtNrmJ8OWhE7hdVT8QITx0rvpwjpffJz/Mf33H9dxRv2ykhK7qczle6p7cHvOewOj0+Keg7n7AItdgElc7cc+YYwKbuFROOc7Zz5h5/vKEwC0lFuUgyrtL1D0C2Gb3SAFXLRDlEbuO2DFn/QZFjahlLWgxKm/rubJRkFdmTmqBYr5A1EWNHjR1/qsg3dyPthPEHXV8HCI13cL0sEAgmh2GH7fssskoS+56frNfNlLAVjXkQgErHDsBlhPNMcNLE3hoe/sMGtRbzzsOp/bQELC5GILkcZcX8q7ybbQkiQt9yAzyeDaatlusrHE3TxqDuV9U6pqZ0NnAlOjMFbYQheowb9Ur9HP5NT1W5oKNiXu1xBrMzZfp1nrv2lA6ObfgVraXkZoOYmu+HQn/2sElzXLZTrLn9eZAr8sy25CZBjTaJtnWiFVcCvjaDj4jVJTpnpwqOkoncSKYnMjFi3HxKSmJuZQwvTXnUmJj5/EUB1+/AS3TAI3coBwwah0HgvqGmVuh7hce77/m4r9v4r/k4h8pYAunXIVabnh8u/DUAcgMcChAd8EAjeyCQdVDkBW/X/oZ6VzmdT2b0PTJBSExs7sI+e0M0PaPKeDGdI2zuiQpP8vcHGJgGxuBuYiYzqb3YpF6403IzLYKixuQwx1BoFfjafrOdhPdN5NIlmaKA/URJU0IJ2RRmWXWajJstJ8nUQMmYwcnxP1sC7lmcb5mgCvF3fRBL/oIjdJVV8fRXH10WPwXZvyXXvwjPbdlhKJSwElA13eAttd30AsefOY62AYG7xE4kGFYgzGmcopwzk7CTPKl+wKvlMiLgybvBtG2h23gPE91BJqLbvmfVBUUKXF/366fzxfH0s8xJ5kJWbiLwf214GSND2jUhJIq+PKqp4p8YW7SjfJYDEblJhcUivtrhdwjBWxVM7y4rvt2uUmytJuCNt8gmF7FWJabzKqBgduqF0PK3XqnRl3l1UUSkdeC4c0f0q8DrKad4EoDogvcMOqxoVcJ1Ke1Ij1S/Tp9+ZPw7qgidsgT9CreuaWwq9ucriOl/nLzZ176pO98QmlAxzUmr5nQjARQZecdKMwI18Pf7uKm6UlqNsD2VLMbRPY9TMx3dmNkfz+XCeYtlrG+344ogak5rmyeTxw6NlvBUWYcd+oKJ3Kh6YRPxTve8XYpwIVXNx3FoINT7a75d7vU7oECqmjyTup0Dw4XbnuiTj0gKrbLTfnniOCflDMEWF0DWgk7bjP11wzyvE20UoTZyvwhDGiv4UyHmIE1r2Ui12hrfNLAgYLXMcEvRp8KiPLyaum+SmFtg3G2w2lzqjdFuZmeoHecgCboQEraDMneRUL6OlzphQ7byaFl1dPJIZMozvwxId+G7o7k3B7Jactjfb0LbGAwuefI7blTe+6Qojs95x7oiCe6s3rU87JgTs+b0mOCSVhCz5nPI4I4UDbPmcxz5vLoeAydyXMm8px5PG/kxDuO75JFMdC7X0dlhMOasfdcS0H5O2/6zpu9c8cAqIIUsC+90CgOzNxRZUND/KBZlrdz43saDVeR9vOpGHvnqvXtvDN28oyahRXaxIFJNm7hQ40tvG2xwX6xjh54w/ezSk8zV4eKVENs4IbFBNvwtcyZ8hmcwaHCeRFwVgSEsGqBXkg42tG3tTN5RFwYdJlYSekQfmaqCHeJnEW/3somb8kvX9ckLAgYO5B0H517YtZ6rqgV982hL0NHbPjueseD8QeJa9hNMkGCFUfQq0MiYQdyp4vwHN3PFsAvhx6B4Stkjhtk/e2yRwvvjwkvPtrenavnQ+cd2M8pZWZceHVMeMQMHb7w4hggKrY/R3WegG+NMfebGFizSwDykGeNTxo40OyucTkpQtyCct7Ud9yBsq5AAZztcNqcesK52UdJ940T5gMdG2mTokkR5pISsD1HvYN/k7rpf3JKJIrRpAi6O5JzeySnwTiZfrQbX6yvt4wWYXI0dHT1c+yHxfFZSldLxs47Yy/PqBlUd5dFtLnNCdhum3jauR5kGgKXBkKl9mFCMAViSeUT2oyPuAmke9XQjRudfRudbRu9XWW84/iOjVyLROd+HXUKDmuKZq5siBQH3zbRO5P7wV6gR+1QYOApFxxmoOr8h8kcN5rCwhtNEoFgagR/EaEfkXWWQvqrL/0jqRLfsfZRqJ0EEySkBIR6oQREBWWgyBIt3QuB3hADaswtHKrNM4fMfD+Xj9kBu6fjFpGK4AizPPPFkZ0Vt7KYazez7NFZ98i3ppZWo3jcp6Smg9iaqyjcafI+YeHuWO1+wEKaEUtfcFpRV4p2Zz2vTgzzBcdSLfCO7iC3RbVCYLBCZB6WQnH32/a/RMEYi4JfB/moC1xB9DnRARp+SM3zjlqQGvB4buIIF5rg8e4yVv/jyr6RXUYtNefCB9SkJ2Tg8UKdHexhAjID+H/UI8/422nUy14ccDJdPrTJHPOsFwWbvQVbzq4wD4B5X771PP9lvv6FcLgjCPTqAG0f2+6Pt5WONCPqBUkbF020UK9zUS/TIvt7Un60/yKRzTSZk9ZMTdPA2yx5DcrgIlDdfYNd/jjgI/TGVU24q59un42kzKm74HXBSEetbBB66ALGj2oyF+wazmEze/CZ62AbGKso9SDDsAZjTOUU4ZydhJmkyzolXikRBQdN3k3p3ZKT7DoH8sWYLpHrIDly7/dJLUHnao+g5vKDHXbdcwnrgqZAqJrD0IKWTaj6gw/NC5+0kuZHkyxwPVo/Ius0cu5aw+AuNpRGqoZVqBFEkyzco2aDJ71AAuIylCMlAWG2LWx7TQHTbxgF7IUiiT/CsZtBoyL4x3AvQNRVS7Y/oxGjcwPn0gm5JOh60VLTQWzNVQfh5DhrLD1KbtqPS7If/LtCorYCsx9eZZWpV9v1MS24qvHRgMCy14Xc+zcyurvgqWCumoqdmDu4KBeC4/Wep0cHDrpLLKWRcOxbfdNLjCkz9YYc8HquC6WI8eUClXsdMfl9om4RQbEivhmHb/osk7D8akxZ41wzY5waUwYJ7J0EajtDD8sC9w4m6QcDl4wMo4I3AGNVMVHoGmcJK7MJbFSqDBM8HhSdNSuRrlmReCW7Sh6aeidNvUKTLS1Mfi5myS/rNBKxhjmRaqVMoVHNBpgySyQDbeqqjDjyNIKiPvLFtyHo1j3wetFS00Fs7RS2mlvF2w/Ikz060c9E8yOaaaoHYD7BkJSBqoME0xG9qAXnwEBgVy2Zg2RbReAVB1gaLy+zPWKQCHq88tk4x7XOcZ2DDx3Bh96JV5/Jw3HC7f3T48uHv/562X55vHv48Nf4WP1+8/Xd+xHn+XF7eziy/efpPQZwUDwPivigdB6U1EF3D4dBq8uh54FH+q6+/MuB+8d4weZxf2DL5kg3on2GJuUOB2x6M8Y1tNeGIlHv0wfWQKth+wwv4iE8OTJ2p69+dRUXNH6mDUNdF0Zq/6zJPzQuXeV4m1VeIONhIQnrm1Dg32nqRlNHtm5pax2bqluwp/xbSt0WwOqmm6yuf4epG8x0Hl0j1b1ks6y6BcdU5MsCFv3ylbSN8HXzefv6VTujTTJGMKmdMSl7xoqY/qz8mCzNXO+eGu8vwqJ1YDHZ+Au+nzHa/OfzbvPyoiClPRYQ2uzTkRjoSjQ0OTXnkcY7ZcPY61Ds+FDZ9hF+p2xwAjxE116iczbDNOeMdpDcKYib4xycyteYGMfjGX3TRedypnxJ8HGCFCho5lLXwsOELgXKsFzZtO8Px8f97unh46fN73d/bJ92H/663+7uX7f7j4dfPo9Df9vuXvYf5TNcQUMdj6X7u8f9h6Y6/P+vz3e7u/3h6+/+27tvpx8fBwwOR7h/fxfe/ceHv3abz4fj3Olk9+fH7ecPTfft+M/3bOOX7cv+oHhP7wyudpv/+Xr4c07h5IpCE7Sn749f+vjb9uHwueORcjwfS7QdPv56oCtWh38uEFT4HirfehW02Y0WTDJ2i1etrRyrdrYb0LKtoWUrUyis3QzN54Ph3v6xWT3vnv7Yfi5j2w+vWkLKSLWo5jhX96DTVhfKEmxXZox7tJB0j5PB9XGdgpo+slVGytUEHYVd7cauWcjymsIzufGMLi6mGXaqQESKlOAmpfKO1LaHHaVgmTffH9aDZDDr3FtJ20mArLYMku4dpW0oNS8Fo+beRNoe0lZ3vovMKIRrW/iQqwjctCn0Q0+Bc+Uzj1hVM0PTFldGG40L5PP/hcpBnSGF7SE80K1/p7Bb6MNkq1CvDGuUYfLr4JMOun4c3MqA+aSuoCgFJmsZPlSINCOh7irvlldtulkc7dAVk4VnJSUE5/5y+2VuR0n1NtWBHrsV5ib1efs8jy/2M59cF/mSn11WCNJUHTxVQeCl7bU/5oYF4VgrwnFEcrV/Wg1IFDO8QtxbHTnMKWTj4SRtWvge7PAV4Y6gHasV3j+AIq7XBQXCqtmRU/czG+NhYTEHo8JBXQKCW3ZyqaMoX9+C8Fx+ufDz4vXvFAk048F+sUko83TFoay96ce7pG2RyFQ3kJhcaCFVE5VlNh1jx910jcNgQrKBTtya+rJ8XmyGViEFTJRerPmMaZDY5ebF9ki6GYFoGrb5BqGk2V3T8cT4Pml2OiucZllhieVoTphDYe5RTGlgbeFLnwAXInSacJjuGrYUo6Pi6jbXZCNB36jOBoLR8xxXbMZOodE0hQKilkp2sDT5yOtzLG+TjMoEe3EWKnTXyUMzNycwn0g6JhSzBkpfzdePzzkWpP+GucO3WLO1O3UIM7/Hc4fYCjgyhxFbv3aA9eUMF7SbPG7zaulprB0+4lP2FeN0THW/oBmq54jxZ1WEOeDpD/mUaak4drUEtzp5FS1z5udxuhmLK/BLYAYBY1r0SX66XkjjvOLmbnvNEsmlNLyA6qdwAmIVnRVEFTpB+EG2vFqy5nOlpR5pLI/iLZb+jRyKWLVehwIWAMyZe1t/AtNLY3Wyz5/wy16mLvLyZk9AY4j4C96RHfAXLiubIXrMdRvbnviD8oehzji80JbAjJxHLFYwhLwF7tlRdt6bXa2vkQMi2tf9Enz11Pw2WTUy980ItIMviVk0l8RXsLxHmWOWywM+GDGjFov/Ysg3c+ZAsZD2+vvqtWBslXqfPlO0GRiwBY+jmZzi+X5hGBg9nfGvYF9ADodOZrEZ5/S0ejghJ8Tn0BrcBFqc41Tu1tqusGwrD9RrceHO2rUXtWYZ32sGyeRFMnr4l65RM+26SySCl6TKOVDZJ2YxLsvCHufg2slA75ZSdhQY2EGl1ruzlI2lFuSieHk3k7KXLCfKtUN8aCrbw/DDPL3d5cnsAt3rgXx9bs34ahEXkMSBJvTgkO8HdwkuwjrDscTUU3MNqdfZgj3DFEVs19dCDNQ8ZXBlFa1vFtd6xjl3u2bgLUcbk4AQcKZ5nSmvf6O5h2bxLGliwmzTCMcEWBsUfGKqcLaGJ8pF2Vs2ezEnmuRrb5Hkc9TOnca5b9jB9c8DePPN2USAL00axrnbZA8OO7IoYHIR+ZTpj+LszqTBW0zqEKlOligrZudY52bRMqebrXK1fBNHF7+jbwOna3myQPHyTWExjFHuKtz2mu/nZjxo+vQa3dvk0C6QWJw4S8lziX9UOdAEEbvD/73NkS9l6t6kc1V8moha54ItuGGy9LarXXvTpOhyp4SnSZesuc8hyf0RsQAQSMc2874QYJK0zQt+c4Gz21y634dwDVx7B3byQK0jZefrR1l70WyWDIT7H0TvLMk70C0pwTnQK2FeAWsXjLt8Kklu5OgTRa9AeSXYK1pOyXLLlW+ckzrnbAnf0wP7iBhofT3ACBAK/cnAhC82T66V8ISvH78Wxy9TKejzzaeHczzFyaeRQis62066phyebnKPdCPrGti5cW0XjXQj6xrYuHGtF410I+samNy4RvfI5EU2egcGN65uJRLcSiQ4B7qVj1v3eDWIV2W5FY9b73i1h1dduZWOW+d4NYdXVXk3v3fvu9WUVzP6NYaPQreeceLpHeddCCdbnPLiXXXv/nNuB+fu86oXr/50qkGnTvKaB6/9cxoHp/Xzmne3C+O07l7Hx+2kuT1Rr6fl9UPdzrb7ROE+xLhPau7D4XQCxoGPuSXgWazZd7BnscpX1ZC3scTbTtMbWdNTV1/vHl9/u7vfv+62j1/+z1+OUC/8m1dD2zvXC4Wte2TtHelGtvEOHBq9uKgcWet6o2oY6njSdVwV/0gPuvXCkQ5s3bx1c7bxzth4Zxxlzz/SL3q+V+CHoY7ntccnrzyTdu4523xOpu+Pa87aTWetzbl7+vR0HDg72f063Pttjykouajg69Pnzcen3z4+PW92d6exoZyv/7LbbB6v31hIk8G5eCkD34YeRrhlrPHO2HhnHN/8849csAmFFtPIUEfX3XEXeibt3HPW2kjlyfAjnoSoOYhy87HxzthoM9r5tHbOFrsYpZ9Q3Y3VKKciZ0a6Pd2d41Lhdl3jGYYKnRkB6fZeDhPnBMpHm2nmaX3OJUpHY3FRZvvwdPjK73eH08VntYvpNS4LqtT+2O72r3cP54rE04+r//eyRi1UYJFabpLidUc35B7nyKnzGLsTrLSiNi9DYfitWfn/vQ0rbY3nbd/q2VqNd8ZGm9Hqzno9IVRC3BY2D61nkV6+xh2SUKC7fOfBjHmJfDf7J0p8sAc6HrgfrYVDuIK6yxFj4Q8YBKHjJmAt/CMFdLXbDa02UDUkibqDdH7Xd9oAJ9W2ez1NOTdmgOpOYgmzUbU70Qs/51blHMIE1y1CbgFqvDM22oymVnTwJhS4Cm7q4J4zaFTC7w6Dl2tD9K7iOHKB7lkQMfKEHLuFIwV0qX39/Yl2eGPr78EDDnXhrXWmH884vvpGzOl+5NwtGG6xKLxhzx9msSaZrbYQqHNWSYdgwyMrPB8veGSQa1eVPkRcqhzxEXr4AXrHHaheoHb8ITIhLIdcwB1fwPt+7evhzyP8yRdZ/bY7fAe8ipO/rc2oP4F25DWXtadzoPY6Ladyyy/j2s6bQDH4IMpVwKn9fo1qUiWbxy/Hoa+PW/Aw9C9/BNzJ/zL7QXV3IfdFhiFKb42oKtsL9NzpCM4tNwx0LHbIX6ZnBvoVnD9KKkRm5XZj85cz1ce3hCuUtr5zJyYETgCOWp/rDYtI/+OT03O5fFRmegKXSF+Cb3ZrT3aK8jB/vRYNMQtcy9unTO/qmiDMa67eRA/JHWyveB/qnAuC8zVWCfn565OKV+1+ZdSTF8qfJ6WC8rl7EA0SFz7B6s59+ZW6P5jpfl1tVPg1aBgWvK5ZjRTexiN3Z/oEHgOc6jFGaQ+02QaiAQ1EM0PGtiYUMPVY3CrNvo8aE+WlzpKlUPuCTe8/sieO66TFrU4c3jSbINaKARJ4CD6EAgoFI21zMUYfUmRwnws0eC6qjXORbb88iaqwSO1MehMydg61o762aw/0myx/CFwIu8NGKNzKCLmTeQLt6GlHyI+gwz3vKI5vsxHAkbE3FHCy7YDaaX4VZ18BTUV4E1PhzSF6U4ggq+cLjkbaF6tYT1ItLNpUg1aIZd2JDve2lXXRGxcp0AUZRFfUKWCHC0dWY8wxOtWwwAe13zxATPZOEuP/g6+orGaPK5pKk4G9REIPIAXa5xcYIyjpylbjxLMz7gSpI3pkionzcUFi3efyJDviAh5qhAnk+5j4dOp0codO7h3iK3tvobpoyRab0bpuPe9Oz2cPiWlq252ZP79AdhNn3GsEBO6C8SCbR/0cN6ZNCGEMGA+agb3AAYwERdooCPwRVL7t2wfWtY9v4dk7r0xS5ZrKe21YBIg4DRCgkNVx4z0TYexkEpceTLw2zK1g5k+6KcbMoWBy3U3YMrdJcoeLFsZ8mhtZGW/Ex30ZZZW9BkfHe7zhHibawyQXGFg71GMnBehAT/MW1sAhOc4NQ6xHw7Knv95LPk3qjfD4b3RlD2/R8Z2bvBpEaFi3onRnn4UUgB7bMfM856dQXKEdb5ZXYIIa2bFJyR58IFx5Jq/LFAkxsBc4qGGdhnbguaoguygI5JYittYwUkIgWXe+pUIseYOgobzJpEV0QJ6fNLE3DUpyfXTdEA/YW+bjTXy61ay7WNTdOWB6lQDS1EIhJepn9zfys711pO525eOzBogJEIrQTLWOPiLRXGNiqnUG9gIHMJrT08ZA4I+g6nvTGHSs/96/hf/ukEhlu8sGROAeFs0BRYGQsJngyhbHjfdMhLEzSL/0DOKtYL3Zew2KLXMomFx3E7bMbZL8l8IW3uwKtyrh8V7sWnCxNG9FS0d01uXRplVZExYI7dM5NV7Hgdemxg923nfNGoXwJtU7DvnxbhxmURqWQ/1sU/mUqvfOln83qZ2PweE3aQ9MqFu/1vS3DZAu/urRnQBW7ngaNgxq1Ju1lTihRngAcvrs20y6lsnXBioJSwGj5TuBL9+ReCMpciBXSxTweMRF2zdatMcWllzyiQ79TDIVy6YKmGghH5T3g5L2JkBZ7k8eHuIqe/g/qTan9vbrYHdM39/WZtTP4PWuIKQKYbf8Vte73G2yJB6DASCAUX2GHmMhmJxqYBKlHPAFGmAYKPDXuyQuSYbAzuRybcmqTB5uVtnjTOZK0qnYF4GHWDgIFQpG2uZirFgkN+5zgQbPL4uvd7kaegV6YQdd6ebOpGoJm+XNQi8wWe4EyYKGugNnbtX1x91NWKIdDQ6JD5hjw4U72ra9YXLUaIPuwd5QwI1tB+wMcqBvAoc36T3kESLv/mHWZb7goIq1OgvZmtKbOvZvqkErCFdj0eHe/LK7te0CBeqP57u6CgWwq5DrHY9OQcseKHBCjxLZ5PTZt5kzAJMHDkxylwO+QEOPEvFdgiTeSLrazgGjTNOk2BxHSgsm+7nkE1EiIklrY9IqmKhRIpD3g5r2JlZZ7k++HuRre7rQRS81+YpTOlhIK8C3tipQGwtJRPjeVnUrN9ubg5XezkKvbtmM6jP0GD2PZlvbGTK26r74Mnoni2pEvMoF0b6VZedsA520vV7im/nkgsQpClzgBXjHisjaXvJIUeNufObCBl6eqhb7/W61NmkbSNF7c7nuF8AkJQQe1qNwe9ZWGFTubuCh95bY/HlD5EnWaylB3mMV9jTyIGvR/hiPsQ6zvPzyb78ch50Gld9mLb0Tmxsj8cUrdLh09NpvNg9Dx+CCjj7NemoRXH2fcPtwWH9J6Aqvc8X3w5AjyeNCjSy7u79//fr6cHyV6N3FK0PqDFU+QStO8PL0cLdbPd89Hh/J+UbwLIyz2HwKEpusOdpFq6o+E3carTeabQtCofUD179WentO+BrgUEzPLNEyLkST0eH+wHA9TT8ZsSvJJkiPPOnZ22XoECo6F+cUXm0t3FLUOacZ96KmibXf+rI36bLRXqlUnzcjn2WCntkaBwpJenQXae9IAcP9F7HPL6qom1Cjv/B2Dsa4wnM90MDCQ0bEs1JChg/d/5FXGVR+PHu1q6gyrMcOHNypF3GnsAnoLe/dA/ZTWvZotnJxev+G3qnCyQQdzlaMxjmeEmTFEzS9nkMPoU5Jdc42O0Ja09QUHjSiBdi7tuq7TeBof9htfJ2GFUUhlgqO9l81mR5zuYnTSJEdfCOo+FqcUbfEYXSHo2qW0FZZUmywV5qaJTM31syaxyfUg5jjhLu84L5ZFs8QwhnormuWeokOnuWvPuA+onBlzxomVBWA233+hog9grpKG2cL4XIPNQqVYRo/zR0uyB42eFHAZ9Fgtvhi/lADuDOXBWHYLjHzVxlUp5AiZmyrz46gmpvUGcNAh5ChJH8KgZXZRRGMRYP9787M276D8rcserEweBFv5AvyJ3t+BB8KiIaqB705qv1nna0KoeybJQLRLh68KAzAP8c9teZ2+YLCfXM0FrBk0wnHRXDPLQ0XaoSrwUIvw8Z+16gLKEQbsHmwB5TztyuYB0Xj9SL4YoQuJ9DLmmaJyOabjBy8JDLDPkgw68+M7cdFFtQTFKQjfWAMkf5utL9bX38XM2BaBNys91kgLkus15Kxi8zBouOH/x7srPEsaH1ulDGmTymJHUCRFq8pWxD4c99hq0muNAskp10wtpGFDprX6eYJV7isYVrQy9xbi+J9y0ozuoVOnoNdSldaw5VaFLPDnv3NmlCz09ClI90yD09DVh7l5WS2Q8gNvSTWsiTCt2iHLUqCeUKLyP2gWXtGTDiBD1ee71KdKus5S7HAHoNUu2DVmgVjs26M5LzesWpjPGy0/+7LvAsdGl6obuPh8bUJ/Ag6u3tJ3AInb1FylyKzlUUAO5gsOXwvSe0uk3q1HElx97wlhMEd3NJ6tqE7Li109rz1fyrVsh/mrP4LWszLVg58zIR6ECnOFsLj86kUKsO80ZJcctlNumjwooCJp+YvUEEArWsWOFo4I+uxPTpScVkcrkb3+C8nML6XWEfxmjWszC7JEy0qTl9UJLvssoZ08wX15KjSFq1ZD2qV2hv5gXRNjmMEfbq/pG5BavcSVXDjeKMYjSJD2OAlh3z3YLVdiemW8bVnU2+MBbnKMD/SKj4NX+VWW8PMdZwxE7l7er2Bkbun15tiunIq3Bw9fv6Xf/vlNKZ4Y/TT5u6AY0EyTjeVjvOebkIe/jzM/Lw57KCvT59fHzar9O79/dPr4/4495lNpa/d9GPnuyO3+dr5lhH7NUDFTjdHSP13dcvleXfA4SBOf2z3f474vHsDXDNU5XV08Erm/Jr/GGAjBy5WKhePg9iptYoFIf/vuLuB3Gmw18nBWVX7jjXhBLDZG2KVV+N/twd6jWbPCHc1GyE1moHAqgxntj7l8hrDTbY3f9VBrQYl2jitwK4xc+GRFUL7FmKLNnQcC5tpHd/y2qnVlVPipcD2cbUi/oenL9uX/YHGU1OC1W7zP18Pf5a6ywyon37+KLZieNhuHld3u/326IlM2B71FoFuyNBtDx963O+eHj5+2vx+98f2affhrwnxj4efPo9jf9vuDsgpDtQ1M78dP/uyvzug2FSH///1+W53dMc+vPtvw2+Ph/k/7p8+nud63Oz/+bT7x4f97nVDm9mrc8kV158P0rP9Y7M6SMQf289zfiRClBmxn0u9aFIce1Pe6A4Hzt67TE/Yld09fbrcw9unmrZPQNP793L9O2h56htbHtWOEC26KdgGENU3kS70WZOxZBqSLv8bBvMq+Lf3cYX6KWWEED1Hz0E/zk+iSKsV0oAbADiscR6bCtZvL+nM00DGYWSskb0pkrNpgfJqU2M42CguyVsoH0b3BMb4rGZFxNjevMzGXRD3VqEJUB4JRs34JInFWywl86oKVwQ8L5W9xPWmpkDIMMnqUhhgF9HCoIiufIvDJXO2NB8HX2XliaDD2TI7qroeoLibJpRS+4kpkvZWioQu99R8V+LkRIACjustj1hvEQF0vgoOmiHqYeXxPe6ytnuz+IlQhYmHT/ofGD3p/5cLnlxVzZKxkzd/blza1G+xEb2PIyt2xxOIv/w0ZngAZLRHdh21pIvMilqaw3TK9r2FLCp3TxrOFhTqlGG/T5sX3tERjhB/hD8rlfnxFZOOasY3cnskDPliR6DaEIcFDl03TTF76g5s2Uffr5y/PyhHSG6M5pJHEsV1eRNWNowFWdX0kPkIoBYLqtvJ/CCkdKec6zOLeAbIcsd35AmUWTCRSPbN61qVVJ0QQwXxq1zoBXGU7g8WG9sotEWPJ312jMMSx9hCTVDzNDuwLiBjNPdfxQztdSvKFZ2JHCikrj0UF8govv3S31ZCZ14FVBNZWg5Mw6pD9Yc51KHfn+ZIpzc49r8c9fPTbntSy4/bh6v/5Wr65WB3tl9+P0jK3fZhJlppSs4W41TawMo5MPbegXkLN3Cg2p1OG+hlTvQyJ3iZE7zMCV7mBC9zgpc5Xt54WeMWG984J1ucszmJc/LSuXReUfHKpnczeHefd7t79YtXoXk1qFdle22EapSO4KvBBM9tWfh1KJD4VUiAfdp+0V8OnDezkx+Krb5PBWC2FDEYLwqt2C9DK65BtOKa4ta4jtWvZN5tWpWKWRR+FmaSkcX0JCPHriYx/T8h+Ga6f45xp53tGZf1YiN8P884J1+iky/ByZfg5Etw8iU4+RKcfHGyxckVr7C4hvk44pvLR5iPi74lcwqIUx6d4u/cbc7N7dQlTtXl1JROxey0AyWzg0R1Tl+Sozh/bHf716MJHhE4/bj6vwvR8SNqj79MGBaj4uaRMgH9VY8uzwk2XFpyyN1LSFvY0tetQ+YV3iaRFeJKTVTO/JzaHlpdjMQpqAgKYo9/GIQdP9wSH8Zgxw/XxIcx2PHD2MrHOez96+6PzefSZwsPrTYEPoxwRV247n8/7GhNxOKViIkkpZyiGmcaI5iBEMxLWGs1Unk1DIqF3ilmIO865d8RA6/O9wmOWl2Pg6St8AhiIGKc15VEGImh8JRmgpdQqHiR90j76/jY4vUegVc/0GtRWHxoLfqco+BaTDef6aWI+ZQQiYOcOmYs0EjId+WT755maUm6oflCpUwoy3bIX1SKyLCkDLNzIj27BUPI5mO0hTCfYaRW3bCDO2kDG+Ob4nBIXHMpB9TG+v31PUoRsMBNCKvCdgfQCvkrTZ2tPsPoIrQO7v1X6vV/jdTrf+V+foLczw0TOIFLSVRGqsRS79H6gBVBiHQAAY8fYEwIVrpIHPmvTTRZMgCmiy6SS2ReMhojDVdEOpnpAlMhLCikslSLLxwtDeEPRhLMkpv/yp5d2u+fPHtmHA+uJAw7pWlheeNUIcymO7NCww3dJxUG/VeS4udKUsDHzquuUwEwEmFQ2/W1rgN3QPZOD3Rg7eej8IMZP2yVj8MixWG888qexjPqYHs1nsUbz1L0MrJ60G9d5qgat5N68+mRIiGgBQUYZjyBViJ7RgjiZMjuSmPSmW0FYgsJ0QZznBTO1Ff88iKbuszX0Vl4azvC1pn04kLvCCMO44SwvKgp61+H27BOSXTkK/KnVtBIfkAzTsERbpy3KDdySCDo8Nn+G6wsB7t19PFdqd/TQJgGIj8L5uIiDjp8Fs+hgqDDZ/GcL5PyJXLUTIo6zuVDkYwoSgYSxYhrYKbq+0QwtYQkXZUb6Kfu48kTPXbPYHV8U4XdKT2NZitk/h+xQmb39Pr4uVgeIyu+eMrXJMXLKDvAYwYkSaf9E0arl/3TnPWF0C1RWj3vNGkHl731na6BWqtAO+vpLfH0DPTyxssaL2ecjHGyxTmbkzgnL51L5xUVr2x6N4N393m3e/TKipMv0cmXqPFFe4YljNkTsSRLNJPr7wPPwNhF6NX3oK7Z/2p398/VP5+ePk/9JFJ1cN9HmDjC3D8dTdD336HbyKtgxPK1scVoNvbuTWfw+2633f/+dXNi4tPXT9vH02Mws2h14QuxcM37+7e+X/R+KXf1KrsTm7v73y+7eh3jz0/Pm93dacp3/8e790+v++dX5mPfzrfJB2T+/V149x8f/tptPh/W/uSb/Plx+/lDao+Q//4uln5cH87bQF+mYv5kv9k8DOI5l4fvawohWL+/3+7uX7f749/C5FgNvx1d3S+7zeZRQ1sVTmtXSmRUJBXrK8TrVEa8uea3yEN29vaabX159hplW2VwTeO4NVYkOnI01+ma412Z5jXGcVZo++vJY3nyHmV49DPca3dqYk8ncmniFXeaqsidUCWUPckrUy2HeFNdI14LiLeYUDUk27proSorv1B1KNsav1S1Xo73JMfra46XNVc49ekEON6RHL/W2k1Za4cA2xvLKVGG9l6OB9JYNNe6q5WIrjGWr8nZr9V2U1bbITQoy9cLVKdpqwTdGQplMto8lnqX15Y0is21CmnBNQykgm+vF7EVFvEY7cUWMdQLVtFtHUJNkn2trNoe5C5pB9rZIgp2IIJWKJBGsL3WD52gHyJshoJlTLSxlg0Tt2hP+DeBtBvttd3omjKLEmw3gmU4ZNRJ/dtdb92uFVAHNUckjU/XXE8vyHaC1X+0dLjGdct2yGST54Xu+oDWCx5xAjVKJM1Cdy2vvbCl0xrm+oIDS3SfySNppvprd74X3Pk6glwnzYXE5ho+98QFZjGaZlEqFW1yzQk0kR32UiBHxXzUXn2vesgTgo7XCB5mLChE+KYQlNGzXwjI/bHZ/bn/ffv45TLG1867P3riYdcn6XVZgtO1J6AxsDrzrxhwVXlvjLWDQj/VOqyvQ5Hrso3HVebPyIJrf3ddPpzPjJYmQtEvfcEtfD+hDlhfe0nrspdE2JGfkAXXp5BTsLDEg2vbDXQu5wxO8kts7ZbY9BMu13q2XP9/d1fS28hyg//KwGcL6are8Y65zi3HHAKNrbxnxBtke4Ac/N+jpVuqbpHFj6SMmY7ORVVxLRabCx0SqFrYVjR2ytcqJ6FZHrX35J2Q+5A4S5Abvp3qJRKhnMkc/ZatC1jmWrvMdWZt7xZI+hBm8kd7RzV8Q7ULJELRzIhAv+rrCpa/4HDPe7uDtEDXdC9xU+LTPlINRyn7JRKhmBGBfh/WndJJCkHnJYV4eeNm1zu8+QX6snu+TPg0+zCSJZXgRmZhBe9V/qiyMDLPnNBIvxkaOA8mVAukQowzKuDRoeBwukNtF7Ylep9x5n1G+sXTwDlAYYkPkTjzgUr6IdL02huoU95Agv+dhRXcfvm73cJ4Nns8lrTX0Ja43eh193+0h5LDEv20cvZcKunnUqv96rkwKsy8ICZNtcXvqyj4kVlYIRgtf8FcGPVnDyYmt7rVfgNeGBVmYWUmc7fDY0bRESKO9hhxXKKDPsuSD0yafKf9QL4sKnAyVyl9pFjrfKQoeOjyx4wS3ao5LTcG702gnR20tYMO4TMTbO/etlLGXGAWDoEW29nIzj0gbHDAlo4zVw7Y0nHmygHrUJbg0NFhX9uZGwesR01bpb50Sn3pHHh57EBv3zc6TFcsHPsGx74O+xAdNi06bFp02KXosC3RYdOiwy5Fh12KfttSwzpLtjUD9+ocsL0ddtA7G2xwwEYHbOmArRywZIu2fZqA3DYm6a2CDck+eepPD8/7cdf324fHR7aNzOPL+n636tv373/f/ch+MvlEWLq9fYToshpLMozQpQu6ckEHF3T0QPeurQsPND0LAQTuPMAuOXOJmUvKfELmAfaImEtGPMCeQ3uo5WGTRz48gunRCEkV314fH965suLWwBtaKCoI2GPvREtLY3q6HAw7+m6lQSIa1Hc8QcDe5nh/NJ7LB9+t8+zWeoAbD3DtAa48wKUHOHqAwxV2rj0724DpGUGqm86GcuE4tQfWwyePgHi45BEPj0Z4VLF0nLlywHpsj8fo1Y4zNwIsfc+Ol4PBC7HIr0fbg6SxH7sH9vbPQ19W3omZb307POCfXz8Ow44VfzU/CP1XiHMEOxuB1uJK4Nj4WFaxeXTBTNQOjMkYaHTscofSOzB2gPmz/C05kCLXSzdzTQ6sr2w3dHGNveEvEatxLJXttCM0e1pabE7diplBZVA0yxT1PUErKNS4ONKcT6uLeRn3K13QPskPLlmK14DG+dp7UO0JrnKyXthlvdMiRWszqBtAC3HxLWbjnkvF1BrtUrBKwJORgtIuBNFz3Kg2P2r76BA512XnAfbQ1GOnPBZSyxlJUgHYGX0kH9Iu5I3jrI2SLjWJmybjbH5OLETq8bROlwiKpMcJdd3EowPCAiOdfgYyT9IVcz1jxuZH8+RODLgUgPMGdtg62sxzKUBnDx49WAcX1tGFNTU+OHvYwoHp+CgyYiqNHoYeZKZOSOMriT04oErjC22iSvmn9Goyqtjwfh7PbRLq8cFkY3XtYfW4tU2ox71tWHsMWHAZsFARygi9MW1CLRktSTiDKJyIWgRCLaAHpglpyQIBMzOs3KXNl+6ZaxJpyXjJsz6MKLdaeabnq2NYSgYnBytZOuTJbLuWaFOFybJkbAT9ra6hvpVWe11ulkd5Xbrr8rEcGDu8LZexKpSaK7lm8igMoxTHKwhxVMowLQ2akiybJDVKpkhukEyZnqAMP2/o3LL8vJgdlpN2yUWWl8Ry4C1pmoaT9gwmYy78MaMOq6DFKjiwimasChVWgRqOBrwLbViRg8wQrNL27doHWXG2N6qP0aukwz1jr4B3qAXZRsfCWsvC2s7CdNaBEiudEQlaIxIcRiSYjUigjAj4GLMLZnAJptm2BJ1t0ZoWh2WhRyQiOHUqlCgzJD/nTCiRkxsRjHTWQ2s8HLbDbDooU4A9mMwqVnk0TLBEmctbZyK1FtJxc1sxUlkMarH4ajLhYzUXFMmhR49VEKNDDgV+c4+Ds/Qim7Sq1fQMtiieqVftwowdO7/6sOm/6fCaXzb9l5qElp00vp+vrB/LvDrMc7bARSNcYYM7zMe2wBnpEox0CUa6BCNdjGQxUsUqLCYwG0Vse9kQs1HRxjKjgBjl0Sj+Rm3LKffdx/bn5p5i9H7IeJkClXAArMQ8raRVAx7/qlC/LGkioQmXoWcPqrNH5dmJpkdAYAs8e9J6BQ994WcvdGdPmsjgIasKdxVXaYcbSzr/KmmpQzubQMAKRa/WsCbpSaQJUeGsUalzIBRUDFzhZ1eqc1CpcyAUFAsXOcQqeMRKpfEqhac6tAFRIpgzKn0n1F2KOsEHJzplyVEn8NwqPVaqMaGVcmwJPDehw1BMh5diCDyjRXJICNVx1a2nvPSUxklxbkIbpcAQfGyd5hKrhZCOQo6iz5pGuy2lmJEN4kyW/nj4M9sQfu/pV5Ov1WN7pkvXnklW3zvnq2MDpxmQ0FcQT2+uYUGvlOvLy/VIDrOxp0CZBwZ8aByzoMUsUodDU38DBYxlSSWt1zQeOY7ZAMAeDklqNmGWNMLTCH3SA0/5BmhYA4NkIZvkMig1VNtMcAQwtgCp80INuOg4ZoTtQZKDbXIZSEOkSixWCVgQBAzPJFYQiDRJmjxinHmEEUKyhT1dh0z6RpgU+RGhbW9kuwRIK4JxS2lEtDaENCGqBGATVoQBgZ4bLi3TWiGHT0Los/wKUaiYxyExY6X0RrR2Q3An5BxeiyQSjELeKx45VDJb8B8R59PYVzI6gAfP0rhz4dm5OwGrPCFXa1pXZ1pXa1lXV1ucSK1js84B6+FN44CttELk2Msh7Q5Qx4nPkvf5JZ2td0ufN6t/f2yf13cbtqP1xzPQ05r9TLqzjTscpk2nWjlyc0ovzvVOIwNFx9SJaWussxkXolHH/IlVgyW9HGJSXAcFMbvDBBitgIURsDPCWUljpYyRMEayGHczImekpZF1VlGxyqZVGazaF4x0iVZZMdIl5ugCFDBH7tmiL+Y974ulME7qiX9ZDiNTs6uJB/BEZFN8kqLK80YH1Jmt0no/jkabp9f3/65+rLfbzePNZ3o7MZ+XqKLbDLoittw+aUk1MiSPmU5ZT2eDcsRtdFjRrS0qjC3dV7Cl1ZKr/kwHK1bhdpx3uB84SJKymY64ZI9C9RpZbx/e/3raHPT75enHw/N+BOLMeo7V2ROSEoMZz/91ns34phrOuL77Kx3LuHMNXl432/Vhx5u/3dweP4Aq/usTltEJ0feyefvPm0itbYrJ2radTrjMCVj4Egkje8hw+hRJYyUOaTbYiUlfH4QJc1FPqVwXpORriD/piXQ14qdNnhB6pr2VdPScdISC6NmQNOuicjgpWYsGgFFFNvkIIFnOxDRlztCYqv+Uy+8t5T1JTZtgG3+fobUNrUr7QeafKKPI2jyumbMsKlQhodzzgK3tkf2DRTFsahfj1C7SOl72CmaSpaN6raPqW+V+i6zWIf3bQQEEOjeysgQ0YrTBkjVzICxpsDQtPMiad6BtpO24tLXAYO2qHrQCGVwSSXdhYNQI+JSlLFFN22v8X1i2jh6tXk2fjdlYuqDaAj+vZmKS9iyQh0jVZgMe5aI4v3fcqaBAgXNXqBSXHT62uRQW8TpaxIjEu+62H/eb1cvD4/iyGOJaAY1rlfkDi74w3B2qoTbS9F5mQV8fXjer95fVUeEoULYl1R6UOiaMVScfjXKJ4P9vtf/f6f6/t3Nl8G8UZxsgJoe7XNXrMBjcHc0xgnKHqN4hIoiGElql1LNAmiCQpaQ1UI3VtsECGk7uJtGuvlz1trtO1n/uDMb6+T+kl8a2vs9iICgq4B2ysPyJk8pV9a5RUN/siR1mIwraBPg7ppsgltRVAH2/IYonZxf5evdvPzer1+3Lz4d7+opFy4TKvBBqNiaKONdvb5unH4/70eNP67udy7VZReoCrI7Ox93D6zH4+bi68DQU/9l/wX8mRaRX/NNa/ac5eT0no+KcZ6e3iQLaZASU8TTP2bWipzmJX2u9TKFuAY3joZRsVas71Woy2R3iUlp0YKNCUkEAbUjIRW65TlylYhRZMTpdGL2zXBnnVE/FTmyCHRK7ngPrK5jqPLr5D9owqo2dqGRiqWYWjgm0tR+4s4P2dtDhvcPCIoFoRpoMgWijUCdZx7JUc6KZ5D1rnlw2qgcHrMPShNINa1ILOiEdDi5njdYoZl+SMTz9Is4kDO9crm/HJULSsFTxN3xQnSHamMbcDN84Ok6jkAICK3R5xkO33wSCzTgbmwEr/j+48IkCNNiImOGrpm64d+FRXAN6jgVKhf56wt168Og8wK1W8jqNYDfaf689uDQ+qc4bK41Qu4xNSR4DrFmkjSQIXAn6gMwCmzxk5Lf/dL70+Po/XlL88x+Z7eWp1+eBEYzitTEKBGmRWnlqlj2Qdq5lYX9lfDsHA1s//5oro0MpBsC9hgBDVN9EtgEWrliWdAwsMqjO217poysftj/NYWGnEGdgx+STSVhXExU+TaRGKVwSGwIcYUflqg5bEZvnwvzyYFWkfpqvWUFKt63QhQeaGXaqK8C2QtMj/3Lf2SczN8Fd6BIcXe8c3Rlr4ozUuhJcp5+4SY8HVT4WVThTI3qhJ5zxjJLOUGeMIL0LNS4uHZRUkDhij2FCjbYklnVafF1qL2k98kKyASO6zN4Q0gxMgq5qW6UsmUtna2o9l/S++9KPeJMJnuoXHZdMqLuX4UExUhIfOvXud0517OmivRCDIkd/xeT3moJHaW6x/t3eL4PsXfd5OyF3O801pnmiro1KkoxhVtJFKJa4EZnjnuWekOMOuXas3ECunRG6ckGXAjQSHSHGFUEel/HItCXWBpuvYS/EKUfCUa4n71pxF6QdHKj3O5u5EILBzpWqu4dRXIsoSRYEHAj4W3Ok6Biiqy8XYnaywCrGztk/ScCqJhTRytgSF6kMRAyFE0fO4H06Roi5L82Wj18GfEE/mEh2FwftwIXgB7eGqgTvsL4RqzSTGNswa5Roh7if2iTAB52Six3AVGi5HrrrcT1D1O7yXEA3jtEPiZQVXG4Hjr2M3l5cUVwPjn4mXwUqyQTN87JwRVGQvQ1Q/1utNrZ8Y43DrUTdVjBJa+VpSuY9HHD9pwpG8hkFAaNspRWP6oqWgsGAMl88bcj6HqhemiCqmI7N1nhgUbFEkH9ZyzDqKsk1HTwOL2G+BwrTSy1whQ3u0PLOApcZuiL2t7S2t7R2tzQ2tzT2tjS2tjR2trQ1trT1tbS1tbR1tbQ1tTT2tDS2tDR2tDQ2tGTA+DGk+/a6E7t7HkMqjV7aY5e0uk2ygS/Raehz8aOXzgMVJnfCl6QlE6k1fGryx/NlcvK46h/fbz7/2G7eP7bP3/71x+b5/n8sl1QRrTYHAA==
edit:
accu: 976
solar: 574
want more solar ?? Replace a few accu around roboport
Last edited by mophydeen on Sat Jan 14, 2017 6:00 pm, edited 1 time in total.
Re: 25:21 Solar with Roboport (200:168)
No, it's completely filled. There is no gap at all. I agree about the accumulators, that you need more than perfect ratio for the backup, and about the gaps inbetween as well. I was thinking of making 175:147 build. Also i like to keep backup accumulators separately.
edit:
Your build is very compact and effective, I'm not against that.
I was seeking for perfect ratio. It's pleasing and gives more control over calculations. For example, sometimes you want to know how many accumulators do you need for the certain build. With this separation it's much easier to test and measure things out, If that makes sense.
edit:
Your build is very compact and effective, I'm not against that.
I was seeking for perfect ratio. It's pleasing and gives more control over calculations. For example, sometimes you want to know how many accumulators do you need for the certain build. With this separation it's much easier to test and measure things out, If that makes sense.
- Deadly-Bagel
- Smart Inserter
- Posts: 1498
- Joined: Wed Jul 13, 2016 10:12 am
- Contact:
Re: 25:21 Solar with Roboport (200:168)
I would exclude substations from the "usable area" figure so you could never have 100%. On one hand you could have inefficient tiling where it overlaps, which it looks like is happening at least over the roboport, so why wouldn't that count as wasted space? On the other hand, you could have gaps up to 4 tiles wide but still have the solar panels over them powered, which is more efficient than standard tiling. Anyway there''s two tiles in the bottom right that aren't filled so it's not 100% anyway =P
I can however agree that it could be a bit prettier...
Only thing you achieve by doing this is if you are nearing the maximum power drain and you have an enormous power drain (such as from a massive biter attack) every few days at the most.
I can however agree that it could be a bit prettier...
The "perfect ratio" needs the entire day to charge its accumulators, if you add more accumulators they essentially won't get charged unless there were accumulators the previous night that did not drain. If you're draining more than the solar panels are generating, obviously you're still going to run out of power.mophydeen wrote:btw: perfect ratio doesnt matter. You need more accu than perfect because you'll need the backup when you get attacked (lasers)
Only thing you achieve by doing this is if you are nearing the maximum power drain and you have an enormous power drain (such as from a massive biter attack) every few days at the most.
Money might be the root of all evil, but ignorance is the heart.
Re: 25:21 Solar with Roboport (200:168)
About accumulators.
If you produce more energy than you consume, then accumulators can save up more energy every day. You can actually calculate how much energy do you need to sustain exact rate of turret usage.
About effective area.
Ok, let's make a compromise. Since I was mistaken and I wasn't fully agreed with you either.
Roboport effective area is 2500 tiles.
my build has 200:168
1 panel = 3x3 = 9 tiles
1 accumulator = 2x2 = 4 tiles
200 * 9 + 168 * 4 = 1600 + 672 = 2472 tiles
2500 / 100% = 25 tiles per 1%
2472 / 25 = 98.8% of effective area.
If you produce more energy than you consume, then accumulators can save up more energy every day. You can actually calculate how much energy do you need to sustain exact rate of turret usage.
About effective area.
Ok, let's make a compromise. Since I was mistaken and I wasn't fully agreed with you either.
Roboport effective area is 2500 tiles.
my build has 200:168
1 panel = 3x3 = 9 tiles
1 accumulator = 2x2 = 4 tiles
200 * 9 + 168 * 4 = 1600 + 672 = 2472 tiles
2500 / 100% = 25 tiles per 1%
2472 / 25 = 98.8% of effective area.
Re: 25:21 Solar with Roboport (200:168)
Substations and poles are wasted space. Cant count those definitely want to minimize their usage. I would argue the roboport is even wasted space and can not be counted
Re: 25:21 Solar with Roboport (200:168)
poles are excluded from the last calculationNich wrote:Substations and poles are wasted space. Cant count those definitely want to minimize their usage. I would argue the roboport is even wasted space and can not be counted