Intangir's Vanilla Train Network
I updated my vanilla train network to work with factorio 2.0+ (and space age)The implementation is totally re-rebuilt (and relatively untested so this is alpha) using the new 2.0 features for parameterized BPs, and train interrupts. VERY powerful tools.
You use it essentially the same as before but it has several improvements:
Video explanation: https://youtu.be/CuYDZV47ht8
2.0.4 is a reliable well tested release with no known issues
0eNrtXdtu40iSfZ+vIPSyOz2Uhnnhzdh+GEyhgH6ZaUwVZh+qDYGWaJswRWpIym5vwx+wH7I/tl8yGZm8SRaZkbrYroa6gVKKIoOREXmJOBkR/m1yk27idZFk1fwmzx8mV791V8rJ1bfeV/htGZeLIllXSZ5NriZ/scoqgrb1dB8XsRVZ5TpeJLfJwkqqeGVVz+vYWuSrVb5MqmcrErekebSMl1aeVblVFVGSlbNfsr9n6bMVZ9FNKn4SpDKrkvSSUpC83aSpfMwq4mj5PJvYk2SRZ4q5MrnLohQ4g3cJlh6TotqIK/Yki1ZwQd0x/TJ5Ec9ly/jXyRV5sftP1jcuouIunz5Fd6Jr3b305dqexFmVVEmsXim/PM+zzeomLgSx7k3Qn7v7aio+gIF1XiZKUL9NBCXm25PnydWUhoL6MinihfqRAzc7RCmaaIgnyrBEOcET5WiiDE/URRN18UQ9NFEDRfloogaKCrBEXQNFhWiiBooiDpqqgaYIek65Bqoi6EnlGuiKdLMKiE3rZeX1RPVmjQT8mbtNl9B9hPszK47T6eI+Lqs9hIOWsHjFyz5KLpJSqKXUzaGbTfowFat3XFTilzGuXnU32EfZR1MODSkHuN5zR9v7EEmJ6ChRB9vbHleo3lKCpkwMKVNk711t7xmaR9eQR+Sc4Z6WR+Sc4b6WEnrOcM+wt+g50+MSRxk7Z7RrDw3RPBquGKybQ1GRVPeruEoWU2Fs3iRZVOV73uDyIfriB2FRVkWezm/i++gxEY+LZzq6c/HzUtIq4YfbpCir+SsLch0VoiF6N3XAgixjeAoeFVYymM/EcwTT+TouotqA/rPgMt9U680ealv26Ms+4bJusktTelpW+Xpkk/RRvV4kxWKTVPPaHp9cVcUmttvLrSRGBLFjSvckAF9WICfQ0NXk///3/+CGNL9Lyi0xS0Z2BLf15H8pCQv5Vvlc9n5ydRulpeAU3AR1qRQEN0BAdaF/TaM9IF41WvryDbyZH3s3XE+AnVQJTPwjuLuTvbuR7Uj6GJNVlAlXpGElTVZJVTsfu4qk20bE4l5qc8CUcENDU4J1C+4qXiab1TROxQOFmC/rPI1HjRW+f16zbqWNf10XcVlOy3WaVANbtoaYe8Dm76IWiUMMFhxl30AArUM1JIDggF0bx2Z4gKWBoswdw0HFmW5QcXKAYYBjlppoy9OwyQ7Yd3Fs8gNsBRxl10QAgUYA3gGbOo5N33BQuY52UAWmJH0tydBEmE5NjO0n5jomxHwNsd4MSu50PfVqT5+EL4ByPQndAMT1Tbie1BZeI722v8GHLXwo2Q6gHaq2+LCFTwBt+LCF7S3b8CxVz8KHTdWz8GELmw3a4oPbwniRbWITW+iIQJvZri3k5Yo2fNiiu7LtQztQbXGrLbpJVNuFtnstuG93Z4XS1XBgsuyQwL+2QORX+NGGH7e3fXvyL7FhizumW4ZIfVHcnOXFSm7JW7bIjxOpi/qVtS7spnE1AfNlsm2qWYtoHS2AqD25FUQ3qbAZJtz5Ye3Myx+ouLqM18K6iRvrBRQEVghotgVkheUU3cQpmCib9Tp9tr7UNos9eRSCkOy7Hg15GLrc8zweeh2y6QDPI+Dup1jYL8sW4f2TJe7LhUWc/I+6oMyTNMnuZr9kX++TsgODkzS1IjHNH6MqVnhuUokeZ5aY/HHyGPdRXfHwT9V/lA31ZwB9l6CPVZLFS+vm2brPnyzByrO8vdwhdSAc/Ond4WBPLTKUnBAN9nw0TTQY7IVommgs2Cdommgo2Gdommgk2MfrCA0E+3gdoXFgH68jNAwc4HWER4EDvJLwIHCA1xIeAw7waiIMh5Z4jdE6tHv3IN9RLNnjDSGKg5LR/lXHItUiwON99XV9RYNXHakhnpBolRfoeEI7Sx0pqkV4R3nyHQ1PeEC3IzXEExLB9amOJ7QD1JEa4gmJ2Pq6uYMFbH2uI4R2bnyu6xx6jPu6eYdFZH3dvMMDsr5u3vUQ2AaqG8Vfg62xjoEiS/V7ud0WRldjuQnjOUlbm7+7ugfSsxFmPFyQeOGUvFyL/zWgq2Gv6Yfvte8FDsCWvza4qTMshm4xWcaLZCneNioFaqb5muYO7t7/9u1E6PN1g8DvehB7YeEBYTDTs4hGHvSdjiKmJz+L4KiziMZWY9/rUUQ9R97yLAJoV/PGP24INN91yuofZHzSHmQQeZDhHHyQ4ZocZAS+mR2LR/M7O3YIcTcFGjub2z0Ww+8M2iHmXuOLQvRZuc6LanoTp/tsW6/Pngl4j7Z09aA9mtnQjFlqbgLroXuc2n2iUTsesu9s4SHmXGNJ+sxMkp65QTrErG9uJusRerRJikfmtSI0mzmu6bGXH2hGUA+zx1EMXB1Fk9Oubqn0EGgcM5/src5QYR0uP2Ltex3Yse8N7hFv8FB98Ezk7w/If+8W6PrmzAdmCgiOWM9x8QhueMQrUBrwTA7VOgEhZoBHDCh3+xFGtx49Yv1HDX2PHfEGnOBN4kK6HREj+AN2R9do5Hue+Ru42RtMgkZ8k4XZC0woc6NhecyeilsQfOeIV6DGpW80bY2WZN9ot1WhFTRAMc2MhosJZW4SJxCqoyBGdsIEmE1s4smjePiAMAGiwgSITR3Zhg8IEyAqTIBAaABRYQI7bfUsfEBoAFFhAqKtnpVhAoypNlVtptqsCQeASzbjqi1DBpgKGYCwAleFFcCHChkQbaDpq/vhErQ/eiiBhB96p9n1iXsTTWD9ZxbfiUuP8R+3AwsCFVgQ/DAle2ILRt84Fr0w+L4mkGH/+8ZjGVTgwZ+MghmIJpjhLyrZzFoKC3sRVfHSqvJX6WpdphpIYyiyoBZEmovbc+i6NpRgB80xDyXoIzqvZichdBbUs59DiK9Cy+YNklXOn+4T8X2VPybZXYtM5UUi3lcjQ84Mzk+S7FFcygtBKNuk6Wgkgoal8M1Y6tbInkZecyS2idNw9Drsdxctg7FUQ/PLPiyXi0HR/QzA/bzXPYnkt9+IhO0WD5JuDRwSQONBAltkyzxNltPbTXwIcdISd/fRLvLFQ1wdSpwCyWsY5eXiPl5u0nqYd3qC76z3uxRrvMiLZT3pNCHYT1EfBVbPqOU0ntcLmlhJxI3NEp7JqCQVdiW0/lDCyHAUk3dFvlmLm37659e/WXTmzLj1+qVfJboL41J8Lzbr+tSgllf/0TryqAY/f6zjjkCU05bg9T9iKVt7YtAJeGIOjNXgcZQ99wmMYeH1COzQbDWgt6FsGAXnef/2UO24CN6SiZ0x3ZPFW3KRbRZpHBWnYaPZxeZiz6vgxEm8e57l1RyC7Cb9A4DP8ryrEmt3XO1Osc+nnlBJVibLeN5Olc7YQE8XkG1vunyKU7FqFKbzJQURn0qEn3CsjggaS+Hs6pCb3IA+5Mr36gxHaGCdV2by70sUpDnPCyHZ+Tqq7rVqAQ1EYvq0lmAnxSEO99GUJ7Amw+Gg9w4qfPARlIb7zMertdCtpodnGMvnfuFtuhE7w9bsGVlBrqUfWlZiJQfZZf0YCXlVxUgUuVxPpUmurtL2qrAab5QF1Pu5vShN83f2AnU+UuPH/ASeS2OW6B0lqnWUbtP410TYxrXHJJw6C4Kv93hI5QlcJE2c9vZIPIv3xGYOI1S5Bi77GP4Tdd6QKawH5Z+Mpy0fasY5I8ynbkBDQjmcgna5lDNOfe46YcB94nECp0MXL+tsXtbo3rbPP0JtHxef6eIzXXym9/KZPovt3PpZvGazNpszg7bm1l11LJ5OhZpt/q87sXnU2Y+Ln5+T+mPL5OgYc8450L4MKHSXpes38Gb3vHNwEuD5flePFj9bDoIZQLy4KXPBGo7QzMeHH8xhgHd3dUccTSl2Qx+TaXzMn6PiQXgIVimUKf3LeizVLmdpW2nyIKtJ3gvNyBRkYX8UGm/zdcBx3+nEp+0KfzzVRgM3EQJ8KF/HMA2Yu6dM2fXRNLlhGjCGpmuYBoyh6R2qn4G6VL5R9krTee+c2SvGJtJw6oqe1EAiS4BK4mj0ZlZPaiChYo+lV6dNiPVr1aRTqJwH02wKhBxsHE67jVhQPwDMInB913VZEHJ1DjxzPe47bugENAx4CLmNEsNQd/ssYNxzwjDU5VVsBdnYxK5DbGxXtCBwBWJtVLiMb1Pbt7lscRsqbQwCl11kR14122qRlF1WTVeugvbiPRap2C+sxfMCAMFEXNICk7Com4RuuFpEcrvIsMSKyw9eTFgB2uerHkEG8qiO2YqIj6aJ3opIiKaJ3oooQdNEb0WUoWmiq0dQvI7Q1SMoXkfo6hEUryN09QiG1xG+egTDKwlfPYLhtdSrHrHerNb7ZmWbmfFyRK1gspUxY1QqeIAvf5wvV/d8OP68p3me0vHnfd3zfPz5QPe8N/58aJq+y+iAft6qkqgD/+Hzd7e2oxdNwYox04+1cnyj/N2djVSbv/t+JUFnp60J2iv8sU7W8dhi42nrfeASy7p1R1+5eYAnX0eB6yh4OgqujkKoo+DpKAQ6CqbZw5ToKAYanrolVF9peYAC01Do1fMYoKAbcUw3ZqluhPXKSgxQ0I0P42K3VKftXmkDZPncrbyj8TR5scwW0V08FYvaw9gcDzD5XczD0g36dMfz48cpdSMbx2GApct1HIZYSr4Rh9xB0mWOhkNOTLXMyAAlaqpXSUnfV2aq5UEOualekRy6ploe5NAz1SuSQ98klaquBM3YTioVVFPlTlNZlUP6FG3Sp+qUJrGduzZVFVHhA1Kg3KZqKuOqDalUgiOi2m0FVQaVWHldcdWDSqx+1+aqiitcgpQp2ZbVWsOuzVV1Vyb5VNVdgV1bSFW2SUcHSDT3c7e5BxVQ9xmMvTevzipt6d0MJ8CItlKaXLjrgMqsqk8H1Gf1NLiYIlxXaf3Sll6t7q2f69Iwv2T/DZVYxXC8u4sLa6lujSrrPkpvrfx2Cw8rk2wRA1TWwm0PcbwurTK3IOUwjS1x6V4QOFvF1bNjZmrukZNiZgxNkxlie+SUmFmN7ZFTYmY1tkdOipnhdeQbYnvkpJgZXkehIbZHToqZUbySDDAzvJb0mFljWhDMH3PCImjNHk5OhaAxEy5dLE6IoqZD11qjj5j9oa0BrMwxoRZgkT8UtdCstGLrCxL3Oy4oSZ1De80/fK9ZjVP2SkpSwn0eMI/7wxIhRqfzNDAbBMfUljSDI09RW7KH4iHB6UYe/N1qS54enWY4dJrsXWs+DjqtrS5JQup88PKS29p60/KSevS4NSb06DESE3d0FLVoMtNR8HUUqI5CgD0rIIeix+3ZANGjx0jJ+jqKBIvTk0PR5PasgOjR5AE8WjfimG7MUt0IYy72bGCQgmeKiWu1bXoCwlo5+dr6qRqMs6WEQ5yxOHE3wofwXCwy3I1sHOKMxYm7kRIciRO3Z0FIDtE4safjkJtqmRJttVSkXikOz/VMtTzIoW+qVySHgamWBzkMTfWK47BXJBWBibM2pmkXEyc2Ja/LiEGbq1Jg8DNcZ6rNANeusXJm0/oeF/BxVf4LPmymoijhA+53FfZNoERYWzqsLhfGoBwZr0uKAT/c6bVV+TIu+VExmlz+NTPaayt+4FLzV86AdVtIXrZ5j47Xuz9o7vm4uHnt3JkXI5tSwNJ/INS4EtlepF77uuOQ+7oaGQqy94+sQiZN69OXIWsyL4F6J72n6OCM+r4L8PqIaxayutKWe3iS+CgoP/p+sXOciQFkonxwkvfvxpwTmSPPQyfwAickUKZXxpxz4nqBR/3QZS4NwdKTMefyGndp4DqMA0x3SZt/y+Jks0t1skum/SXT/vedab9btegjlyfbU2HJNGf4FYlLgbJLgbJLgbIPXKDsbH4htjhZzQA6czw4tDqZ8pzeqCjZzmA4gw9FycxpnQjmv4cbRYPzsYBzpJh7Ig4uBcd+5wXHdlfnix908YMuftC7+UGXkmO/u5Jjs++15tjsI5a22jthPnzVsd8dhGCknEvhsXcoPGbqP4boWjJbR3CFNPDAhxh1HVtTfyyLZcdw71Xd1hk5/eppWlOkvpmfLDumzryYnjI7ps68mJ4yO6bOvJgaZceo8nLTdSE8RRlOfC8m50g42NQZ+Muq2L9U21FSARMnja8GnSuCwvVdSm5SMafSRPZpU8bz9nWNLXdcObU2yG1KdOXUivhfGyHbYRm3wS5SxnbzQMfyG8eoE8dRgehj2UAabXd9ehUeE5xB9xgNhwYaYd+NRnp5T/pu0e+nWwQ90uiHG2kE/efZu4H2cZjHJRY0mw45W8XD/fH98tsceFrHS7xH+XUnMP/zBPN364arESJOGoRZ8vYHDf9o7DazvxVJ9pGd3uT5Q4+2dBQepacgI8e2zcjHKEvSNKpPIbK4esqLB+s2jqpNAfxE1kKMtCJKhaEJBRGFRKs4WkLSdRYL0xOq36qqtqVtCV3n4p80fyqtJu+iydaulXjgqYbopzJ95vUlZ0RAL3/4NwKbol4=
IVTN 2.0.40eNrtnU9vI7uxxb/KQGs5aBb/NDmLLIK3SDYB3kt2QTCQbc2MML6WIcuTdxPMd39qyS1rbHZ3/dj0A24Q3MXtsdinq5vkYRWLPPzX4vruaf2w29zvP11vt98WH//18pfHxce/Xfyz++3xfvVwtd9efdltbrt//+/io/HNcvHr8f8/lovV9eP27mm/vupKPmzuvyw+7ndP6+XiYfu42W+291e79d1qv/m+fgVzJe0R5srbA8zmZnt/evzj5sv96q4rtP/1Yb34uPi+2e2fDn9ZLu5Xv3R/ePy6elhf3Wx2N3frRXfv/e26s+vH35eL9f3+8NT1Cer4j18/3T/9cr3eHQqcEa43X67Wd+ub/W5zc/WwPcC82PtsXji9ZGh+/Fi+QZIz0m61ubt6NvkNRut/559RfucPht5udodnHn93GVRL7Etj9rkz0s3T7vv69upo5ipjoT2hyM/WGcmAejVomwUNGcyQxbzOVEc8YTqFoa0WNEoWNGdoVBvqTpjxZ8ycnUltZ+gxMyim0TXGrg0eYVp3aIw5IKOt4HD6bq2dfkcjWtAYe9AcDOob7fOL5l/T6b5XTP338q87b8zBevr1WgVooF/vFahpcqgtbMxRFKZG2Jpfg+ZNTZAgYniFmiNaaSBDvEbNghpIujFqTBXIuq9Rs6C2YCRM+ZFQ2Zs60jnZl173piyHiy8YDDsTDz7APw7YnQPwN7M8/GeX5u/Lw6V0l3K89N2lP1zalwL2pYB9KdD9uJRniOO176+l+7ucr31/7bu/+/O1P1wfbNrs179073L2rZaLu9X1+uDnLP50v1/vHk9f48P/bJ/ub1fX26euxPfD348v6YMkl5J33non8cXnOfaZ34jDdnib/ebm8Pcil+1xf2hfX77uj+0/00ifW7+fHsrlPSjFvgOjOO3LR5t9+XEnbuqDphNmW+rEzSS+9h14L6o/qMm+/CwnrpURGtU6cZRGB3y6nHmxN4/4dIybR/268feW5/dO9s17e4WTd/N1tbkfRm8H0dMsV689+U8p74jq+03oYabrptW28d62fFCh7iq9bXmYBK0xTd7LaKA5QzgG2yM/xr0yrT15HIvtcRNemNaePI7H9oQsTsD25HFabE+2HUrE9uRxcHs22XZocXsewDFK+uwJzjRJE8xawe+Zbd/W4vfM4zhsT7Z9W4/tyeMEbE+2fdsW25PHidiebPu2CduTxXENtUfy85iG2jOAU+KxDGFhzpZsm3aYswdwMGdLtk07zNkDOJizJdumHebsARzM2ZJt0x5z9gCOgS6vsU1+wtZjlrbZFu0xSw/gYJa22RbtMUsP4GCWttkW7TFLD+BglrbZFu0xS+dxAmZpm23RAbP0AA5uzy7bDgNuzwM4jnpXVuVdBczYLtu+A2bsARzM2C7bvgNm7AEczNgu275bzNgDODhqdNn23eKocQCnZPq+m/zNYWHOHsDBnD2AE0o8Nf964l+WZnlw+o5T9bKU7lpO17677qbnu5+Xh8eZ07V013K69t11V6a1L2Va+1KmtX2Z8an9P67uPn/4y8PqXjWZb35Dk/k32939ob7ea/XFzwmd/ebuGfN1MdMnes/gX1f/XO1uD/bd3+zWhw9zt/68X3Qf9vWtUn7r81ND+VND+VPb8qe25U+N5U+N5U9N5U9NxU+NTfFTi259fqopf6opf6qUP1XKn2rLn2rLn+rKn+rKn1rOTbGcm2I5N8Vyborl3BTLuSmWc1Ms56ZYzk2xnJvSBcH094w8SVv8ecFUKiCSPv9TcmtbfmssvzUV3xqb8ltN+a1Sfqstv9WV31remmJ5a4rlrSmWt6ZY3prS29Y02qUNKy6suGXFHSvuWfHAireseGTFEypumgaWN7C8wPIWlnewvIflAyzfwvIRlof1a2D9Gli/BtavgfVrYP0aWL8G1q+B9Wtg/RpYvwLrV2D9CqxfgfUrsH4F1q/A+hVYvwLrV2D9Wli/FtavhfVrYf1aWL8W1q+F9Wth/VpYvxbWr4P162D9Oli/Dtavg/XrYP06WL8O1q+D9etY/fahqpSHqlIeqkp5qCrloaqUh6pSHqpKeagq5aGqlIeqUh6qSnmoKuWhqpSHqlIeqkp5qCosVBUWqgoLVYWFqsJCVWGhqrBQVVioKixUFRiqCgxVBYaqAkNVgaGqwFBVYKgqMFQVGKoKDFUFhqoCQ1WBoarAUFVgqCowVBUYqgoMVQWGqgJDVYGhqsBQVWCoKjBUFRiqCgxVBYaqAkNVgaGqwFBVYKgqMFQVGKoKDFUFhqoCQ1WBoarAUFVgqCowVBUYqgoMVQWGqgJDVYGhqsBQVWCoKjBUFRiqCgxVoRtsmRtsGbpj6I6he4buGXpg6AHWU2DWtMyalqFHhh4ZemLoCaF3uykJvLp8X1P6B/QGGWiQgfgC8QXiW4hvIb6D+I5WmIMGeWiQh/gB4geI30L8FuJHiB9phUVoUIIGQUoxkFIMZAgDGcJAhjCQIQx0MvQP6A2ClGIgpRhIKQYyhIEMYSBDGMgQJtAKg5RiIKUYSCkGUoqBDGEgQxjIEAIZQqjTIZBSBFKKQEoRSCkCGUIgQwhkCIEMIdTpEEgpAilFIKUIpBSBDCGQIQQyhECGEOp0CKQUgZQikFIspBQLGcJChrCQISxkCEudDgspxUJKsZBSLKQUCxnCQoawkCEsZAhLnQ4LKcVCSrGQUiykFAsZwkKGsJAhHGQIR50OBynFQUpxkFIcpBQHGcJBhnCQIRxkCEedDgcpxUFKcZBSHKQUBxnCQYZwkCEcZAhHnQ4HKcVBSlGXD6x8vxwD3ODoDRHeYITeQF9a6EsLfWmhL23pS1v60o6+tKMv7UZfely14L+fVrv9evfhD3fbm28q5QL5DSkX3G5WX7aHklc3u+3j4+KV/MJsFNHrIKjlh0dFjOsJI9t30AZ21ZTGfRWhXb3m6nkZ+ag48fiRC/FSV3aOIHFvTVYvJ72Thm5DrQvzjpUYV8sVak2cEByepY/roDUDgrTG1xHINQHbk5WCMm0dgVwTsT2ukoCwmykg3IwK0ppKArmC7YmVBITjTAHhZkyQlgsID+Dg9pwXjuUCwgM4EZLYKZ84dbwJ0BNuRvVoGyR3bnq9OuPejATjKsPz1HeFWHkePA8xRX70BOrCzah6rrvYEHH3+cW3GwC7TBBOyLFbX0komPeHOFNweFwoOJZI0OUFdS3uBAPCvA307U4ZyQmxRmcqSRljxh+Q+7X0LcVMt1PHzks4S9OK5LtmgSixTIgS6zxtIyfn9hAW7nfbu0/X66+r75vtrivXnRj4tNl/urnbPq4/9ZHeKersf9utV7fnnz6v7h4vfjtg3p4f+nmze9x/UoSLxxKHYPZ2cTLrcb/qQmTb/eOXh9Vute+sW/x+8WOmmnIzqsocizhuACzVkZz22CvLSzy/llTWDn/iVYEQ11keMBOPVwMK0q6SorWn9gzoPodqitZtJUVr7K5Jmqm03IwpURcoLctMpeVmTImaKy0P4OAWPaBE7eooYwfeouNMZeVxZWzM3gNK1LGSMjZuz3nF6Lapo2Dd4vacV4xupY6CdWvLIhQ3EKG0OKweUKD2lRSxcRgxoEDdVlLEjhWVrHHbzuNEHEY4RRgRTR2d7ShljrofcNQjnkDy2Z4cy2Jon+2GETf3AZxQ5hd6nV8YcS/w2V4ZMbv7bG+KNBFgwoAfljC/588hT3Tu3/j0s5K7W5qljSeR9qV0l0eN9qXvLo9HuMZOov1Uovu1u5bTte+upyTa/3qw6P7DX/bbh0dVqtP+J9VZP9U5cCiqzEl8gkNR7TucC+re4eBNX+3cTf254hdqWhPWte945Kb+5FaQKB23MJpBC+N4trTiaZ6GvneYmTsNVXKnsamTOw11cqexqZQ7DXVyp7GplDsNdXKnsamUOw11cqexqZQ7DXVyp7GplDsNytxp1cM89bnUOJ7bbesc5glyqSGfS42zUqlxNGNccDSr0xzNOjEcxuGUbDvrgNY4nji2lQ4gheFfHAXDxD6ZNB3tUNH8lGn+uan9+6SSCg6bncr9EkfPmFZ19DDvx3OPoA11jqCNjTL/q3O532SnsytInK14su3/+4m0sVEmf5WfTMzMHGqomUONF7tWp6JF3OonM6okxOmz5hN905s6R/J6KRsb3+Zr06w0axzPKrtKB/7y7hBnHmc7fkxvS/0vSYq5CRqiD1mX6hz+q0+5xqZSyjXUSbnGplLKNdRJucamUso11Em5xqZSyjUoU651D//FTJ+3r+Bw25kp2DieEpY6h/+2mL0HcFylw38xe0+mXpXBiPt3DkbattJZyHjYGcBJdc4vjnjYGcAx1Pd1mnDhIn0Mj1eelToOytSxFmcqa0zcc69wzyN2vQYyvW2Z4+tVjm/EE8eTeWSlg+gVDmLCA1Z4daq37w71tsdMr+/O9LbHRK/vjvS2pyO9u+O64+nY7+7X7lpO1767rp0Ldr+NXPCJqQ/8fPPt0Nb+uS47tXuiKRifXo62vqSh8SSupqca715Okr6AdqOp3NFR9rjy4flQ7DdrPWalc/vqjo0CVb2ntZdCjgqyUs+a9LvKY6qc3DXO97nTRuMTq3nrQnF6NL2rfPGj1PLUkKnfBnuGdT9m5XLPOFPJ3MlGc6ElPPmaFps3ld3V1kKrMc9T86azvVOf71n+/STuO8E7pqW18gY2/96Rfs6T1vEkbuLfUyayw1MGPh//cdIOnhwi9N3FhDyum5U87k/v0MHqe480ANbpYQXA6juTOAAb9LCkylo9LKky/ahjSZXpRyFr9bC24f11Ki89RVS9WlCjcenY5l5jz9McjVc5YNZy3g6K7+o4bwcFv1rPedtrcANvB2EiG6zm7aipp8h5W+PXJ87bClh9lviFtzWwhvO2BlY4b2tgLedtDazjvK2B9Zy3NbCB87YGtuX9NU4kn6eAGn8hya9PPGuHA6OKbJvS4SCphgNv8HDw2m43npnWDgdvPkcznpNWDwea+Vx9jvqMm1/cp09S96c0vlmVJ+M5a+0oY0RT/S0eZYwiivMRjzIq2IRHGQ1saPAoo4I1eJRRwQoeZVSwFo8yKliHRxkVrMejjAqWe4X51a9BP43RNBfnfEzZp0ymm+a8Nc28FalrxtPpkwY7vcFtozU4QIMv8u2que/zqKuxWrRWpxEFKDN7Y/TFcJ75KjKerVcP55oP4vlw7jSViOfYT8ftTOJybzG/rrtVTxv+dDzOZDWpB7Lk8rBuVs48BYCqTl0lD1BlLmqYlUpPEdiqH8OaBsCqx7CUAGqYixpmbdHuDyvXGQuCMdIR9HOHZydcAZua2bBhfHP35EcA/Tbp/cQGdIak9xMN6AxJ38cMaGBJH44Z0MBS4GGTBrblYZMGNvKwSQObeNikgD1yKI2bVLiGB04qXOGRkwrX8tBJhet47KTC5anl/H6zI80B3z6Gi4P3Jq0siMziNIkfOZQGUCrcVBjnaMBNwwMd3TofY0xppKN9gPBQR9NAjOWxjmphiCmYY8wvDTE8KWZUi0P0izri5WGR03WFlj1Fe96o1KiiamPU8yLNCHS+OSQttKPQou59L7ua387q2yy0wfPFb2oyb7Ngz0cU+QIDFn70ro8O12HfR4frsfOjww3Y+dHhttj50eFG7PzocBN2flS4tsHOjw4Xr0oc2DxsrOAM0mtl6uxYDxZ+9D6EiIYSrCsc6cXoRnrr8UgvmqWGNuCRXlRrDcGakHNjUC02tJG3srw2jk1QV0u1/dqAdSCNvzgdearxuoLxzGkarysYzxQT5sYVjGcq3ILxTIVbMJ6pcAvGMxVuwXimwi0Yz1S4BeOZBtcXjGcq3ILxLL9cHywFOY87QdN1fWkuTXQrJY3nyTTRTJR4nk2ToFrbz9PXeckG4wtGMK8yMXIij6rWkDiRa6YDwOKQM5GrcA0nchWucCJX4VpO5Cpcx4lches5katwAydyFW7LiVyFW+Ay5medQnoPvRPTlq5wFN0KR9PyJY5WE/K1fI2j1axxNC3eQjagAWNax2k8qUz0ddRlTMsXNlpR1Tpf2WhV+9P40kYdLl/bqMKNfHGjDpevbtTh8uWNOly+vlGHyxc46nD5Ckcdbqijw2Rii/16q9mwaGIsHBCsbo2ciYkPCJqYaWB9yOiA4FR7TA2mcavakp2kjgiWSZbTuGahnCHrQkIeOF9XntO4CjdwGlfhtpzGVbiR07gKN3EaV+AKWRwSCa7hNK7CFU7jKlxbRy5OGodnbK3i2AZpPB8eNPsipQmlw4NuYYGAFSJ2wPJ8lUU+PGgWFkiT6kj1CZDo6FNPVhHiieGz965RaRvw2XunCO3E8Nl7HS6fvdfh8tl7HS6fvdfh8tl7HS6fvdfh8tl7Fa7w2XsdrqkjaikieLWcE42BFm9kcka1L0jE4YV4OpM93sqkNjmUrfHT2d3iNX5OVMuuREojNafL/IvwSE31TfjhFHlxVLF6ecl0BlK8uH4RSJI8bv69Ld13pIN1dOORDtbTPUI62EA3CelgW7xLSIcb6YYeHWzCO3pUuGQFCGljYAVI75vqcAXvvtHhWrz9Rofr8P4bHa7HG3B0uAHvwNHh8vl9HS6f39fh8vl9Fa7n8/s6XD6/r8Pl8/s6XD6/r8Pl8/s6XD6/r8MNdfTaxaunQeLLWdkK18ZH7kfrFuyIT6X+qPIBoamjti7BlG2IcFEXUQSpI8MuQb1qOF7KM0/NCAVXR/Nc+LEZedFzCeHdVM+Fn6WRlz2XUEmZXEIqERHPaUo28zXOx8XE/2v9sN2rZMR9Dunqerv9dgH359Vut/3Hh7/uVjffOnXynAL4Rc98rfG9uuk0xT/1JzePmPXj/wB49KXW
Narrow track layout for grid block bases 2.0 (with red/green circuits):