The simple
- minimalist.jpg (172.69 KiB) Viewed 3067 times
0eNrtnc1u5DYSx1/F6LOciFUkJRrIba+5LHJbDIy2LY+F9Bf6YxJj4AfY99gn2ydZqe2x5RYp1n9sJLM0DwnG3RKpripSVT9R/H+dXS0OzWbbrvazi6+zm2Z3vW03+3a9ml3MfjtsV2fr1c/r29uz/V1ztm0/3+3Pluvd/ux6vdrt56v+H8urdjXfr7dnf9w12+bst1/q8my/Ptss5vc/b+aHXTMrZm1//OziX19nu/bzar7o+9rfb5quk3bfLLsjVvNl/9d82+7vls2+vT5/aXn20LWwumn+nF2ohyLaxu18tz/fb+er3Wa93Z9fNYv9oAV6+FTMmtW+3bfN4yUd/7i/XB2WV8226+K5od3hqvuRR2MUs8161z7a5eusb6Yyxex+dnFuSu4aXzWdba7Wh23fJBXE9Km/0pOmSda042DTquCucfY1zqLGWamJ69Zd49rXuJY1Ti7YOBe2a9z4GjfPjX8Lq6Hzx73o8qdn49NPpuvppt0214+HdFfatbLfrheXV83d/EvbNdGdd9su9s02EINf2u3+0H3y8iOPR5z/1sfN9frQDw6rB0H46fj5avXY6a5vSvX/2zY3w5Bqu7+qsju03V4f2v3x7/7kB48RrMzCugpaWBeqKn32rSLDyxPc1YuFlci+Ly1fdl/ftM92uW23u/0lZvJd07dx+S0ajmNyvWm286eJ6bw7bX3Ybw5Yww8Br33eNs3q1G/1a7fR0ecUPLwK+bXGjV9/eOM70PinQ6x4/TUHfONw37gP7xtVYs6pI87RAef0/YDeqcvsHYV5x0W8U4W8o3DvqOwdwryjyoh76pB7CHcPZfcw6B417Z46lBQoxt3D2T0adA9F3EMh92jcPTq7x4Du4Yh7TMg9BnePye6xoHt0xD025B6Lu8dm91Sge0zEPcHUAMcBdcYBCuQBp6Nt5B4Xcg8ODOoMDBRIDFQEGbgy5B6cGdSZGRDIDFQEGrhQYk04NHAZGhAIDVSEGrhQYk04NXCZGhBIDShCDVyIhxJODVymBgRSA4pQAxciooRTA5epAYHUgCLUwIXKUsKpgcvUgEBqQBFq4ELEmnBq4DI1IJAaUIQauFBZSjg1cJkaEEgNKEINVBnMrHFs4DI2IBAbkI35J5ha49zAZW5AIDegKuafYHaAgwOXwQGD4IDqmH9C1JphcsBlJgcMkgNyMf+EuCgr3D8ZHTCIDjiCDpQKgVEm3D+ZHTDIDljF/BPKD5hx/2R4wCA8YIr5J8TeWOP+yfSAQXrAHPNPCL6xwf2T8QGD+IB1zD+h/Jot7p/MDxjkBxzjByqYX1e4fzI/YJAfcIwfqBAe5Rr3T+YHDPIDjvEDFeKj7HD/ZH6gQX7AMX6gQvWpxvmByvxAg/yAY/yAQvxa4/xAZX6gQX6gY/yAQvWpxvmByvxAg/xAx/gBhfJrjfMDlfmBBvmBjvEDCuXXGucHKvMDDfIDHeMHFMwPcH6gMj/QID/QMX7AIX6tcX6gMj/QID/QMX7AIT6qcX6gMj/QID/QMX7AIT6qcX6gMj/QID/QMX7AwfwA5wcq8wMD8gMd4wcc4m8G5weU+YEB+YGO8QMO8TeD8wPK/MCA/MDE+AGH8muD8wPK/MCA/MDE+IEO5dcG5weU+YEB+YGJ8QMd4qMG5weU+YEB+YGJ8QMd4qMG5weU+YEB+YGJ8QMdqk8Nzg8o8wMD8gMT4wc6xK8Nzg8o8wMD8gMT4wc6VJ8anB9Q5gcG5Acmxg90ML/G+QFlfmBBfmBi/MCE8muL8wPO/MCC/MDE+IEJ5QcW5wec+YEF+YGN8QMT4tcW5wec+YEF+YGN8QMT4qMW5wec+YEF+YGN8QMT4qMW5wec+YEF+YGN8QMbzA9wfsCZH1iQH9gYP7DB/f9xfsCZH1iQH9gYP7Ah/mZxfsCZH1iQH9gYP7DB/BrnB5z5gQX5gY3xAxvMr3F+wJkfVCA/sDF+YEN8tML5gf5Q/MCj7WNi3ojRAhuqdqqBCtVyvlicL+bLzaRQj+53C3nwm/3bNTzb/DtM/uvA5KiA0nIz3x5j6GL2ywywb8WnButldgqRCAz5TvXbmialw6aNXp/qT1lfDyz0Zp20N33SL4VYfcnrOi00rPtQw6RXbSnEykpewxp0TNTomLBoDw7toZIFx4tqUJLBoT2aMYVc2skbHbXQsippy1ZjuZfTew6Fba1i96ug9R04coYBLho5dYn2oNAehPnNiyhRkhFUexRpCrl0lFdvkISW5ZQtW/vEZAq56pPXsoyOCkJHhUZ7YLQHI4wOnXR0kEfLppCLTnmjwwota5K2rBnL0Jze18JZ/1hBynOu3/oVOnI0OnKkOY9N2r/Wo2NTyAWnvL5zQssmzTpGA6WXoCnkWlFefdtSaNmkuUMXomP1mEIu8+S1rDR/TRo8dCE6En45nbEn5gcXm+1DaxGdMMd1SVf2zqfrUsgFmLyWFZJKl3RlPwpjF85ZfNpJXssKUaVLuuJ17FFTKeSyR17LCmsal3TF6/RYCOVkPq0n5geOzMV16Lm7QzmuQ2tWJ+S4Luma1RmPkkohlzzy+k5Y07ika9bxQCnDCaJPrshrWhTSOrQgVSVKaYduFHYhTHNd0kWvq30qLIVcMMkrJFpKk9iky95+rI0lVE5vPhPpV+yxf62DDkB57jDKheMHBbqugruQZj912mFEPqWXQq7K5A8RIdR1Lm3jGp9MSyGXVPIbF2W2roYHR4124eAuZPRyIBaUZohYn1JMIVd18oaIKoXGVWkb13lkXk7vc+HpjmNLDWobdIDCBtCrMJcNIEVCHycNRvrh4pGKKeSyTn7/sdC4nLZxyafzUsg1mfzG1ULj6rSNyz6RlkIuqOQ3rhEa16RtXO1RWDn5ZOJ5FseeqDsVdIAVOsCm7QDjk1Ap5HJHfuNWQuOmXfyPY1mFqSZXUuPWQuOmXRKryideUsiFhvzGldY7aZfEqvYoj5zOrRO3wdizbxd6T0tRiabkcE1LMuw7ELBJ08fOp15SyJWG/P4T1jsq7ZqWvNIjhVwmyG9ckOm+CmHh4NBoFwruQpj7qrRLYiKf+kkhVyryh4gwr1Vpl8RkPNIlpzehCXPHFgy4IFOiCh1ABA+gGu2C4S6EeZBKu/gn61NYKeRqSN4QYSH3VWkX/+MRyWEmqI3UuCjTVfDSBCa0C3hpAgvJpkobT3DpU2gp5GpK/hARkk2VNp5g9sirnN7nwsBCx9YmuDroAIMOIHhtAkvzoLQpCWufREshl1Py+0/I91TalGQ8XHhiuEgXDrCQ71HaeIIrnzhKIRcy8htXmNdS2niCa4+ySXHyTkU4GTORR+7Hc/0O0MLcl9Iu/tn5pEsKucyQ37hCsklpF/+jWD7qjhRyjSC/cYVkk9IuibVXNKSQC/z4jSusdyjtkliTR/HjdG4NJ3DGxOblKugAlPsSXNNqIfeltGtazT7VkEKu8OP3n7DeobRr2tFwOUp+FHJ5Hr9xUaZLcL2qUaZL8Fp6Lc190y6JtfWpjhRyhSBviBhpXpt2SaydRzLk9CYULpKNi93AgkzJoNyX4PX2BuW+BK9NMMI8iNMu/k3pUzYp5CpE/hARcl9Ou/gfjcijLEkhlxDyGxdlugyvTTAW7QJem2CEZJPTxhNG+5RRCrmKkT9EhGST08YTpvLImpzc5yZeL7KRtQnHcwMOcOgAgtcmWGEexGlTElP7pFEKuYyR139WyPc4bUoyGi5HXZNCrkHkN66Q73HaeMJ6RUkKuYCQ37jSvDZtPGHJoyhyOn2HF4raKjb1B9dVW2num3bxb9knGVLI5X38xhWSTU67+B/F8lEBpJBr8/iNi0uH9Y9qhlYeJi1/h3QL9Uueh+ItP3+HeMuvkHiLmtCm8h4efDJghSWRThtJ2BFZ9tz8CrnOkd/WLxXSTXPd3jTbSKBrNNCfmn2HKB8oE2nVK2q8Mu5///2f7xMo6tvZ3HfXd1jtL2+36+Vlu+ramF3st4fmbQPg1H8uMiSialMjObeQW1/qrm9Wi/h1lMDHPXvbLvbNdnf8GajBD70be12EdnXT/Pn4S77f0kE7DFS4doerzg7HH+T5+dVz0dldxqppP99drQ/H32YLYvvJ27jCjPxK6Mj6jfxdwj808SKi/+CAtQj8QUOdirf8oDDqqYL4vYLlAwYhXonQwkAOSWgP8y72GO0KThPvcvkPDtgMlSEa7r4utBm6f+VwG3JhF/Dm9DXcBbrR0XBjamEXDg0u9y7BNbG7QXjzAljBZrhVtMwetUK7UHAXqDLdcPNgYRcMenW4fetbvDpatUMjxDvxtp/09EB0oPOke58b4dS+kcfvApeLPjgq8UizYP5Vvs+ddLztEVE1oZnlPTpgNXRJSokPHnRJynCbJWEX6AOJ4WZDsi4cvKEAnJg4hYaXeafwmpB9CqNAhy5jKOG0w6Evqpdw2uHQBYslnHYMtl4X+tW9k1/daCIY1Q00IXQoPT8QH+hsqd7npjl+25ZoSjHOe3TgJ8EvZePxWKNWe6e77ugVL6IJVRL/0QGrobOzQocYobt8v3qlTNgFvDCshLuAF4YpuAswk33VxZvCayqYQqFDJbycnGCLoHkjMdwFuuCINNxFhfr1nXKH0TJ0otEnE5sdiM8PxAc6W9I73Von1voevwtcLrxwBo61wWbAMovwO911R0tViCcUxPxH+60Gb6/L8PBR6MzLBu4CzWXZwl2gsyVXcBdoLsvvlJ5MrB45fhcIHXipJ5x6KDQnZDj1UGgFreHUY7Bh4Wa7/rydL5fzq0Vzvts089+b2GMP83/ynPbl+VL/8bJ5fND17TnX5Zf54tBctrvLTbu/vptd3M4Xu6Z/mLXbbw/LzmSPM1XX1XrfPD2iAp5vjR/a0ITKq//ovr/X175ZzO+v5te/X35ZLw69BcqftK7Y1rq7FxiyrIwjVyniust1Kqe0USVbx2XZHUK1Ucb26wqe2/m8WF/NF4v7x0elxaz79/qPy816cb+5W6/un8zy0H/RbEeWvOuOPX7xbL7jR+vV5XK+eWmyP3PZ7Hbzz73PZt7BO9jDURiTQ+yqP2pMaiQmJ9TOntTMBPHGVJW2stapqnMBcRdSVLvus7oLRFfZLg67oDM117bL5bStqx8z3hQYb69ATZ4DJfE2sdvr026ugnjro0lRVXdn6LqulOuSWMu1q7vPnCLTBaF2fVDWlS6JNf+g8UZovA0JWY43UbxNaNY/br4oiLfjTbQLrafbalk5Y6ib6pyxpXZlaTUTOV1rY+p+rvthJzhGA25ICfINVRBwU9sqPG2bILmhalNbba2yRivu5jPrurDrPuMuoyt11cVi6WzdRV1l2JU/av6m31JT8EcNN4OE28QasaclYR+oXjBovA1XduV4E9WwUxXrR6tP7Vvq0xxvf1l9mkq8VXB9qnK8gfE2US/U9oPFW/0WHpLj7S/jIanEm4N5SK4X0HibWO71uNH2x4k3Lt+CQ3K8/WU4JJV4g58vcK4XUB5STvCQ8oPFG4lek6TqW4zV5vQ1SVUQ8ydv4yxrvF/CHWiciv4SibW/Ay17ybNfHRTogPur7/4z/g6MrIM+LQl0oPurD71JSkPtCNFrqh77V+Xj9XdB3e6bZdfUVTd+Ntt21a/7WMyvmm6gzv65vv797B/Nct199qWLpGPjVCtdOapqS7qy9cPD/wDpOiVE
How it works
I'm not joking only 4 combinators matters here ! Let's address the 64 that do not really matter here, they are just here to give a number to the lamps. There are 64 of them, that's the number written in the combinator (4), the first arithmetic combinator of the long 64 array remove 1 to this number, so the last lamp is lamp number "63", and the lamp before 62, 61, 60 , 59, 58 ... and the first lamp is 0.
64 is a magic number here , because it divide in 8 twice, it makes it easy to do rythm in factorio, the red belts represent the subdivisions, and the lamp the smaller subdivisions of time, this is supposed to be similar to music software/ sequencer, there are plenty videos online on how to make sequences ( for beginners ) that start with this one so i did the same, but later we'll see how to expand.
This is like a track that will be played in a loop, each lamp has its number making it possible to place a speaker with the same condition as the lamp, and the sound will be played at the proper time and repeat, boom tac boum tac, boom tac boum tac I added some constant combinators next to the speakers to make it easy to copy paste the wiring, and to help as an intermediate subdivision of time to place the beat like they show in videos teaching how to make beats.
The missing piece of logic is how to choose the tempo, the number of beat per minutes, that's usually what need to be setup first, i think, they always start by that on videos, they never say it at the end, like if they didn't say at the beginning you are supposed to know or look it up. It's quite easy to find the BPM for a song, but in factorio the question is : how much time a lamp need to be lit before the next lamp lit ?
That's easy and not easy, in the example, in the arithmetic combinator (1), you divide "T" by 225 , the decider combinator (2) only let "T" goes through if "T" is less or equal to 14175 and the 3rd constant combinator hold the value of "T" = 80. That's the easy part.
What happens : the constant combinator holding the value 80 will pass 80 to the second combinator, the decider looping "80" onto itself, 80 160 240 320 400 480 .... until it reaches 14175 and repeat, that's how we make the time loop.
This number that will increase is divided by 225, and 14175/225 = 63 That's like a 64, because first lamp is number 0, and we have 64 lamps, so the last one is 63. That's very convenient . This means when the time will pass and the music player is on, it will count up to 14175, at speed of 80 per tick, it will take approximately 177 ticks or 2.95 seconds to lit all the lamps and restart.
And the BPM in all that ? well it depend on how the subdivision are used, if a "kick" from the speaker is placed at every first red belts, this means there will 8 beats in 2.95 seconds, or (60/2.95)*8 = 162 BPM. This is not what i have done in the example, instead i only placed a beat on half of the red belts. This means the BPM is actually around 80, which was the recommended for this drum pattern in the video. This means there are 16 lamps between 2 beats to attach a sound, it's rigid a sound can't be played in between, it sound robotic for this, but each sound can be given a little accent since they have each their independant speaker.
That's a lot of text and a lot of math, it sounds like annoying to do that all time, so i made another version, with a bit more combinators to make things easier to use :
The automated
- expandable.jpg (145.79 KiB) Viewed 3067 times
0eNrtnc9yHDlyh1+FwaNN2ZWZ+KuI9cGe8G1v45O9oWiRPVLHkmxGszm7ig09gN/DT+YncXVzRmoyOwH8ZuyxUIPDOjxiN0AiE1X5fYUC/nb5/vZp/bDb3O8v3/7t8mb9eL3bPOw32/vLt5c/bHcXP6we9+vdxfuHu4s//NPF5v56t149ri++v5h/drP+6b++m39wsf+4vthtPnzcX9xtH/cX19v7x/3qfv8f94dmHm+3f/nazJcvHpv50qhqZnfazL/OH53/aX34yu368fHidnX3cPGHi/VfH1b3N4d/3a3vtj+uL/6y2X+8mP+f3e3q4WFz/2Fu4+HT8/e3c+tzK0+Pm+uLq4vrj6v7D+uLx4f16s/zPz9sHzeHv/zi0Nzj9un+5vLqcnP4BS7f/vvfLh83H+5Xt4dR2n96WM/Ds9mv7+ZP3K/uDv+12s3d3q33m+s319u795v71X67u/w8t3B/s/7r5Vv6fFVtY79b3T8+zH/2m/fr2/3Jl/nzn64u1/f7+fdbP/82x//49O7+6e79eje3/qWNx6f384AdI3h1+fOfdOjx8DsQX11+unz7Jk08N36/nsf5/fZpd2iSr0J2fzr8kq+a5ramZTKbpiuZG/fnGpe2xl0q/N5ubjyca9y1NR6C2bhc+bnxeK5x39Z4cmbj8+89N57ONR6aGufJDqe/inPj+Vzjsa1xtgMartJVnKZzjae2xsUOaJybpnNN58pc04M/uX/wP/czzf3cbHbr6+cPzGGZZ/Z+t7199379cfXjZm5g/tbXlt/NP745tvZ4+MEPm93j/p2avz9udvun+V++/tXHT7z5/jB5H9eHNt79fAk7ztLtw3q3+un6+mb+2vZp//CENfz58/F3v3/+U46/HR3+z4fden1/enHY3BzGYP7wZnf9tNkf/3u+ksxfZ/vzkuZPfD4z/IeW0PH3Y/wJG//88uN0Eojn8GQrPISHJ4zwMDg9pkp83GTFh/H4xBEfAeNDtfiQFR/B45NGfBwYH67Fh634ODw+ecTHo7f/WnzEio+H40PTiE8A4+Nq8XFWfAIeHxrxiWB8fC0+3opPxOPDIz4JjE+oxSdY8Ul4fGTEJ4PxibX4RCs+uB6goQcY1QOpFh9LHzCuD2joAwb1AdX8gbP8AeP+gIY/YNAfcM0feMsfMO4PaPgDBv0B1/yBt/wB4/6Ahj9g0B9wzR94yx8w7g9o+AMG/QHX/IG3/AHj/oCHP2DQH3DNH3jLHzDuD3j4Awb9Adf8gbf8AeP+gIc/YNAfcM0feMsfMO4PePgDBv0B1/yBt/wB4/6Ahz8Q0B9wzR94yx8I7g94+AMB/QHX/IG3/IHg/oCHPxDQH0jNHwTLHwjuD3j4AwH9gdT8QbD8geD+gIc/ENAfSM0fBMsfCO4PePgDAf2B1PxBsPyB4P5Ahj8Q0B9IzR8Eyx8I7g9k+AMB/YHU/EGw/IHg/kCGPxDQH0jNHwTLHwjuD2T4AwH9gdT8QbD8geD+QIY/cKA/kJo/CJY/cLg/kOEPHOgPpOYPguUPHO4PZPgDB/oDV/MH0fIHDvcHMvyBA/2Bq/mDaPkDh/sDGf7Agf7A1fxBtPyBw/2BDH/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQH/gav4gWv7A4f7ADX/gQX/gav4gWv7A4/7ADX/gQX/gav4gWv7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7ADX/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD3/gQX/ga/4gWf7A4/7AD38QQH/ga/4gWf4g4P7AD38QQH/ga/4gWf4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P7AD38QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQH8Qav4gW/4g4P4gDH8QQX8Qav4gW/4g4v4gDH8QQX8Qav4gW/4g4v4gDH8QQX8QK/6AJ8sfRNwfhOEPIsinkWrxsfxBxP1BGHwaQf6JrhYfyx9E3B+E4Xci6N8i1+Jj+YOI+4M4+DSC/BNDLT6WP4i4P4jD70TQv0WpxcfyBxH3B3HwaQL5J6ZafCx/EHF/EIffiaB/i74WH8sfRNwfxMGnCeSfVOUfyx8k3B/E4Xci6N9irMXH8gcJ9wdx8GkC+TTV6muy/EHC/UEcfieB/i3mWnwsf5BwfxCHP0igP0g1f0CWP0i4P4jDHyTQH6SafyPLHyTcH6ThDxLoD1LNH5DlDxLuD9LwBwn0B6nmD8jyBwn3B2n4gwz6g1TzB2T5g4T7gzT8QQL9Qar5A7L8QcL9QRr+IIP+INf8AVn+IOP+IA1/kEB/kGr+gCx/kHF/kIY/yKA/yDV/wJY/yLg/SMMfZNAfpJo/YMsfZNwfpOEPMugPcs0fsOUPMu4P0vAHGfQHueYP2PIHGfcHefiDDPqDXPMHbPmDjPuDPPxBBv1BrvkDtvxBxv1BHv6AJlAg5JpAYEsgZFwg5CEQMigQck0gsCUQMi4Q8hAINIEGQc04HSFLIRy/ioZoOIQMOoRccwiczQDhEiEPiUCTQ+dQTSPIZIYI9wh5eIRjZkOTqCYShMwI4SYhD5NAU0AnUc0lCJshwmVCHjLhmNlYiGo6QcQMEewTeBo+gaaEhqhmFMSZIQp4iIZSOGY2FqKaVBBvhijiIRpWgWhCQ1TTChLMECU8RMMrHDMbC1HNLEg0Q5TxEA21QISqBaqpBTHVAk14iIZaOGY2NotqckFMuUCEh2jIBSJULlBNLjhTLhDjIRpy4ZjZ2Cyq2QVn2gUSPETDLhChdoFqdsGZdoEcHqJhF46ZjYWoZhecaRcItws07AIRaheoZhecaRcItws07MIxs7EQ1eyCM+0C4XaBhl0gRu0C1eyCM+0C4XaBhl04ZjYWoppdcKZdINwu0LALxKhd4JpdcKZdYNwu0LALx8zGZlHNLjjTLjBuF2jYBWLULnDNLnjTLjBuF2jYhWNmY7OoZhe8aRcYtws07AIxahe4Zhe8aRcYtws07MIxs7EQ1eyCN+0C43aBh10gRu0C1+yCN+0C43aBh104ZjYWoppd8KZdYNwu8LALJKhd4Jpd8KZdYNwu8LALx8zGQlSzC960C4zbBR52gQS1C1KzC960C4LbBR524ZjZ2Cyq2QVv2gXB7QIPu0CC2gWp2YVg2gXB7QIPu3DMbGwW1exCMO2C4HaBh10gQe2C1OxCMO2C4HaBh104ZjYWoppdCKZdENwuyLALJGjRLTW7EEy7ILhdkGEXjpmNhahmF4JpFwS3C/LKLvxfBuXfWoLy9/+7Qdmtb16P8HOOl2Og2NQa8a+y4PFudXv75nZ193DmTbuv67Lj4aU7Y6B/7vLLKP+CQf7jySBj02XOk4fV7pgnby//cAmMKEl+laRyODPzyngN9fWEOPNVY7Rz42j7ZY92en2Cn5vUIEZz/PWLQGe+ez4AbmoMQPh9pTs5UoOY7QBQLQAmsztqDEBcdABUvpN7PYjucGqiFQAuB8CZJy7O/TQGIC07AOoQUSdqEMUOgNQCYJKCk8YA5GUHgFUAnBpEZwfA1QJgcoBzbQH4unB5mQEQFQCvBrFwE/a1ANg3Yd8YAFp2AJwKQFCDmOwAhFoAzGcbLjQGgJcdAK8CEF8P4uFoGysAsRIA81icuZ/GAMiyAxBUAJIaRLYDkGoBMI2qa8ReWjb2qnwnl9UgejsAuRYA0/S4RhKmZZOwynfykxpE20TwVAuAqSJ8IwnTsklY5Tt5UoNokzBTLQAmCftGEqZlk7DKd/JqENkmYa6RsLn3/9xPYwCWTcIq38krEmYbxLhGwubm13M/jQFYNgmrfCevSJjtmzDXSNjc3Xrupy0AvGwSVvlOXpEw2yTMNRI2d0ee+2kMwLJJWOU7eUXCbJMw10jY3vzYN5IwL5uEVb6TVyTMhSqoRsL25sa+kYR52SSs8p28ImEpVEE1Era3LvaNJMzLJmGV7+QVCYvtgrhGwvbOxL6RhHnZJKzynYIiYbFdkNRI2N53ODSSMC+bhFW+U1AkLPYTMamRsL2rcGgkYV42Cat8p6AH0QYxqZGwvWdwaCRhXjYJq3ynoEhYbBCTGgnbOwKHRhLmZZOwyncKioTFtqFSI2F7v9/QSMKybBJW+U5BkbDYJCw1ErZ38w2NJCzLJmGV7xQUCYtNwlIjYXuv3tBIwrJsElb5TkGRsNgkLDUStnfiDY0kLMsmYZXvFBQJO5uEpUbC9j67oZGEZdkkrPKdgiJhZ5Ow1EjY3kU3NJKwLJuEVb5TVCTsbBJ2NRK298iNjSQsyyZhle8UFQk7m4RdjYTtHXBjIwnLsklY5TtFPYg2CbsaCdv728ZGEpZlk7DKd4qKhJ3NAa5Gwva+m7GRhGXZJKzynaIiYWdzgKuRsL2rZmwkYbdsElb5TlGRsLerIFcjYXu3v9hIwm7ZJKzynaIiYV+ogmokbO/lFxtJ2C2bhFW+U1Qk7G0b6mokbO8xFhtJ2C2bhFW+U1Qk7G0b6mokbO8gFhtJ2C2bhFW+U1Qk7G0X5GokbO9sFBtJ2C2bhFW+U1IkHGwX5GskbO9blBpJ2C2bhFW+U1IkHGwS9jUStvdTSY0k7JZNwirfKelBtEnY10jY3i0lNZKwWzYJq3ynpEg42CTsayQcTBJOjSTslk3CKt8pKRIONgn7GgkHk4RTIwn7ZZOwyndKioSjTcK+RsLRJOHUSMJ+2SSs8p2SIuFok7CvkXA0STg1krBfNgmrfKekSDjaJOxrJBxNEk6NJOyXTcIq3ykpEo42CfsaCUeThFMjCftlk7DKd0qKhGOhCqqRcLSroEYS9ssmYZXvlBUJR7sKCjUSjmYVlBtJ2C+bhFW+U1YkHG0XFGokHE0XlBtJ2C+bhFW+U1aDmGwXFGoknEwXlBtJ2C+bhFW+U1YknGwOCDUSTiYH5EYS9ssmYZXvlBUJJ5sDQo2Ek8kBuZGEw7JJWOU7ZUXCybahoUbCybShuZGEw7JJWOU7ZUXCybahoUbCybShuZGEw7JJWOU7ZUXCySbhUCPhZJJwbiThsGwSVvlOWZFwskk41Eg4mSScG0k4LJuEVb5TViScbBIONRJOJgnnRhIOyyZhle88KRJONgnHGgkni4TnfhoDsGwSVvnOkyLhZJNwrJFwymYAGkk4LJqEdb7zpEAs2yQcayScJzMAjSQc8rIDICoAigOyzQGxRsJZzAA0knBIyw6AOlJk0oNoc0CskXB2ZgAaSTjSsgPgVQAUBxQOcIg1EjYPcJh7bgzAtOwAsAqAckG5UAXVSDjbVVAjCUdZdgCiCsDrushPtg2NFRI+ftcIQCMJR152AJwKQFCDaNvQmGoBYDMAjSQc/bIDoDiASA2i7YJirgXAmwFoJOHolh2AoGZAUoNou6A01QJguSCmRhKOywYxle9MogbRJuFEtQCYJEyNJBzDsmeAckH0mo092SScKiR8/K4RgEYSjssmYZXvTF4Nok3CSWoBMEmYGkk4LpuEVb7PmakG0Sbh5GoBMEmYGkk4LZuEVb4zRTWINgknXwuAScLUSMJp2SSs8n3OTDWINgmnUAuAScLUSMJp2SSs8p1JkTDbJJxqJMwmCVMjCadlk7DK9zkz1SDaJJxqJMwmCVMjCadlk7DKd2ZFwlyogmokzHYV1EjCadkkrPJ9zkw1iHYVlGskbB5hwtxIwmnZJKzynVmRcOEIk1wjYfMIE+ZGEk7LJmGV73NmqkEsnGheI2E2XRA3knBaNgmrfGdWJFw4QybXSNg8Q4a5kYTTsklY5fucmWoQbQ7INRI2z5BhbiThvGwSVvnOrEi4cIZMrpGweYYMcyMJ52WTsMr3OTNfD2LhDJlcI2HzDBnmRhLOyyZhle/MioQLZ8jkGgmbZ8gwN5JwXjYJq3yfM1MNok3CuUbC5hkyzI0knJdNwirfWRQJF86QyTUSNs+QYW4k4bxsElb5PmemGkSbhGmqobB5iAxLIwrnZaOwSngWhcKFQ2RoqrGweYoMSyML52WzsMr4OTXVIIZCBGowbB4jw9IIw3nZMKwynkXBcOEYGZpqNGyeI8PSSMN52TSsMn5OTTWIqRCBGg6bB8mwtOEwT8vGYZXxLAqHC8do0FTjYfMcDRbfGIFl87DK+Dk11SByIQI1IDYP0mAJjRFYNhCrjGdRQOxKtVCNiJ1dC8XGCCybiFXGz6mpBrFUC9WQ2Nm1UGqMwLKRWGU8O4XELhciUGNiZ3pRyY0RWDYTq4yfU/P1IHrbixLVmNibYtRNjRFYNhOrjGenmNhLIQI1JvamF3LUGIFlM7HK+Dk11SAWvBDVmNibXshxYwSWzcQq49kpJvYFJqYaE3uTiZ00RmDZTKwyfk5NNYgFJqYaE3uTiV0jE9OymVhlPDvFxKHAxFRj4mAysWtkYlo2E6uMn1NTDWKBianGxMFkYtfIxLRsJlYZz04xcSgwMdWYOJhM7BqZmJbNxCrj59RUg1hgYqoxcTCZ2DUyMS2biVXGs1dMHApMTDUmDiYTu0YmpmUzscr4OTVfD2IsMDHXmDiaTOwbmZiWzcQq49krJi4cq0FcY2LzXA32jUxMy2ZilfFzaqpBLNRCXGNi82AN9o1MTMtmYpXx7BUTx4IX4hoTR9ML+UYmpmUzscr4OTXVIBa8ENeYOJpeyDcyMS+biVXGs1dMXDhchrjGxObpMuwbmZiXzcQq4+fUVINY4AGuMbF5vAz7RibmZTOxynj2iokLx8sQ15jYPF+GfSMT87KZWGX8nJpqEAtulGtMbB4ww76RiXnZTKwynoNi4sIBM8Q1JjZPmGHfyMS8bCZWGT+n5utBLJwwQ1JjYvOIGQ6NTMzLZmKV8RwUExeOmCGpMbF5xgyHRibmZTOxyvg5NdUgFphYakxsHjLDoZGJedlMrDKeg2LiwiEzJDUmNk+Z4dDIxLxsJlYZP6emGsQCE0uNic1jZjg0MrEs+5wfeVXPU3VKyOv3t1XtVDiWhqTG0Oa5NBwaGVqWzdBqhsyprAaxwNBSY2jzYBoOXxn6h9Xj/s1+t7p/fNju9m/er2/3Z179OF3uGI+huNnsnv/Iy7fhbBcR7cLDXSS0iwB3kdEuItpFnNAuEtwFoV1kuAsGuzhdNNLYhaBdENyFQ7s4URyhrQuPdiFwF+jsPn1w29gFOrtPn843doHO7tNHb41doLP79PlqWxcJnd2nD08au0Bn9+kTssYu0NnN8OxO6OxmeHYndHafCszGLtDZfWqpG7tAZzfD9+6Ezm6G790Jnd0M37sTOrsZvndndHYzPLszOrsZnt0Znd2nhXljF+jsPqW1xi7Q2S3wvTujs1vge3dGZ7fA9+6Mzm6B790Znd0Cz+6Mzm5BZ7dM6OyWBHeBzm7JcBfo7HYT3AU6ux3BXaCz2zHcBTq7ncBdoLPbobNbJnR2Ow93gc5uF+Au0Nnt0MpcCJ3dLsFdoLPbZbgLdHb7Ce4Cnd2e4C7Q2e3h2U3o7Pbw7CZ0dnsHd4HObu/hLtDZ7QPcBTq7PXzvZnR2e/jezejs9vC9m9HZHeDZzejsDvDsZnR2B4a7QGd3ELgLdHYH+N7N6OwO8L2b0dkd4Hs3o7M7wPduQWd3gKeeoLM7wBcQQWd3hMtmQWd3hIt/QWd3hG+sgs7uCJcHgs7uCN9YBZ3dES4PBJ3dEZ966OyO8AXEobM7wmWzQ2d3hIt/h87uBN9YHTq7E1weOHR2J/jG6tDZneDywKGzO8Gz26GzO8Gz26GzO8Fls0Nnd4KLf4/O7gTfuz06uxN87/bo7M7wvdujszvD926Pzu4Mz26Pzu4Mz26Pzu4Ml80end0ZLv49OrszfO/26OzO8L07oLM7w/fugM7uDN+7Azi7X2zM2jb1gqBdwLM7OLQLuDIPHu0CrszRtWoMLyQTdK0aw8vhBF2rxvBCMkHXqjG8HE7QtWovNihrm3roWrUXO3A1doHOboIrc3St2os9lBq7QGc3vJBM0LVqDC+HE3StGsMLyQRdq8bwcjhB16q92Kijceqhs5vg2Y2uVXux1UJjF+jsJrgyR9eqMbyQTNC1agwvhxN0rRrDC8kEXavG8HI4QdeqvXhhtW3qoWvVXryR2dgFOrsZrszRtWov3qlr6wJdq8bwQjJB16oxvBxO0LVqDC8kE3StGsPL4eRkrdpqt9l/vFvvN9dvrrd37zf3x3dJznTizC74/IsxX1v++m7M4y94Oea7X/JyzL8dvrR9WO9Wz7/j5d/NH9k+7R+egJ7/5fIz9EKNfn1GbXJgvU3j0+FV76tLPjRufCK9fl3q/Ns1crJMEHqxxrXlztdr6jwwj/vV/b6YOS+68KqL87nzw+Z2v949HscAi/n19ul+P/d6dbm5v1n/9XmYgNfY1Ovj+fWrhSGUXiRs/L4RuYiOre9pbAtbIUg2xyQB2ezhbM7oiIeORtwVtj5w1s4G7mTdaeOYxJ7GpLAZgXk+jztZKAu95teUhe5kjSz0hl9j64LGM/UUT1bX18Jrw+c/bcTcoeOWexq3woYETswxQWqLBGdqAFrPcOvo3fVUin378SxUJc6Z8UzomFBPY1K6EtjzPrdn4WmKtGXhybpv6A3ixtYJjSf3FM+grt6FDQrOf/p8zE/WsTeOm/Q0boWN+Fw0x0SATGU4Ux3QusCtezSePVGqK2zr55IZT5TcqSe6LB3IZp635k5eaIC2KWjMQoBdycOto+xKPbGr3tg7F8jt/KfPx5xRvqWe+NaXRskeE4BvCeZbBviWYL5l5D4FUwOjFEg90bMvbAzo2cwW+O7aExmXjjU0Ty10DLArwWTMKLtyT+yqtjIOIap/KdQ8rd83IocyMPfEwL7AwN5kYEZrC+6JI32BGr3JiILWDdwTI5YOsjTPqXSC+gbuibPU1rqhdMTV+U8b44b6Bu6JxXxplOwxQZ9TcE88EwrP4oL5LE7Q6pN7YpXSwaHmuaBO0OqTe6rI1basYSplztlPG+OG+h/uqWoPhao9mFW7oHW19FRXl1aqmKtQnKD1sPRUD5eeDtvPggWth6WnejioJyWlgyTPf/r8uDm0ZpaeauZQqJmDWTM7tGaWnmrmEqfbDO7Qelh6qodL1GAzgkPrYempHo5qXWQk9S8FO9n6fWNs0bpaeqqrS4fQmmfMOges7RH4GYAD/KjAzwAcXMf1xATFeWDnOFzH9VTvlw6ZNc+QdQ5Y2yOwpffA2h6Bn0R5tG5wPbFKVA6/GOGznz4fc4/WFq4nnikdNGueI+s88MzUwWvcPLC2x8Fr3Dzqf1xPLFY6ttY8ldZ51O24njirdJCseU6s88DaHgevX/PA2h4Hr1/zqG9wPTFiVE9KpgIhnf/0+ZgH1De4njiydJhstMcEWNvj4DVuAVjb4+A1bgFlYNcTA5eOpjVPnnUBZVfXE7uWDos1z4J1AWBXB7NrANjVwewaUHZ1PbFrUk+oYuGpxPlPGzFH+db1xLelA2PN82BdAPjWwXwbAb51MN9GlG99T3xbOn7WPF3WRZRdfU/sWjrg1Ty/1UWAXT3MrhFgVw+za0TZ1ffErkk9GSR9PS/FvPH7Rl6gDOx7YuBUYOBkMnBEawvfE0emwrPGZD5rjGjd4HtixFRgxGQyYkR9g++Js/QeLCXLdv7T58ctob7B98RipTeu7PerElzH9cQzufAsLpvP4hJcx/XEKrnAKtlklYS6ndBTvZ/1E6rCHfz8p41xQ/1P6IkJcqE+zGbtl9C6OvRUV+fS3cq+N6H1cOipHs6l2WTPHbQeDj3Vw1k9KYmFCvn8p41xQ2vm0FPNnAs1czZr5oTWzKGjmpkLbx2w/Y5BRuvhEHsaEyqMiVkPZ+D5W4CtaQaevwXY+Ga4Rss9xZML8TRr+QzXX6mnMZHXdwVW71IXnkM3f98YW+A5XoTtawae40XYHMO7t0bqKS9cIebm84uM1g1x6mlMfGFMTFbJwDO6iK4c8hPwjC4y3DrqdqL0FM9QiKfFWX5C3U7knsZEXb1TqTI8+2lj3IDneNHDmQo8x4sObh31DdH3FPNUiHAy44n6huh6GpNSzZPNMQHWoMYIZyGwBjUGuHWUb2NPLEeFqxiZ1yxC+Tb2xPyk3qArrMYzPm2MG8DAEWVgTwADxwS3jjJw7ImBqcDAxGY8UQaOPTEwSWFMxBwTgF0TwVkIsGua4NZRdk09sSsV2JWcGU+UXVNP7EpeeZpC1Xf+08a4AXybYL5lgG8TzLeM8m3qiW+pwLdk8i2jfJt64luKhTGJ5pigNUHqif+odCUw5z28U27qif8oq2pXrU1Npbqh8fvG2KK+IfXEYlxgMTZZjFHfkHpiMS6QF5ucBe8TnHpiFS6wCpusAu/vm3piFVbP2wpvmhifNsYN9T+5Jybg0iiZYwLvAZx7YgIuPM9ib44JWjPnnmpmLtTMbNbM8P6+uaeaWT/Rl0IVff7TxrihdXXuqa4uEbbN0/AewLmnupoLz1XYfK4C7wGce6qHpVAPi1kPw/v75p7qYdFPGwp3q/OfNsYNrZlzTzWzFGpmMWtmeA/g3FPNLAVOF5PBpd1r8gT7fTcBrcN+H91z9sUf8O3Hs1DLi1nLo3vOvhj2b39MlLHXb1cX3ilu/r4xtgJkM/wMwDmgdfgZgPNoXvTEM1LgGTF5xgV0THrimRK92KziIpCF8Po1l4DW4fVrLqPx7ImzpMBZYnKWn9Ax6YmzRD9/KI3S2U8b40ZApsJr3DwDrcNr3LygMe+JI12BI53Jkd6hY9ITR7rCcxVnPlfxHshCeP2aD0Dr8Po1H9F49sS3rsC3zuRbn9Ax6YlvnXrK4wpV3/lPG+MGMDDBDBwABiaYgQPKwNQTA7sCAzuTgQPKwNQTA7uCIXSmDwwAuxLMrgFgV4LZNaDsSj2xa/EqZl6zAsqu1BO7Ov3GVeGJyvlPG+MG8C3BfBsAviWYbwPKt9QT37oCuTmT0yLKt9QT37pS1ps5HuGaoCf+8wX+8yb/Rbgm6In/vHoyqK+JuTRujd83xhb1DdQTi/kCi3mTxSLqG6gnFvOFZ43efNaI7hPM3BOr+AKreJNV0P19mXtiFa+etxV23zQ+bYwb6n+4JybwBSbwJhOgewAz98QEvvA8y5vPs9A9gJl7qpl9oWb2Zs2M7u/L3FPN7NVTnly6g5/9tDFuaF3NPdXVoVAfBrP2Q/cAZu6prg6Fu1Uw703oHsDMPdXDoTCbgj130HqYe6qHg3raUNg92vi0MW5ozSw91cyhUDMHs2ZG9wBm6almDgW/H0y/f7IH8Gq32X+8W+8315VRcbZ+PD8mX1t+N//4ZvPlj/lhs3vcv2sepu8Pw/S4PrTR/qXvDl/aPqx3q+ff8fIf549sn/YPT0DPf7w8DF9rLPxhh+Drze76abN/DsAxkmx8XA6baJ5+3L5DfK3Ub9bXm5v1rhKqgIbqp2b/H+L0L89z4O5htTv+NW8v//s//+sXhOr753YePr07Tqh3P+y2d+8293Mbl2/3u6f1r4vj1asP2KJVRbWcBKovUn3F1ixB2aV8xPz/4nXu+5Pr3OEt7i8Xuiugke9OGjk8JP+pEUaulmdGuzmO5rif7Pf8sNt+2K3u7lbvb9dvHh/Wqz+vz70ocLpojo8Df26of+78y5z8BVPyj79kSn6vpuQfjv/y0+9z+Of5qn7Mgp/j9+7H1e3T+t3m8d3DZn/98fLtD6vbx/UhSI/z5Lubh+x5Lsxdbffr5/F0wJSUwvb/8rz9/zzML36xh9vVp/er6z+/+3F7+3T48+Y77Jd/+3C7fb+6vf30fG24upz//+1f3j1sbz89fNzef/rp9/98+MF6p/7kj/Nnjz/48nce/2l7/+5u9fC1ycM379aPj6sPh8G9PJ88hCbP6ZOGkTwtyePIvlwff9Zt8gB7vp3KcWl6fpyBvUlPNXNj68DepKfisbF1YB+yU9Xb2DqwD9mpDGtsHdgv81Q/NrYO7Jd5Kl8aWwf2vTrVXU2thwm+055qgXGxbLpYig2Ux591erEME7D95mnaNKYmcinOcOvApVgmuHXgUiwEtw5cioXh1oFLsQjcOnApFge3DlyKxcOtZ/Ri6QaWoBdLX6gsfb+VZSBgh0kPT1pkJ2QPT9qTnZAbE//0LxiJ35T4hSOsXey4SiDkYHX4mkzIwerw/QTZfNnDxTey+bIPcOvAndbD9RMBd1oP137IZr8Brp+QzX4DXPsxcjAbfClm5GA2+DbCwFwN8FxlYK4GeK4yMFcDPFcZmKsBnqsnG2w23mDDwHD0BpvtZ93Hn/V6gz3ZibQxeU63lB/J0/SYq7B5tX/evLrT5EG21YevyYJsqw/fTwS40yb4ii/AnTbBV3wB7rQJrs4EuNMmuDoT4E6b4epMgDtthqszge+0eaAserEs7A7on3cH7PNiKQD0ZLi0B3YCfJGUba0DOwG+2P62sXXgUpzh24gDLsUZvtADu8q92Ny0sXXgUpzhC71DLsXwhf5kf7a2i+WLDU3GxbLpYll4hcT7jitLh95peazDgZMnFu60seM7LbJPIeFXfGS/IfiK75H9huArPrIvHsFXfGRfPHj9U/DAHjjw+qfggT1w4BVKAdmrDV5dFZC92uAVSsEDe67Aq6uCB+YqvkIJ2RsMXl0VkL3B8EUmAZir+AKZAMxVfJEJsl8VvkDmZL+qX7DCe/rdFge/8QLveaATxynEEDJFzsKBYk7s8jwvXYxRZIo+UIpOUp7v2k4Oe0x8e/XEyQ5mrfl2Mh/p95pvHnm+MtlvXB5/1mstGgL8QgGP3MFyh6jwPgF1nDuwbj6te8d9riV32N6X5PizpvtcmMhP880rS07z3Y2nyEQiMUyefXIu5zkykeYybeIo3+xtLv2adBuXqt8o3b7NSxW8uvkUFUfuNL0JUrjNSce3uQi/RiSjREJzp7AwXjpeGB/h93UljBIJK5FcAc2c/K5KpMi/Jt3Gpeo3Srdv81Il8Atgo7wGc8cXSiTfc4kEG283DCSYO6GAZqFjNIv+17x/N0qk3+j1u8WUSLDw9qNEAi9VsUBzsWeaw99kGiUSmDupUF6nnstr2F6HYSDR3CmUSKnnEin/mjcoR4n0G71AuZQSKcHCOw7hjV2q/FRY2zx1vLY5wcI7jvIazB2aCq/rTh3nDmyv01g3id3mPNu3uePPfk+3Ofk16TYuVb9Run2blypYeKchvNHcKbw7yB2/O5hg4Z1HiQTmjoTCS/qh49zBX1oeS27BEskV0Mzx76tEir8m3cal6jdKt2/zUpXg3BnlNZg7hdPKve/ZBGR4e4VhIMHcCYUSKXRcIsHnK73YBWGUSL/RzhxLKZHgE5l4vJWEXqpi4VIVe75UMZw7X0ukw8aJv8/cEehwxkKJlDoukbLAuZNG7oC5U7DXqWN7fXKY2uPT+8f985m35171/zlf3Pxb3a83Hz6+3z4dj/Okq5D9n8427tsaP2yfazTOV4dfMeRwvoPQ1sFhmy2jAzn89vP/4vkOYlsHIZgdHH/7+X/pfAeprYPkzA6Ov/38v3y+g9zUAU92gI+//VWcpnMdxJOj1YodsB3k428/d0DnO6C2DsQO8uGXnMd/nsGb/fpubuj9fLF42G3uD7v83K7er+er0uU/by++29zc3K4/Xdys77bzT36cJ9yxA07kYuaYArsY0ufP/wM2nX+n
How to use
This one can be expanded(or shortened) by copy pasting more lamps on the left with overlapping blueprint ( easier to add 8 lamps when copy pasting 16 ) for belts to match. It uses the constant combinators under the lamps for both easy wiring of the speaker, and counting the lamps for the machine to update itself after a change. There are more belts to help count and vizualize time. There is only 1 place for setting, that is the right most constant combinator. It only has 2 value "T" and "D" , increasing T or decreasing D will make the song faster, decreasing T or increasing D will make the song slower.To make music, change the speakers positions and sound
How do i export my mixtape ?
- Tiny Rock box.jpg (75.65 KiB) Viewed 3067 times
0eNrtWctu4zYU/RWDQHd2RnxKMjAF+thmU8yuCATZpm0iEilQVFoj0Af0P/pl/ZJeSn4oHvmdTINpFjYsUry8POfw6tB6RpOskoVV2qHxM5rJcmpV4ZTRaIy+VFYPjP5k5vOBW8qBM8Ugk3M3mBpdulT7H/lE6dQZO5jDp8jS1acirUqJhkj5u9D492dUqoVOMx/frQoJgZWTOdyh09xfzeRUzaQd7YKhGobrmfwTjXE9PBlgk05/BFI/DJHUTjkl23yai1Wiq3wiLUyxDZTLmarykczk1Fk1HRUm8yspTKlaSJ4RBKSc3PEhWqHxiEXijtc+xb2Y5NjqeiLiXUQGqc+UhRSaG9jQr89ZkyUTuUyfFARomGrCJtA3a0KVvnWubOmSr+B6UtZV0LJNqr1j9MXDtEEPgGA45L4hL1LbZDpG//z1NwwzlSuqywMXK8iv0i6ZW5MnSkMMNHa2knU7r24X2aSO/ZeVsy5DatYgOVV2WinXXnbA9te0foBY5LzBeG8wDvb7H+o+NulRqR2nk4NAXhAq+gmdq8xJe2DDnMC58uxFQWfTPFwN8CEM2IWKZls97wNA3lDRqV65pdILj0spfajzx963YHbE//kK6XczeJ0dIHwBW1gp9X4PPyHvHmoP75XoAPH8WuL5B/G3ER8eJJ5dQmx8gFhxaVXrPPbYW1a1nzpVDZ9wAodi/NKJQcNtEHpJZWTnVcbwBhzf9OnwcxcD2jVE52PAz8Mg2s5dWLOwaZ6nk0yOykKmj7IXBL4vpr5lb6beloYbK8PO6wR7O/7Hpns9nW/OZQv4Bu/kKQWnnKgyKZSbLtF4nmal9KCWsK1zwGPzNNXGyTVYV2vNcwSDXybi7fUknT4mTyar/BKDOyIo5mEUs5CKiJEgjDknIYljLgIWB4FglJAYIOY8wgFnIvIObxtokZlJmmWrtjQNEfw2fyRge1fF0ujVepG175D2K1yWcG/TsQWjaTI6ydNiF9KPzGVZpgvPCuqTT3yLfPiHfPa36f9MPt7Hr1lLrXJLmARObyeK8EY+5Eybsov8CoeutUXZCYoQANYUEgTVHr4/XWFBwMjccrLamohez4HxeY8CjC8ng/1XZNz3koHFSy5+eF0u+uENjh90LzPzmO0PF4foItf6e/rh72/z95ieb/CHJ/fiETHwQ9zTG6wr/WZHgPDKM0DX/7L4Ov+Lz/x7BLNbLAx5Uwtzf9y7fH4D78Iv2Qb4OvPCMDgVSigNIhIGIqQRCXDIA8oCTggRIiaMRphwgQPKMRfkXXoXfotw6HfqfVl9/RY9Vz+0UQ3IZK0jkAiJYmiLwA7HofCGF9oiGglCg3frfcXF+mE7/eBvWXii76Tw0DhisSAsEAGGchPykAjQDpyZoAgJzuAYxWhI4MzEY/oORAMmo3lhNu687BuiLJ3IzL/lU3o1+M1MHwe/ytxAxxPM1/q5CLMwJiHon4Uiqut/AYIjm2M=
This is an example of manual compression process , from the simple rock box version, there are only 3 differents sounds, a kick a a snare and a hi hat, but sometimes sound are played so close to each other that the second one can't be heard, and if using "allow polyphony" it can happen that the music is too slow and 1 speaker will play twice its sound. Apart from that, it is possible to write the position of the notes, that's just a number from 0 to 63. The kick exist at position 1, 33 and 37, in the simple version, but 33 and 37 is too close for this tempo. So it is made into 2 speaker, one only for position 33 and one for 1 and 37. The clock is the same, there is just no more array of lamps and combinators, instead it's just 1 combinator per speaker, that will check if the constant combinator next to it contain "any" signal that would match the current lamp that would be lit, if there were lamps.
The hi hat had the same process, but since it is repeating on every single half note, it is possible to use the current count of position, and do modulo 16 this will create a clock that count from 0 to 15, and the hi hat speakers are made to produce sound when the count is 0 or 8.
The compression process at the end is not necessary to have some fun here are some creations that were made on the simple machine before i thought of making it easier to use:
"funk demo"
0eNrtndtu5LgRhl8laCB3mo1YxYNoIHdB7nK3d4uB0fZoxsL2CX2YZLCYB8h75MnyJKHa9lhukWL9Y2czkXmxi3F3i5SqilTVR4n/b4ub1and7bvNcXH126K73W4Oi6tfflscuk+b5ar/7Phl1y6uFt2xXS+qxWa57v9a7rvj3bo9drfvbrfrm26zPG73i6/Vott8aP+xuFJfq2wbH5eH47vjfrk57Lb747ubdnUctEBf31eLdnPsjl17f0rnP75cb07rm3YfuvjW0OF0czguj912ExrfbQ/d+Z+h2/5EnK4WXxZX7wxzaHzTdp/ubranfd8kVcTmfX+mF02TrGlPyaZVxaFxG2ucRY2TqifOW4fGXaxxLWucmmTjXNnQeBNr3HxrvA+T43JzHDp/3Av7n8xjP/STCT196Pbt7f1PwpmGVo777er6pr1bfu5CE+G4j93q2O4TMfi52x9P4ZOnizz/4t3Pfdzcbk99EFszCML35883m/tOD31Tqv/fvv0wDKku/OWCvW+7/e2pO57/7g/+GjGClVlY26SFdaVs1HkuM7wiwW2fLKxE9n1q+Tp8/aH7ZpeP3f5wvMZMfmj7Nq4fo+E8Jre7dn9vlKvFu3DY9nTcnbCGvya89mnftptLvzXP3UZnn1Py544Tfm1w47s3b3wPGv9yiFXPv9YJ33jcN82b942qMec0Gee4hHP6flDv+OIdhXnHZ7zTpLyjYO80dfEOYd5R9bR7mlQ2oQh3jyruYdA9KuMeSrmHcfdQcY8G3UMZ95iUezTuHi7uMaB7OOMem3KPwd2ji3ss6B6dcU8ycbO4e0xxjwPdYzLuSWZuOA5oCg5QIA+4HG0j9/iUe3Bg0BRgoEBioDLIwNcp9+DMoCnMgEBmoDLQwKfqHsKhQVOgAYHQQGWogU/VPYRTA1+oAYHUgDLUwKdYNeHUwBdqQCA1oAw18ClcTTg18IUaEEgNKEMNfKruIZwa+EINCKQGlKEGPlX3EE4NfKEGBFIDylADVSdTNxwb+IINCMQGZHL+SeZuODfwhRsQyA3I5vyTgtaEgwNfwAGB4IBczj8pak04OfCFHDBIDqjJ+ScF3hhHB76gAwbRAWXQgVIp8sYwO6C6sAMG2QHXOf+k8jcm3D8FHjAID1jl/JPK35hx/xR6wCA9YMr5JwXfWOP+KfiAQXzAnPNPir6xwf1T+AGD/IBz/ECl6h+2uH8KP2CQH3COH6hU/cMO90/hBwzyA87xA5XC19zg/in8gEF+wDl+oFL8mj3un8IPNMgPOMcPKFX/6Br3T+EHGuQHnOMHlKp/NM4PVOEHGuQHOscPKJW/aZwfqMIPNMgPdI4fUCp/0zg/UIUfaJAf6Bw/oBS/1jg/UIUfaJAf6Bw/4BS/1jg/UIUfaJAf6Bw/4BR/0zg/UIUfaJAf6Bw/4BR/0zg/UIUfaJAf6Bw/4GT+hvMDVfiBBvmBzvEDTuZvOD9QhR8YkB/oHD/gFH8zOD9QhR8YkB/oHD/gFH8zOD+gwg8MyA9Mjh9wqv4xOD+gwg8MyA9Mjh/oVP1jcH5AhR8YkB+YHD/QKX5tcH5AhR8YkB+YHD/QKX5tcH5AhR8YkB+YHD/QqfrH4PyACj8wID8wOX6gU/WPwfkBFX5gQH5gcvxAJ/M3nB9Q4QcG5Acmxw9MMn/D+QEVfmBBfmBy/MCk+LXF+QEVfmBBfmBy/MCk+LXF+QEXfmBBfmBz/MCk+JvF+QEXfmBBfmBz/MCk+JvF+QEXfmBBfmBz/MCk8jeL8wMu/MCC/MDm+IFN5W8W5wdc+IEF+YHN8QObFADA+QEXfmBBfmBz/MCm+JvF+QEXfmBBfmBz/MAm6x+cH3DhBxbkBzbHD2yy/sH5ARd+4EB+YHP8wKb4tcP5Ab8pfhAR9zE5b+RogU3Raqcm9awmJXt67PbcGzbWA6E9OLSHgSTVerlavVst17vMqftzw7HQebTjt7j5jrD52yBsUBWo9W65P4+Dq8WfF0CMOD1yetNrkEmUbCh2aDxetNDWbta25oi6TCUWeIoa1qDDpEGHiUV78GgPThgczZsaiC49Dr0wOBqhYf2sDesisjSVXD0qalkPDoqBupBsUDQ12oNCe1Cy6Bie+gyjoxmr4lze1Xw6XlTujpjikQ0Jra/mbP0mJnpTydWpopZldOQQOnI02gOjPRhhdNCso4MimjuVXBwrGh1WaFmetWVNRC6nkutaRS0rTOMGYkdztKwdK91c3BNcnba1ydxPXGr9pBHmegMtozla30WEbCq54lTUsl5o2VlzglEY+4kodjLL+lpo2VlTgRCiY/mYSq7zFLWsNLefdUkdQnSk/HI5n07kmz43F6dYtZfm9rOuu31M2KWSKzBFLStktn7WNesojHtNlkounhS1rJDQ+lnXo54jciqVXPcoalkU0Xq0HvUoovVoPeqFub2fdT3q9VjN5eKe0KSzorEQU+TYeAQJc3s/65rVu5hYSyWXVYqaFgW5A9Ed2dBRNUpyB7ox0i6E6Z6fdek9Ho29WkwlF3aKKmrWwmTOz7qw7sdaROqlkssyxY2Lslpv4bGBwlrv4C6EtNbbeYcIRdRmLu9xE1N27umCRiXDSAh1vZu3A0xMTqaSSz/FjevQAdTAA6hBu/BwF0KK55t5h4iNKdpUcvWpaIgoIcjzft7G9TE5mkouHRU3riy5G8oJzdG4qo5oyVzeIdL5HudW6pu0A0joADVvB0TFYiq5sFPcuCw0Ls3buBRTeqnkqkxx42qhcXnexuWYTEsll1SKG9cIjavnbVwd0Vi5nFvTFJVzK96NSzrACh0w78pcmZiISiUXPIob1wmNO++adhzLKv1YLjupcRuhceddryoXky+p5FJDceOCSHeoQyMsJqlGu4DrVZJm/fOuV1UTUVC5+MRPZP25NXyfDCOSZv3zrmkpKpFSyeWM4sYFue9Q60Y6gDTahYK7EGaAat6V+XhEUvo5Xa2kISLM7tS8q24yMYmVSi6HFDeuQwcHwYOjQbtguAsvDJF5swOyEZWXy/tcGtXo3HMJPrWngeJa6IB58wXyMRmXSi65FDeuQgcQ/GgCE9oF/GgCC/memjclGY9ITvM9LX02gYV8T82bgDDHZGAquWRT3LjS7G7eBIR1RMPl8g4xEcu5VX2vkw6QZoDzpiRsYiItlVxQKW5cId9T8+YL41jmNN/T0vVwFvI9NW92wC4mj1LJpYzixhVm/TTvqpubiLbJ5dw6Ye7cerhPvbmutDDrp3lX5uxj4iWVXGgoblwh96V517TjWNZpymuk6+FayHRp3vWqjsqGVHKJn7hxUaZLcL2qUaZLcL2qhVk/zbte1RRRLqku3tlLZ/0ms6p/PjYRRsKsn+Zd02oTkyap5DJCceOi3Jfg5+01yn0Jft5eSzPAeVfmoxF5Vkep5EpG0RAx0uxu3lW39jFpk0ouQxQ3Lsp0CX42waBMl+BnE4yQ6dK82YGpI+oql/e5icTK5+6RJhlGQu5L8+YLhmPyKZVc6ihuXPB97aEOjnQAWbQL+NkEI+R7PG9KMhqRZwWXSq62FA8RId/jeRMQ42LyK5VcKiluXGF2x/MmIKaJaKdc3iHSz9lYzt1dUnt7KyvMAHnelMT4mDhKJRcyihtXyPd43nxhFMtnZZNKrkIUN66Q7/G82YGNypJUcgmhuHGFWT/Pu+q2FNEUuZhbJ177tJn18POxCQcIs36ed2VuOSYaUskFfuLGFXJfnndNa3VMA6SSq/PEjStkujzvetWOmK5N16tOWq8OlL8Op5vD8V5fZmzcHqw/VJDIOY+wP8eqpHAKbffp7mZ72of2frFV8OX76Nk+lU6PyjiTKj7P5FfsqPT9fu0NGr3aRROPrUsPT7jIgxc93HP/BRc9sdtKejOVgdKS8GT165ysG5l49AlNCKYID09cNCpoNLxoJyIysKLRcKtmYRfw1vcW7gLe+97BXRg0AJtXCcCJfXd9erSgey8OT1ZoD3QDnuG+ssIu4A14argLeKc9hXbRoDPXcLvKlwTOeOppRlPPhJqP8PB4AA5kXIQX/To31Kn931R66WKgeyI63Wfb2rzkdEfbl5Ca0nWJ/jpxSeiDLzU8eFDFkWd70Qi7QJc9hjuyCLtAlz2G+5IIu3BoeOlXCi8zGrITG+THf50IL/SBihpOTRr4lXk4NfHwK/NwauLRxfUaTk08PHu9Tmoyfg2bJrZKSPw6Hl6DLdVll6TolS7Jj06SJi4p+uvEJWn0kl7plsjjYT2qGyde3xUfn7hsdAZX+BBDZ3CFDzH41WQ4ofbwq8lwQu3Biv/Z2wovCsGp8EqFDqF7VD87XZFFqIYffVJwF/CjTwR3AT/kzHAX6OxFr5TC6PHsM1rZ4ImkRnp8IgQNetmvdGudeK7v/F3idC14uvxKt00zvhFOFGLxXycuCZ15GR8+6MzL+PBBc1lG02VS6GzJBu5CoeH1SinMxErx+bt46Ch05mULWwSdednBXaBVNjdwF/DDhR7u4mlm2u23n/bL9Xp5s2rfHXbt8tc2t8Ri/k+W3Z7WoPqP1+2x3Z8D+/6Y68/L1am97g7Xu+54e7e4+rhcHdpq0YWhtD+tg8nuJ8PQ1fbY3j+OC63kNROjpLlfEHt+XrvV8svN8vbX68/b1am/uvon7S3p2tbK1OyMZ8/hftMoXYcmdKgFQp4aPg1Zm9WN5p6Kf2vk02p7s1ytgsvC5YTrCv/e/v16t1192d1tN18ervdr/0W7H5noLvz2/MU3u5w/2m6u18vdU5P9kev2cFh+6p2xiA98hwbbcOGkBJsk2Kb0Qu/1QN9KsDVosA0Bfwk2SbBNCFg9CFS9lWDzYLA9w/ol2ETBNgH8GnpDwTbYUFYabOU2urhiKNgmJM7vNxkXBBs7b70n3Siqua6daYxxjkm7xuuGVV2r/jNnNHtt+LxF6A8YbgoOt6aEGza3TexK/LDr8P94bus//j1ijdBYUyVpA6e2id09H3bvFMSacuSZmOuGXG1dH1FO1dSHHNmaOExwJnymrGJn/Y87tzEcbwV/oHObnog3/ZbyNo0GG5W8DQu2qW1mHraReSvBZtBg43InRYPNTgSbFQZb0xcGoaZ4LBXC/yiEWO0cWa1c+KQJX1ilnba1/1Gj7UXLCPxWo039/ssIpOqQoYUJra9BHWtTa+fZhlzONrVX2nOjdT+/WRX+qu0Pmre9aCWhxNvvtpLAjSPV1NooRS5Mbi7cmGpVa61DFBobbrLahM9CtGkKIfmjlgkvWkugUpaWtQQg2PxLatIyt5WaFAg2rl9Sk5aZrdSkSLA9rSQs993xLvTS3U4/qaaH0ZaItae2nsLt8MJ4e3yO7n4/me2u3d+/KX+1+GM4bns67k5Yy0jAxPSwqwUlC4PUi8o0kOyRG/zR3HX8wcD/mvl/jpr/DDKG9v/T72B/jdh/tMeBSroDfXtGPz3QqhqhOz52q/ux+8vj/CafNU+9xVX/fH+3+dD+43wp4d+H676/x1nie62YNssTF/3Q3nYf2r0wRJUX2uSh2VeIz6fAVFr3hnp2q/n3P//1HdH50PDuy/XZA9cf99v1dbcJbTysu70odC+fqedMMI+8Vk1PTmm3GtFWI+dNAu7daS53BlEVsX0fbdzKGu/fwUs0TlV/isQu3oFwo5T+8e5EB9yfffiviXfQyDroa89EB7o/+9TmKTSUPhFt9RKxv3X359/PAsd2HZq6CanSbt9t+sePV8ubNgT44q+nza9/+Eu73obPPoe559w4heTE+VD0h7zF2ebr1/8AvJBZVQ==
Trap (music) with the simple machine too:
0eNrtnd1u2zoSx19l4WvlrDj8EBlgH2Hvzt1BETiJ2hrrLzh2d4uDPMC+xz7ZPslKTto41ow4/yZY1CovzkHr0qQ18yc18xPF+XN2uzy0291ivZ9d/zlb3G3WD7PrP/6cPSw+refL/rP91207u54t9u1qVs3W81X/t/lusf+8aveLu6u7zep2sZ7vN7vZYzVbrO/bf82uzWOV7ePj/GF/td/N1w/bzW5/ddsu9yc90OOHatau94v9on36Sce/fL1ZH1a37a4b4ntHD4fbh/18v9isu863m4fF8Y/dsP0PCbGafZ1dX1Fqus7X7eLT59vNYdd3SRV586H/pWddk67rGMSuTWW7zonr3Ko6p9qN/G7XdW65zp2ucyKxc1uFrnPHde6/d97LZD9f70+dPxzF2t/8t3HCb74b6X6xa++emnS/tOtlv9ssb27bz/Mvi66L7nsfF8t9uxM0+GWx2x+6T14u8tji6vdeN3ebQy/i4E9E+OH4+Xr9NOhD35Xp/7dr708ltej+FlLXdLG7Oyz2x7/3X35kjBB0Fna1aGFXmdBw9m0y02uowMa8WFhn35eeb7p/vl98t8vHxe5hf4OZ/KHt+7j5pobjnNxs292TUa5nV93XNof99oB1/Ch47dOubdfnfjP1a7/R0ekkto/nbq5e/XNjBb9H3Dn1L++cBvNN4wTjJ9z4tswMwqx/PpMGU6MRvNN/EXUP/fLuSeDcyDgnSs4xuHN8mTsWnDs07p4ohROGcPe44h6DuSdlvEOSdyzunVC848DJYzLu8ZJ7HO6eprjHg+6xGfcEyT0ed08s7gmge1zGPWLYFnD3pOIeMKc5n20D94iBG44DYsk4TQTdEzLuSZJ7cCAQC60xYNZjMmlPqiX34MgglpyUQJhmMjQtSWkP4cggFqJDYNpjMnlPkvIewqFBLFkpgcCNMsAtSSyacGgQC9MhkOlQJi1NEq0mnBrEQg0IpAaUQW5JynsIpwaxUAMCqQFlqEGS8h7CqUEs1IBAakAZamBqMXTDsUEs2IBAbEA+5x8xdsO5QSrcgEBuQCHnHwlaEw4OUgEHBIIDanL+kag14eQgFXJgQXJAMecfCbxZHB2kgg4siA4ogw6MkcibxdlBKuzAguzA1jn/SPGbxeFBKvDAgvDAmpx/pPjN4vQgFXpgQXpgKecfCb5ZHB+kgg8siA+szflHom8W5wep8AML8gOb4wdGyn8szg9S4QcW5Ac2xw+MlP9YmB9QXfiBBfmBzfEDI+FrG3H/FH5gQX5gc/zASPzaJtw/hR84kB/YHD8gKf9xNe6fwg8cyA9sjh+QlP84g/un8AMH8gOX4wckxW+OcP8UfuBAfuBy/ICk+M1Z3D+FHziQH7gcPyCJXzuH+6fwAwfyA5fjB1bi187j/in8wIH8wOX4gZX4mwu4fwo/cCA/cDl+YCX+5nB+YAo/cCA/cDl+YMX4DecHpvADB/IDl+MHVozfcH5gCj/wID9wOX5gJf7mcX5gCj/wID9wOX5gJf7mcX5gCj/wID/wOX5gpfzH4/zAFH7gQX7gc/zASfmPx/mBKfzAg/zA5/iBk/i1x/mBKfzAg/zA5/iBk/i1x/mBKfzAg/zA5/iBk/Ifj/MDU/iBB/mBz/EDJ+U/HucHVPiBB/mBz/EDJ8ZvOD+gwg88yA98jh94MX7D+QEVfhBAfuBz/MBL/Drg/IAKPwggP/A5fuAlfh1wfkCFHwSQH4QcP/ASfws4P6DCDwLID0KOH3iJvwWcH1DhBwHkByHHD7wUvwWcH1DhBwHkByHHD4IUvwWcH1DhBwHkByHHD4LEdwLOD6jwgwDyg5DjB0Es0IDzA1v4QQD5QcjxgyDG1zg/sIUfNGB+GnL8IIj5Kc4P7C+VnzLFY3zu8P5cthMkWt3gtMAWmhNA2hZyNCdItLoxo/Wsxkv20HlRpMCNQOgINTrCSUmq1Xy5vFrOV9vMT7fHjjkxfbPjdyX9gJD+fiIktArUajvfHWfG9exvM2AON44pqVGp69qw4nBKw9aTNqwdzCbZsoMwhPkqb2uPThNCp0lAR7DoCI1SL3bSeolMeY5KXUSHFUdUGpZ+qYnYV3Sq9GXVWMsmdFJ4cFLEGh3BoSMYpTr8lNURiSm7Uunr77BF80hpWTfpedcMq0Gd39aSbGvK3RIl0hstOnMadOY4dISAjuCVCgqTnptczZ1KX7qMVUdQWraZtGU9Uy6n0te1Yi2rDePipC0bhpVuzlauppZt7TOrXiM9P4naWC9N2voNU8im0lecYi2bdJaNk05nBzJOIypWgoJUKy07aQLTSXRYPqbS13liLauM7eOkM79OooPKL+fr6UhEkXJrsURHkzL+j5MGGokp7HJuQTnXGtZkYr7LW1/JdeOks6+B1JMbWFC+Nw5LLjHf5a2vhL9x0lRhIPUkx9dc/STWsijqjWjWmVDUG9HMOSlzhDjpvHYwFdMgRxiBv8OCTsx3eQUpc4Q46dw3NVzRl0pfnok1LQqET4v3qKaOqVEifFp/RjmENmycdAo/nI31yGz0OoF0fShtO+kEvZ9rTMmYSl/eiTcuynxTDc8NFPomAw+hpL6pnrZEiKlac36Ps7Jomtz90YoyUsLhZKbtAM+Vpan0JaR44zboBCJ4AkV0CAsPoaSBiaYtkcBVxqn0VaxYiRglEEx22sZNXFmbSl+CijeuMrhLk+YivU6HNWnO7xBONneOjEQnOkAZASY/bQewRWcqfYEo3rhK6pfCtI1LXMWYSl/diTeuEuqlZtrGtVy5l0pfmok3rjbqj9M2rmNqtZyvrXIYanNPzmMSHaCN+qedmRvPFWOp9IWTeOPqiO+rYjpTNG7gKqlU+qpHvHGj0rjTzldNw5VBqfQli3jjgkj3VT0bXTJJNToEnK+SUUpk2vmqiUwllrNP0kiklNsLkMSon0jpgGnntMSWWqn0ZZF441p0Ajl4Ajl0CA8P4ZUSmXZmPpyRJO/OcUYrkaA07rSzbvJcqZZKX1aJN26DTo4AT46IDtHAQySlRKbNDigw1WLO73Mji3ZuX0KSdmwZWysdMG2+QIkrB1PpSzfxxjXoBIK3JlhCh4C3JlirlMi0KclwRlo5anXavQnWKY07bQJiLVdOptKXfuKNq4zuzLQJiHVMLZjzO8RIvJd7qp+C6ABlBGimTUms54q9VPrCTLxxlXzPTJsvDLVsZb7ntM/DrZLvmWmzA9twZVYqfUkk3rjKqN9MO+u2kamRUp29iyHvf/SZ5+HH7/IOcMqo30w7M7eJKYJybkSZZ3vKOcCIDlCyYTPtvHeg977KybkR5UDQ25wDxLzXKdmwmXbe69gyJpW+5BBvXJQNGzjvdSgbNnDe67TZw7Tz3sGM7CupnM8zOeLyPjdHoygjbfYw7dzYea5USqUva8QbF+XHBO/bdyg/JnjfvlNGkjTtDH8wI4/VWip9ZSVWIl4ZJdK0s3eXuFIrlb4sEm9clA0TvMfBo2yY4D0OXsmGadoMwtdMtZez+9zILn2f2eNw/K4gIyU/pmlzCm+5ci6VvvQSb1yPTiB4j4MP6BDwHgev5IQ0bdoymJHHijKVvvoTLxElJ6RpkxTfcOVgKn3pJt642uhu2pTER6aWy/kdQsZUIUdJjIipgjYCnDYl8Ykr1lLpCyvxxlUyQJp2ehuIq+RR6avu8MZV8j2aNrwZLBTHMjaVvuQUb1xl1G+nnRgGx1VtqPT1bnjjKiN6O22kEbgCMuc3rhFzN7mbnrhpISi5r/3/plQv9U3qtxl2wIrCSKqkfV4elKzWThsEBMsV2qn0JZZ4455kcIfbTgVHkwyN2z/Wfc4Mkd98zpfJHx+bdWO2i0+fbzeHXdfBH6HqPv/A/ryXHOibSEcLBr0qP1IPctgfL6BCIy8f8Y0Feyf0gty7XNDgRHwiOc7kG/MXdFLUSXlB8X0uqBn8Rhmd8o2FC4KrIJ1ckFFhE7wMUoKHQM9OOj3oWDkEenbS6Ym/yiE8KK7Tw1ffIK40nABy4sA3FsQV0Aui97mgweaTkRe1+MbCBaHn/5xekFIE6Pk/pyJQDoGuyvF9VuXBiaI08nIU35h3C1xo5vSCdDaL6Dp5ejiscghC3RLexy3D24Ucx/KNBbdY8ILS+4Qzw8O/iOJIvSS2tXBJDr2k95k6wxNnaOTdN6G1cEnombwJnzzoobwJnzzwyWwBHgI+ma2Bh0BX5hTfSV6DOWBHaiPwrXl5JXRtTnCAmdC1OcEBZoLfDoMDzAS/Bw4HmAlcvV6dqPAWeQ3enCc7UiCCby3Iy6OXFN7pktLgR9LIJbGthUsCo+ZXb1295ZLscFrbkWJVbGvhktA9cgafPugeOYNPH/Q0FYNG/4QekP3qtRnlEAaVl38feQ3fyRh571NozcqLakIv6Z2iMjuc1iOlF/nWwiXBO78dLAR457eHh0BXZ/NOq/Pw9RM7UiWHby04Bt1nZAJsNXi1bOAhIuqYdwo03fCuMVa2j20tOCa9YR+ozmoGpL+vhniL1Qa78mjk1UyhNW81g94N6J1mqB8uhiMJLd9auCR4ty48Qw26OhM8Qw26OlOEh4B3ZSZ4CDSWte8Uyw62FJAbSWj51oK80NXZ1rDV0FjWGngIdLW08GoJnwxo4Vj25GTA7W7zaTdfrea3y/bqYdvO/9Fmnpj2FWAu4rH5y8Pt/uNVu293R/E/fefmy3x5aG8WDzfbxf7u8+z643z50FazRTfddodVZ7InRXdDbfbt0zZ56El8HMyNkVCKb92P9/q3b5fzr7fzu3/cfNksD70FOk9+/+zTcnM7Xy47L3VX0F1K9+fNP2+2m+XX7efN+uvzJT72/9DuBlb53LU9/sN3Uxw/2qxvVvPtS5f9N1ftw8P8U2//GTvXTw4+1OrLFX2B+horb5suWDsW1k4s2sG0M1aG+qnM9IVqx6HaOXkKXLSj084IqWn8BWvHw9qhoh1QOyMRUHPJ8U6AtVPiHVQ7I/FOc8nxTgNrJxTtYNoZblV1Iw8d+dYXq6+I6iuVXB/V18jz3qeSkxeqnQRrp9zXUO0MGerIkx2+9aXq6+Twb62+Sq6P6mskbooXHDdZlGGf7soq2lFpZ6QsznPZmwvVDsHaKTE3qp0RTpQumBNZlE+fbsor2tFpZ3DAoxvZt8G3vlh9OVhfvugL0tfYmcrPZyZfqHY8rJ2Sr6HaoRHtXDAnsgHWTomJUO34Ee1cckzUwNopeTyqneEOITuiJrb1xeoLZdinO4iLvlT6Gjke9vn41wvVToK1U+5rqHYGL4KMnBAvtL5UfTmUYZ9ubC760ulrkOH7sdWKbX2x+kLfNLEnoVXgXwUYiO3jYvn02//45lK9UA79kXDUO/u+7R/R9I7plNCP9s1GWj+fFzaVXl8mR2/ZNOF/1UlnLDLrRo4zeT695EJnlH1LtlLEoxLPyOuJzy8jXqh4XvDsfXu3uG93mdU4vRZOfi1+7vZFRg8/oKPfX5/Y6Y5FPU8V8t9//6f70uaw3x7wbrdfb47r/s3H3WZ1s1h3fTxZ8fENi/1w11W//Fcz0t8tzjvw2tvJCzed7xb7z510FndavzqlX196fgfXPi8RLx5uOmdu293TyZzXs7/+gHO7tedt/hv1lhff2XfhLW+j2V91Pa6he/nIEw/SPfGofwsNJUvW1pGaOjSNbboEJjamW9uooSaQaZJtXEgudhGaif3BjD/hCt68ZVNbkZtKbiPpPyWl3HqNhZDMN9WRoRBjMCbZ0HjvmmgjGVP75JvaGvo51Rbfsl2gqE0Va46AcGu1ajuVWqTgTIopJZe8o9rYRJGSM9HELny1tQs/6+r2JtxpflW9YbnNyOpmtatbZ+xOWt3ts7tR1s6bzg/BO+fqbo1z1qXYabCmTpPB1zbV4edc3vyb6GeRmyrQHmGdrtbKzTkb6lRTF4iHTk8xdatYp72aPAWqqUlN7D6rk2so+J9VbUZVh+BYEOCosCadVxEwVXfBH9jOSdd5fyqr0DlV/U8kb/kBrK6KQn/AmDCA7X9995/jB3C6AfrjGYQBXP/rpUILdFKPUFcH4jiAWueZSs3HOiGDshB9cYqjQXrsvG9X3W+77abjdrdY94elLOe3bTfvZ7/v5tu/3LerTffZl06ax1/brUCuSdTE0GUFIT4+/g84brIl
Hip hop also the old machine :
0eNrtnUuOHDmShq/SyHWqxmlmfAmY3SxmM7veFQpCpBSSAp0vREbWtNDQAeYec7I5yXi4SlIo6UbaXxmLSooNVKMqw8PpYWak2//xYf+6uLp+3N7vd7eHi9f/uti9vbt9uHj9678uHnYfbjfXx78dPt1vL15f7A7bm4vLi9vNzfG/Nvvd4ePN9rB7++rt3c3V7nZzuNtffL682N2+2/7z4rX7fNm8x/vNw+HVYb+5fbi/2x9eXW2vDyd3oM+/XV5sbw+7w2775ZGW//j05vbx5mq7n5v4dqOHx6uHw+awu7udb35/97Bb/nVu9vggU7i8+HTx+hWLn29+u919+Hh197g/3pIuJdBvxyd9cmuy3ZpEvbW75PnmvHZztt1cqPbc881l7eZiu3mY1JvzpZ9v7tdu7m03j/rN5TLMNw9rNw+2m6ek3txfxvnmce3m0XRzqsRKuEzzzdPazZPt5pVoiZdumu+e1+6ev9392DcPm9vDaY8rm2H/i//akPxybOrdbr99++WS+RHmuxz2d9dvrrYfN7/v5lvM33u/uz5s90rH/323PzzOf/n+K5crXv392Fnf3j0eRw5H+aTr/7Z8cHv7pdWH473c8f/223enHXk3/5fj2Xpvd/u3j7vDlz/M3/68YobZQCYrV7pNumR2ayZ2rjGurYwq+buV2WTj73d+M3/8bvfNNO93+4fDG8zsD9vjPd58jYhlMLy73+6/WOX1xav5a3ePh/tH7MafFcd92G+3t4Xr5EfP0eJ30q+np56+fHI/1feE+ycN/zjQP0Ka/Rm2v3PD/gG1f6t/eM0/gvtnGv5h0D+u5Z+g+cfj/uHhnwj6J7T8kzX/BNw/NPzjQf9wwz9+0vwTcf/I8E8C/eNb/mHNPwn3jx/+yaB/Yss/ovkn4/4JP71/aAL9k1r+0fI3mnD/xOEfVN/kln+0/I1wPuCG/iTC/PO0v5X+iZp/cD7gBr8hUP9QS//4pPkH5wc09CmBfI1afM1r+odwfkCD7xCof6ilf4KmfwjnBzT0KYH8jVr8LWh8mnB+QIPvEMh3qKVPg8avCecHNPgBgfyAWvwtqPoH5wc0+AGB/IBa/CCo+gfnBzT4AYP8gFr8IGj5G+P8gAY/YJAfUIsfRC1/Y5wf0OAHDPIDbvGDqPFrxvkBDX7AID/gFj+IGr9mnB/w4AcM8gNu8YOo8TfG+QEPfsAgP+AWP4gaf2OcH/DgBwzyA27xg6jmbzg/4MEPGOQH3OIHSc3fcH7Agx8wyA+4xQ+Sxt8Y5wc8+AGD/IBb/CBp/I1xfsCDHwjID7jFD5KmfwTnBzz4gYD8gFv8IGn6R3B+wIMfCMgPpMUPksavBecHPPiBgPxAWvwgafxacH4ggx8IyA+kxQ+Spn8E5wcy+IGA/EBa/CBr+kdwfiCDHwjID6TFD7Kav+H8QAY/EJAfSIsfZDV/w/mBDH4gID+QFj/IGr8WnB/I4AcC8gNp8YOs8WvB+YEMfuBBfiANfkCTxt88zg9k8AMP8gPJLf9o/M3j/EAGP/AgP/BTyz9a/uZxfiCDH3iQH3jX8o+Wv3mcH/jBDzzIDzy1/KPxN4/zAz/4gQf5geeWfzT+5nF+4Ac/8CA/8NLyj6Z/PM4P/OAHHuQH3rf8o+kfj/MDP/iBB/mBDy3/aPza4/zAD37gQX7gG/yAnMavPc4P/OAHAeQHvsUPnKZ/As4P/OAHAeQHvsUPnKZ/As4P/OAHAeQHocUPnJa/BZwf+MEPAsgPQosfOC1/Czg/CIMfBJAfhBY/II1fB5wfhMEPAsgPQosfkMavA84PwuAHAeQHocUPSONvAecHYfCDAPKD0OIHpPG3gPODMPhBAPlBaPEDUvM3nB+EwQ8CyA9Cix+Qmr/h/CAMfhBBfhBa/IA1vhNxfhAGP4ggPwgtfkAaH404PwiDH0SQH8QWP2Atv444PwiDH0RQn8YWP2BNn0acH8ShTyOoT2NL/7DGryPOD+LgOxHkb7HFd1jj1xHnB3Hwgwjyg9jiO6zxg4jzgzj4QQT5QWzxA9b4QcT5QRz8IIL8ILb4Aav5Nc4P4uAHEeQHscUPRNWnOD+Igx8kkB/EFj8QLX9LOD+Igx8kVJ+2+IFo+VvC+UEc+jSB+jS18mvR+HXC+UEcfCeB/C21+I5o/Drh/CANfpBA/ZNa/MBrfCfh/CANfpBAfpBa/M1rfDTh/CANfZpA/ZNa+ketP5dwfpAG30kgH00tvqPWn0s4P0hDn2ZQ/6SW/lHrzyWcH6TBdxLI31KLv6n15xLOD9LQpxnUp7mVX6v15zLOD9LgOwnkb6nF39T6cxnnB2nwgwzyg9ziB2r9uYzzgzT4QUb5QYu/qfXnMs4P8uAHGeQHucUPgqZ/Ms4P8uAHGeQHucUPgqZ/Ms4P8uAHGeQHucUPgpq/4fwgD36QQX6QW/wgqPkbzg/y4AduAgFCbgGEqAHsjAOEPABCBgFCbgGEqAHsjAOEPACCm0CCUPS40kMaglu+irpoMIQMMoTcYggxqA7CIUIeEMFNgvahFkZQy9AtX0VdNDjCEtlQJ2qBBLUQnZtgkkDTIAluCmgnarEEtRbd8lXURQMmLJGNuaiFE9RydG7yuIsGT3BTQl3UIgpqRbrlq6iLBlJYIhtzUQsqqEXp3BRxFw2q4NyEuqiFFdS6dMtXURcNrrBENuaiFllQS9O5KeMuGmjBORQtuBZaSKoschPuooEWlsjGelELLiRVFzmHu2jABedQuOBacCGrGZ0j3EUDLiyRjfWiFl3IakbncLrgBl1wDqULrkUXsoq5HU4X3KALS2RjLmrRhayCbofTBTfognMoXXAtupBVRudwuuAGXVgiG3NRgy7wpDI6h9MFN+iCI5QuuNRykZ7R4XTBDbqwRDbmIt9ykZ7R4XTBDbrgCKULNLVcpDI6wumCG3RhiWysF8WWi1RGRzhdcIMuOELpAlHLRaouIpwuuEEXlsjGelFuuUjVRYTTBRp0wRFKF0haLlJJN+F0gQZdWCIbc5FruUgl3YTTBRp0wRFKF6hBF9ipuohwukCDLiyRjbmoRRecqosIpws06IJjlC5Qiy44PaPD6QINurBENuaiFl1wekaH0wUadMExShe4RRecSroZpws06MIS2VgvatEFUkk343SBBl1wjNIFbtEFUhkd43SBBl1YIhvrRS26QCqjY5wu8KALjlG6wC26oFZRW76KumjQhSWyMRe16IJaiNAxThd40AXHaNLNLbqg1lJbvoq6aNCFJbIxF7XoglqOcAkH1EVDujpGGR23pCvpuginC/xTAaD99l2xb7Xpj5YIYl0EfUcJ7zcPh1eH/eb24f5uf3h1tb0+rGw8Pl2+PScJP/ojrDUhE9pEgpv4LuUebjbX16+uNzf3jYd3y53XwuerKb/Fzp8Inf86CR0s3ua+cL/ZL33h9cW/XwBx4oSeON7JnBRealOKZa9fDREho3FT38YtexXpxi1Q08p3FXMz2F1O1xkbu4ugTTi4CW8LmtM79xg04WmP9JMeNGztkcFo3Onn6pFz1OnGFatxI9o5GO4cCW2C4CayMUS46xCZe9vT/sd6iHhjiPjJaFzqu//5ov/l4j1XMXdovSNVLuwd2oE82oE8oU0I3AQbw0j6DqNc9FHRgyZa+6gYjev7HgC5MG7lHZmsxrVmd6Fv40ph3FAMYpVYzq0BUJ118dYMMPbtgOINdKx1oJh7bYvOunGj0bh9C15fapekG9dKE3wyGrdvVDPH6VPjZt24ZDWuMeunvoXhHKdPjBumYmytmJtb47KKt4NRGVDf2MMXKV0o6Jno9KzcwLLyXcUBRhJMfUuzIt5dqJjbqnuDkQRT31ChiGUX9Jx6bRvJunFR7kuw4Awo9yVYNgejMqC+NW0oZmJCoQwqsLJcTLzyXSWMjMqA+ta9oVAGofLCt+regLLh0zW9xg6EsuHTld3GJqxZYt/qveiRLupzM2sLk1dDJFozwL6VeSgywKiTYLYq84hyX4KXEkSU+xK8ICIauS/1zRdikaNGKd5z+vqFcpHzyneVMDKyYeqbQcSCDUednrGVQUQPdiCG1y/EgDYBr1+IRgbIfZOUoke6qDNAtq5fiEYGyH1TklgwwKjnqGxdvxCN2R33TUBiwQBTwQClMtz51ttFXYWcjBkg901JYpEBHqsOaOa2UpJk5HvcN18oYtklne+xdc48Gfke980OUsH3UkW7WNlBMmb93LfqTgUZS0XW7yux3Joz97oDjFk/963MU5H1Jx1EilWZJyP35b41bRHLLukKVqxz5snIdLlvvZoKppv0fFmsejWhTFdgvZpQpiuwXk3GrF/61qupYLq5yPorS4SkNfPv1aw/G7N+6VvTpiLrz3ruJFZNm1HuK/CC+YxyX4GX/WdjBih9K/OiR7qsr5EU69qEbMzupG/VnYvsLleGO6vqzijTFXhtQkaZrsBrE7KR6Urf7CAXOWpOxXtOp7zSWpvg1SMUspH7St98IT/lvjTpZEysfCGjO7kFXZtAE7qTWyLchJHvSd+UpOiRNOlMRIxrE2gy8j3pmoAce9tT4+o5qp+sxrVmd6lv41Jh3JLv6bLdt2b1fVYdYM0Ac98O4MIBOt/zZI1uI9/zU9/GlcK4Ot/zbDWuke9517dxfWFcXbt4sRrXmPV76tu4oTBukfUHXYf71nx4ENUBxqzfc98OKLP+ymswWKPbyH299G3cIl92+lpeb5wPJ2dkut73bdxcGLeSLyercVGm62G96lCm62G96oxZv+9arx5729MQKbL+ygYM35rVD2rW74xZv+9b07oi63d67hSsmtah3NcnuAOh3NdnuAlrBti3Mi96JDmd8gZnDRFrdte36nZFdkc60w1W1e1QphvQtQlEKNMNDm7CyHRD3+zAFTkqFe+5yg600FqbELVDXomM3Df0zReo4L6kk7Fg5QuE7tsOBHcgdN92YLgJI98LfVOSokcS6XwveGuIGPle6JuAUMH3qJKjWgkIGbO70DcBoYLvUcH3YiUlac3qR6c6wJgBhr4pCRUZIFde5lZKQka+F/qWt1zwhcrh29Eqb9nI90Lf8IbKxFRHNcG62ICtWX/fwpCLjKJyImS0CkO2ZvR9Iw0qyDQX54xFPYGLrcUGMagOMHLf2Lek4oIpsS6ponU+nI1MN/YNDIpYpspp2tGqV9mo9GLfSo8LYM7FCV2VDcuxNR+e1HyZjWow9q0GuVCDlSM5o1UNMrqbK8I0htHdXBGmMWzM+mPfmrbokSS6pIrWWX0xZv2xb73KRe4klbeLVa8KOqsf0W0cJOisfhS4CWt217cwlEJ1SzGrXzl3IrZm9ZMeRtYMsG/sIUWSIvqUbbJiD0Fn9SO88kbQWf0Ir7wRI/eNffMFKeBN5fSMZJ3VFyPTjX3zhWK4o8qRUckKbwSd1Y/wqhqPzupHeFWNN/K91DcB8QXfq1QvSlYC4o18L/VNQKSYU/EF36ucXpNadQSSVx1gzABT3yK9qHBEXsepyTofbq3NlfpGUEUsU6U4YbISEGttrtS3vC2qF1FRFYZTJZluzYenpDrAyPdS3/CmqDxHRbUuzjpgTanhgKwCVmv9rtS3eCzinYJOz5J1Wtdavyv1jUaKWKbKsVLZqsyt9btS35q2qF5ElZ2J2apprbW5Ut+a1pc5dVG1t3IgU25Vts/qRtCAsuEEi9KAsuEES+tgVAa5b90bCmUQ9GwqW3VvMCqD3LfuLXrkHHW6ca0z/wHlvhne6hFQ7pvhDSvBmN3lvpV5KLK7qHPfbFXmwZjd5b6VeSi0S4jFe07nTrlV2T6r3CmgbDjDiwsiyoYzvEQiGtlw7ptBxIINVxYjZuv6hWhkw7lvvlD0SKpsb8jW9QsR3c2V4fULEd3NleH1C9HIAHPfBCQWDLBSvShbCUg08r3cNwGJBb2OJd/Tze2mqfWSVAmrtThX7huTFCWOKE0Ve1s5ibU6V+6bkxTRTJXqeG6yTv4by3PR1Dc+KAoYUWUhmZus/MBYe4umvvlBLHOjp0RBKmeeuqkxcb58WfGAM3qgb3lelDmiJBV7W/W5sUIXTX3r8yKaqbJVw03WqXNjiS6a+patRREjSrU8zqpbjfW3aOpbtxbV5aioyCWVQ2XdlFpjs7ppMYEA+IdAtynPFNAmYHGbojGO+ha3qcj+cy2DsqrblIzW7VvdFn1yDjvdus46wZ8y2j3gdfF5QpuAV/dna47Xt/7ORY6XK+O2s+rvbM3x+tbfqdAw2RWvulqfpNZ7MqoeYLQLwQsVsqBNwAsVsg0Ck+ubNORiW/dUoWTOShpyMFq3b9JQ9EmqzIs6Z12qkMFt3D8EsbF7JLQJeKlCNrI+1zULOfa3pz2wkqk6Iwvhycj6XN8sJBecOhesz9VGvMZiheXLigeMeaDzfcd3MXU1VVifi9b4NuaBrm9eUkQzV6rlOZes1jWyPhf7jt1iQ3+NPblsta6R9bnQt3WL3YpFdS5xlXyJptbY7FUPWLP/3LcHyuy/wrLJWePbmv2nvq3LhXVr0UxW6xoJL7m+rVtsWHSVvJnYal0j4aWpb+sWq5WKCl3iamNFa47cJdUDKAUmVN2yQykwTXATxuyf+la3rsj+XSWDIqu6dcbsn6jvXlqsu3eV7J+C1boo4SWGuwdKeIngJow5HvWtv12R41GFd5BVfztjjkfSt3ULDeN88arLFXu31iu4rHoApcDk4S6EUmASuAkjBaa+SQMVFJgqlIyspIGMFJj6Jg1Fn+Ran+TJal2Hdg90vQIToU0EuAkj66O+WQgVrK9S/8qxlYWQkfVR3yzEFZyaCtZHFf3OrfUKpHvAmAdy34q+sDdXinc5Fmt8G/NA7ptGFdW7uFK9y7GVRhnLdxH3rXOp1DCpGAAqNIpbs7ik0ihj/S7ivjlOUb+Li+oyUn1f+pYH1LkaY5Ev4r6VZlmwrlJBzbFVxxurfBH3TUmKaGaukDS2zqOflvl6vHo4bBablNY9ntr/R84OPHRR9038crzU3OZ29+Hj1d3jfr7Br266nD+4lDj9tvqM3yXG3PD8jLeHV7Mlr3a3iyXLra0niy05FRLD/PhOikGgZvP1qxWzM/iTTlZBPesn+UqX9OpKoZOKTsbHDWd63IJVVQoHKlcrPwk9Ten0J2WTbmX0NKWTxSrWJtB6OScz2tYm0Ho5J0sSrE1kMLxOZrueF14VyOJVrinoCTynj2uzCFyH5WSK0doEOqqeNvEcoxfHQ0qlLppyteIY9PSXkzkbq9XQ019OZp6sTXjUMXImx5TDZwXxrl+tOCagP+lMb/BYiayox1EEH5fP9HYut/lX6jEqVys/CR3FGe8a6NlnDHcNuC7GieSyNoGOvCe6w9oEOvLymbKpVOkNSe0NHh1VGc6UPDqqMpwpeTTfYzhT8mi+x3Cm5NGRSc6UKaVyrKnA2fWrlfBK6E860+suV/hnjurjormqnOdVRuXSY9Z/gHL1+k8K6KgqcNeAz44WuGvAZ0d7OCsP6Ejo4aw8oErb05nCqxZMeuigo6qH0wr4TGIPpxUBVdEeTisCmn95OK0I6Mjkz5NWkCvHGn2qQ7l6PbxOzrq1/aRwntcdkc75ls+Ux3Xo48qZHrdY+lwpxqxcrfwkdFQNcNeAz2wNcNeAz2wNcAob0ZEwwClsRFV0OFPqUWGupBPWiI6qAU4rIjqqBjitiHC1RzitSHC1RzitSOjIFM+UVhRl4qVSA1y5ej28Eqqi45led5U628tnyuOio1zCnYyOcgkPVZRNpjO9kIs6nSKVV/T61Ypj0PwywfllQkfCBGfJCVXRJ/UDn+eYsstW3hbrVyuOQUfeBOcF6GFbp0X/rE2gI286U05YqfS5fLZu9AxXYILTmAyPhHAyllEVnc6UKZWzVbW3xfrVimPQkTef6Q1eqQu1fKY8LlxJCI8jdFTNeByho2o+U45RlD4Q0afilKsVx8AVatCUWSa4Qk2Cm0A3NkwObgLd2DBNcBPgKqAfmnhOeFUKDSyfrYaOTPChdwxbBD7iluAmAmr0M72Qi3OZRXzFDatXK46J6E860+uucmTt8pnyuPDRbXgcoVv0HRxHDmSTdKYlfOV5bCJ6qqdcve4Yh46qzsNWQ0dVJ3AT6OZweNmdwJvD4cWD4jwaXuFM4SWVYBI1dNCDw+FVggJvJ4bXOooD8z0600LE8qwYkVhxw+rVimMy+pPO87qrHaOxfLb+uAQffALHEb4pFo4jItTo53khl3tERXT5plytOAYdVRnOuAkdVRnOuAkdVU/XqD3LMWWXzRXHrF6tOAYdeeFld0LoyAsvHhRCR94zLbms7YJcPlOMjuaX8CpBYXQkhNc6ysnmn/v93Yf95uZmc3W9ffVwv938Y9vaWRNeyCar7zuhjn++2R62+yUkvnznze+b68ftm93Dm/vd4e3Hi9fvN9cP28uL3RyE+8eb2WRf5Mzc1N1hu/y7R/ZtcTEV4XXVp1x9bO/HZ7+/3ny62rz9x5vf764fjxaYPfntbx+u764219ezl+ZfMP+U+d/v/vvN/d31p/uPd7ef/viJn48fbPeFVT7O1y4ffDPF8qe72zc3m/vvtzx+82b78LD5cLT/xWovOdm4ZYyv0yR2xJcpvirpOssLjh1GY+d0f8pPGzsOiZ3KTB1/mZdrxs6cgTlHMbnsJaU4ay6aPCfvY5Ys0WeRaU6HJ5/c5CWk4zKZv2CwCRxsMoING6ikmPqt7EVVrn6xg5lH4+s0vR3xZYqvSiL/BY+80NgJaOyc7vkYsWOJHV+JHf+SYyfCsTMEHho7xV6nysob5eoXG18JjS8/BB4YX6GMGH3lo3L1i42vjMZXGHk5GF+xEk3xBcfOySkdxtiJI+cGY6cohi21TGr96hcbXzA8TyMvR+OrgsrTCwbjAoPx07XtA26aYqcy8Z3STwQ3BSbpaYhAcKDKxUoKX2Hr61e/2MEMhud5iEA0viqDWU4vOHZQMP7DauwRO4bYkUpF0OWzFxs7KBj/YQX2iB1L7LjyAF99JFKufrHxhcLzH1YDj/gyxVex0NFzJb5Wr36x8ZXg+Bp5ORhflYotfxRkeaGxg4LxH1b9/rSxI1Ds+Ers+J8IIPjpOaujZASbIdgqyzjFuIxz+kWEw5QnIu8D5ymn4MhPnub/BaY08fzR/DdJU3SU8hTorxlv7jmzyiPeTPFWSePZSkfl66g2yXGcS1MIgYOb3Py3KUWJU/BTiJTnMMwx+L9qvNFzAOmIN0u8VY5B+ePQk59ofOPnCMsRb6Z4i5V4iz/Z+Ca2Gk/H1VxfYswjG1DKWf214r9PSj4dC09JyL+tPq9/zrY0GrOjlve/q7z/nbV/ZJLkaB53p+hdiinwFMNxIOaQKE6co0uBYqb8l9U24TkrZEesmWKtMhazeSyWOAeVzAOvn1/2zs8xNb/k+SioY3bz+DxxyHMgzpdQ8u4vOxbH56xKG/FmevdPlXf/9BONbek5E2Qj1kyxVplclfCTjW3fofRmvzt8nFvZvW2c4vAt5XTrZzgUwff9zt/j7+FPBODfTwLw64kTF6/nX3B3v91/yZBfX/zb/LW7x8P9IxbZSAAdi688TZYvL0i73KsnMJ1UcXm3fbt7t93XTX9cH42Z/o/bnsHu3w3u3JG+/NCn/+9//vdPmP2P+95/mh/vce7V7/d3N292t/M9vgTx83zyROEEV/fS0xs0JZJTvQoeH0xysgve6tj3u+sv48GvX4dNu8Efj16U44D6bvvP5YfM//7w5tja13Hnz5pdNwqZBK07HvW4WOJY8eJJyeFZffKq+jwp8lO9+fG0IuXmdHl8RAmy3oBNjrtvJZfLBvj49PM/fr0Bb2sgTGoDcnz6+Z+w3kCwNRD1Bvzx6ed/4noD0dZASmoD4fj08z9pvYFkQyKVCIrHp1cZxkkxnmoDlShKx6c/FsZebeCkNI6tcPdKFLH7bemuh+3NfJurOVG63+9uj2cLXW+utvMgcPGfu/u/fby7/9t/bG/u5j//Po8Sy70pOZlT3zkrJokhff78/wr6NeA=
Disclaimer : all the speakers will produce a sound during 1 tick when copy pasted, it's loud !