I created a furnace setup that take:
2 iron ore belts
2 copper ore belts
1 stone belt
1 iron plate belt
It will smelt them by the factory demand for iron, copper, brick and steel, It can output up to 2 full belts of the demanded materials
the furnaces should never get stack as the input is counted and will not stop until the iron plates are in multiples of 5 and the stone is in multiples of 2
Example of the logic
Red line reading the inserter ticks, combinator to convert item inserted to unique signal for every furnace
Controller setup include counter with stack compensator + red to green bridge + steel threshold that send all the furnaces signals from Constant Combinator to the activation line (Green line)
the final setup also have a way to separate the signals of the stone furnaces inserters and the iron plate ones The iron, copper and stone ore input lines
New simple and compact version Old bulky one Part of the line, include the combinators for the inserters signal counting separation
Controller and separator
Setting the thresholds for production and counting the line stone/steel inserters to prevent furnace locking
Entire setup Blueprint
* Updated 17/10/2016 Fixed one of the furnaces inserters signal was skipped ("N")
* Updated 04/11/2016 Fixed one of the furnaces inserters signal was not getting sent ("Flamethrower") and removed unneeded inserters
Code: Select all
H4sIAAAAAAAA/+V9a5PbupH2X0n5476jLQIgALJ2narc7/dks8nWWy55huNRHY00K2mO4z3l/74UpfGIuDS6GxAtbT6dxCOQYF+ffhqXu/X3luvb+fJ7795+
t7hdr7Zvv/tusbrr/vFW3GwXH1bz5dvvdp+eurdvFrvu8c3Nav7Y/+9u2d3uNovb2f3zZjW/7d58/nxzHCadYd8uNrvn+fJl5OGPsz/1Iz7fdKvdYrfo9u88
/PV+vt3Ndpv5avu03uxm77vl7s3N03rb/2q9evvdP97OWnXz6e2s+Xxzt9j0c9j/s+nfTRveng6XlOEi7+0yb7jIm7zMGt60eZOvsoYf3s7/9irv223e5Ju8
4TZv8k3ecJ03eZM3XOdN3uQNz4s2TZ03PC9YHd4ODX/uI/bmw2bd/zf4gEC4ujlE9fXz7ul594Yym7zg1UDBa/v8frub7//RGWXbfx3sx/6r/nzTZ7fVYWif
cP7rjXjz/99+t+nu+uQz5KFP7xZ3b7XoH/r6f23TZ6kPm65bpX61T2foj7F5waxJBrOEYm0gnB0Vu1gR9WrzgpPNC042LzjZvOBk84KTzQtONi842bzgZPOC
k00GJ3h4HhCzeUDM5sUymwfETB4Qs3lAzOTFLpsbu0wAS7GTkskLXgYKXtGkZDQxKUkzSjdChLNS6GektGTywplJhrOUagMBjZuWTF54MnnhyeTFF5MXX0xe
fNF5Hm7ySi3t+3dNHt5yhx/4AZNHL1hgeMIFDiW+KRPdDgU//2NE6mMQb8+QxaHkD8rCCQeP3d3i+XH2hZV6Wi+7IAFgcAG3B/SnkVT1n3K72Nw+L3ZDYA1G
X2+MOh0jxwWDkOM/0uL0QTB8xVS5imkKGumB3GB/zGEu/OH68CkUUzpwCkhTcpKyFY6V1GnLSj1CQ4ZmsgztgFM+06zD+BqBrCP1uEBEznlcjQ0qWH4mx5Hq
qKhCk0k9LZ476J8mHb/ATwCvecQM2I5tA8mDTLGwhx9IEf5wP8BSQIxNhtQUPxQIqoAlbZ+Wi92u2wTZEb2vcnLYGb4UdZ4FBeIYmR/hTz4Qp8hv508+EJjI
/IgbPRCcCG1IHj61eQHG5AUY6weYGuVVB8oiw6tMAL2RSQL+8DyfNoEcR66MSVZmZAgDIQpo/iSh3IPAp/qlPOA0PGyN6njsf0aCkjovI+qk0SZSmvZTWs0F
Rzppw4vVttv4vqsVA1XpOGLlAGAdyAzsqlrXdOdIRu2Y8F5cvzfr3Wa9fPe+e5h/u1hv3n73UuL0f7k7DrhfbLa7d/EVLE+L7W69fDM8bbubr3Zvq/5/Pj7N
N/Nd/8g339//6fjYTTe/e/cwX93tX7DrvWD7drd57rBcgk2XeNpo359icuBAcx1IdmxornMJBB2IcHR8WR/CLJgJIzKsLUOGNZH2SD0ugNLZjlg3ZEesk/A4
Jjxd0hG3z+8f57cPi1U3+/C8msIh2wbhkFagHbI2HGMisiSwKpNwPTUbGisSc0jFd8hgxZCadYDfznHIOH3BcEg6bFRJWjciPNUWdciH9W4aT2yqFuOJFu+J
FceKAtmM7YkqSUcnZqPiSYbgicqyPVG5jDhq1gFEnOGJKpCa2J6oDN0Tk+xJTHiqpCf2Tvd+3ut4OoeUFcIhG4V2SFVzjCnOijMcMrcLqeJJhuKQgu2QsuXI
MI6wOQ4pA6mJ75AV2SFlktGOCc+WdMjN+vabbjdbzp9Xtw/9uybwyN5wEB7Zoj1SNgxrkvF+AN0jZZJXT80mnmwIHik13yM5NI4sS+PIkjSOpNM4kkvjyKI0
zv2y/89s97BZf5zGH2vEUhDd4tkcyWFzZEk2R+ayObIImyP4bI7gsDmiLJsjSrI5gs7mCC6bI4qyOcver2aPi1U3hS9qlfZFU+GJHMEhckRJIkfkEjmiCJEj
+ESO4BA5oiyRI0oSOYJO5HB5nKI0Tv/3br55nD3OP8z/ZyKHNIjVbKbC8zmCw+eIknxOLp1ThM3hkzkcLqcslVOSyWEQOVwep2yrsdvcLlYfZoOQtpN6pNUI
jxR4QofD55Skc3LZnCJkDpvLYeTGojxOwbxI5nCYrljUE49M6mz70C2n6P03jcG4H5q9YdSKBSvFTGxaApmyORtGhVg0DxasDslZkAlHi6LRLzlwchdsEctv
jEQTNgz6tCB5GsK2pARQgqoR/PzHIE7L1oaiIG0argwT7w+sngUUEBGji8IQc2Xs5AmREZDkI5NlhF5RNPYC1BznaXG+h7qQVCSrS3B0Mq4nPgS9vRLSblMy
S9zOV6v1dLmhFYjmmlHjpc9GBfiLBAbDb+pNe/JL4wUTqY/MPCNSh1tckd9yYGk8DjN8EuiHUH1SZu18kUkWPvEhJdLDl05jEZ/s/vG07B/+bTeb2jslotXG
8cbATgS+N1qCNxq2NwaXgER+y0CowPIOjjfSdg+CpEES74Kjkz1q+EMUbUNthMCoSnrjYQXKFN6nMM21OsAcJmSK386d9r6XdXoY7zuu42J4X3hFZOS3DIIU
WO3I8D5g9RzZ+7J2wKrMXcgqHqcJ3mfOkwun88Ma01OrAxRiQrpx9M/ww5bghw3XD8N7BCK/ZXQOgfX/DD8ElpVT/bDO2qlcZ55SUccjNt4Pv2zVKL/qazZ/
fFxP4Yka00vTASYxId845qd7Yh3kecKeeNz0w/HEIKcT+S1jUQ2wNY7jieUYmzqLsakzGZu6BGNTF2Vseg9Yze+maGW3BtNLM4HVXrBQdUlyRhPIGc0mZ8Lb
yCO/ZZAzwBZxhvsBW4+p7qezyBmdSc7oEuSMLkrO3C6ft/0rZhO6ocX00wyZlQmdD8F3QwIro9msjCawMprByuiirEzgAAyuG5osVsZksjKhI2DIbmiKsjJP
68V2vZrdzp+2z8tJvLBB7GE3lszOmJLsjCGwM4bNzhgCO2MY7Iwpys6YcuyMyWJnTCY7Y0qwM6YoO7Ndrj/erT9O6octYge7sWR2JnS4GN8PCeyMYbMz4TPf
Ir9lsDOh094y1mOVY2fyzpFLH9SX+JAS7Iwtys7cdffdfs4T+qGoBGLnumnI5IwtSc5YAjlj2eSMJZAzlkHOhE4XzXDEcuRM6NRSwuhMciZ04CzdEYuSM3eL
bf/Ft72rTeqKErOqpiUTNcDxxnRXbAhETcMmahoCUcM5cTl0ADXfFUMnLjNdMXSwNWF0JlHTlCBqmqJEzV3Xu+L608RJUWFW0LRkrqYpydU0BK6mQXA1oGER
GJsmyNikn55htuUYmtA1IpSptLR14uBUss7BBq8wmW8Wu4fHbtfb1f6opMVq70Dj8bO2Oly2VI+/xXfq14e9+vU27NjhK227+e3DqVf3mPRm/dT1Xr1/5ZvZ
m5uDcxAe9hl5omHkGIph6/vNf72R+0Ghv7uY+SQM3HW3iwHDpwQ78kUZEOzxSUmpjkr53XrVzd73EeObsUircaz8d5pQv+02n3YPi9WH4aFPn/o5Pa927+43
68d3g10foivy5OQqLHbnQg5YB84xkxiLbsw/gUVH7t2sdMKi3cUyFIt+EeyZLLrrlrOn5XzXXbBF64hFO2sBb0aDGtjCqbfQNUfrJg/Rr0N64d5+M7tfLPfN
schW5gPcHXlRfXMYcnoJ+uGBi8169aI90sxkcGaRKR1qyPGUcCMPNUpkZHqahxdr0pdVpC+z3C87lMT8L7PkLzu8MYIx4bn6gRn7lSb1lTBgOz5AYzA5PBHF
/oQ6T1GKrqiaZIKC/WWBSEGZpqB/GSlsGHbYsHlhw9DDhq24zmXYIcQkQ0jCuUwgInCcy7Djg0nGB8SlLSRFGUMyQXbYMHlhwygfslGG18BweN7scGLywokR
eV9MCi2aHVpMXmjRbd5X+mFGklxeB6IN+74Y602GfqVtzre8BI9wyPpCzt0/b1bz2/AdLyQ8rt3YkXqFcF6R+H3dEH/vlhSp30va71VL/L0h/l4Rf1/Rfi8t
8feuSaR+T9SvIOpXEPUriPolqpeqXdLPaaqlPZs2cZpUiDInqpRoMUSDJNo70Z2I3koMBsRYQwxlxEhJDMTEOE9MI15iS/ycplVD06oheipNq4amVUvTqqVp
1dK02tC02tC02rhaRbb56CNO4FC6K9q61kPpdcmv0BmoTjsD/+98nQGnaSVPuGe/Lea2v0+o25epA9KUnixDzYBXxpi8X/F5L7mbI9Hczwy3zep0lARHhXaH
nI5W4OjAovbTwTU4OLgW93S4BocHlxCeDjfw8PDCp9MH2MT7Q8s1Tsc3qQncPsw3H7rZ8CXbbrbpHtc7/zEt3u6hJi+jb6tKdblwESKry/XyLGJ/K9TJktjo
UXvXBDKiR1LImOhxclUpPmIErlXEB47TG6fwASNwXRU+YISu1sHHC/8aEHywGF9ZgI8RwQPW8SECPBV6HCIQqjo5lWlkIxVuDomnwKbmnQs1GgtbGnC61Ogp
sOWdnMYxGgWbXPA0j9F4jY3OYIe8bttIW10mBjFXhvzfxn81Hv+5O8ZJEfywHI+N/8Lf+lNEGA+P/BkihodH/hwRx8Mjf4EI4uGRv0QE8PDIXyHCd3jkrxEB
PDzyN4jYHR75W0S4Do/8HSZYh4f+HhOhw0P/gAnQ4aF/xETl8NA/YUJzeOifM6Lyfj3TzSgg2OiyMu93nJVj/6SYGh2RdZVVkR8iMhtThwVRsSOyYEdkyY7I
ih2Ra3ZE1uyIbNgR2bIjcsOOyC0/Iv+AH5F/yI/IP+JH5B/zI/JPsnCyhlaSqghOrhODGOtLJXdlQXOM9AQyd3bYpyXxERWSklBuuCV9fX2YirOII7FUVgUC
b2yp7GilM31qKrw0DLOWV45Xa8QneLq54PhHCS70RVVfQ59Cjjcn1ZNUX6e117+Uq70CSGmIEqf/H178vV8cfvp7URmPgDs1xb3l3D502/AyaoWfJlCOW2md
t6Yd4LA+WqY0i9wYiFrLf9Rt7e0PwILfGNgVZqxCWQ3SiHlLjxB74/JdAhU3qisUW2TriXBqBGmYYovZ+MHGIjbuTzO8VWM//bF20S5WkV5vIq+HdooIhuPZ
67MgGenUyMpRTX02x7M+d3X5YpMox9OH69JKOp4lWX6YzN1Pf6xdg3Q821Bev4/WQSlZ5/WC7ms+ML58o4mEQengFNmcz9fMFYotFr5bR2yqtK9pkrGHC8L9
9EfTVBXW1wzp9XXk9U5ec26PQxmN+lpGI/lGE4t8DuRQ8ny+Vl+fr6lIxJbKsSLLEtty/WGxHQrTvb3PNt1/P3fbmMGhLT9SOygHwqgDhDm+9B1q7kfyqLfD
qmJ8R036jgiYlw6mkG2x70CZsbggM/4C2IdzZoYTZx7Xd90evOPsOxKklQOIFFwwhYkXlDRD5M/VSjOWcxx8pwRLmtHEKChupSIVjnJQl2qweRnid/zXRyoF
6aAXpch52VwS0ZNtS7Eo7sCnGmaAMjzzkvifbGlGcolzP6RWuqhnGhItpCL1kHIwWo2lhSyJFlKRukI5WEfRmSBzSUxQri3VkQBaO/iqhikivmeaSyKIsqUZ
yQfKQXkKZo7InknijVSkeqodmFRjeSND4o3qSBWiHFxR03kj89V4o0Atm21LkQBaO9CmhgmlDM+8JDopW5qxfOAgtRrmmcLSRFaMhkQ51ZFqpnYwk65QFePJ
zPPqXkNirupIFVE7WKXWhb4CZdlFOS/U4WpRe95b8bv1/bvXxjlatLE47iAsDbNgkVUSKDkWJcG+lhx1JCHVDlSsYVosKsdo2iQRYXWkhNIOUNP1KG1inZpE
ZtWRAqR2YE6NI7NOJZfj1UW5LNQhoOewxkjY1w460zCJNZoyUY5FWayv5tWxxOPATA3TVxGvxroViczSkVpMO4hPN0i3ejWBqFtFgxOJB9ORuqd20JWm82D6
q/Fg5zHLWBg/nzsXpb6+WliMpBzt4EgNc15ROcb8QJNILx2p2TSWfjYkkktHihrtIBcdOFgfcU4Ye2WyDmxYGw9PnRPm76+o+ddJzHRgoTVwhFr4yP/jWWJi
vKz29bti8Us5y5yBk/6PJ5ydN9iJ+MadYhc+2AZx34Nw2vXWjvOcEKL27Talah8EyojlxHQgQwpLvLb2sxTHwiqOhdWWYGH1BHSrmsLC3H3OQQtz2J3eosgX
4B2P7MuxqNpwLMrnKBgWdbhZnWxRgmJREzS99QQW1XhH9ocsyim3hZD0GKXiwQJrURXDolQgqdMtSjUci1KaYFFqAuLZTmFRQiMsygjXougxSsWDBdKilLsb
C/XaeLKlWJTkWJRsKRY1Qfu/ncKipHuQRMiirHQsStFjlIwHC6RFyYZhUbIIUpcspC4pSF1OgNR/OIVF9VkhbVGNci2KHqNkNjKXHGQuiiBzyULmgoLMxQTI
/MdTWFSNuBFetG6tV9NjlMhG5oKDzEURZC5YyFxQkLmYAJn/dAqL0oi7zaVzdEpvUfQYlQ3MBQeYF8HlLFhOQeUTgPKfT2FMFnE/t3S2JguhGWVedpXHCU5F
sh3DlgiBaQIw/sspLKlBXC8tneXyvSWRw1KuITFgUwkYzklwBMA0QTz69RRW5J69GLQiZ9W0EIYcj3Jzm1vOpU+bCYOVsLEIDsAWhIptCjD02wnsRdTuyQZB
g9Eu820CYQdq4gXAdZ1Sh5uwIj8LOjk4F9/XDcqoWtCoAGsJFKvFreX3E1hLKxnGIq1LcoeuToWjjfSTfCSDRBTgunbkZ8HcFraGA7cEW0Pio3zSJxZDIdua
YP/IH6ewLYVomMjGpbebwDFpCbH77k+zJZcqjvwsSFiGbenAfOfYUoCSZthSgPgvbkt/nsKWakSrRLYusd2Q45IK3aVBsCWvkRX5WbB2i9iSzbaluINQbGmC
lXb/MYUtaUSTRFUupd2S45IKnctNsCWvzR75WZBTitRcKteWAu18hi0FFk0Ut6X/nMKWDKI9ooRLZrfkuFTHoQXOllxQHflZkPCO2BICPSc+Ku4gBFsKLOkq
bkt/n8KWLKIxopwDQYQMHSubIG8ysbe3ZDHyMwL21tnYO7A0kmNLE2DvQalT2FODaIso54iF3p7IsUln4m+Nw9+agL9NNv4OLItn2FPZnYRhe/rULZfrj1NQ
S1WF6I0oZweNkIIcoQJbjEgWZXAo3BBQuMlG4YH90hyLmgCF336aTxGgRCUQHRKlG9eeyBEqcIgEyZ4sDolbAhK32Ug8cJoUw56mOEuzV+qnSexJInolyjjU
t5Tk+BQ43Y9mTzg0bglo3Gaj8cBRvAx7aoqi8fvl8+LuxZo+znfHO/PObUcKwYqrpnLtiByXAseOk+yowSHxhoDEm2wk3hRB4k1RJD6yo4du/u2n2XqxnKQd
h+nfiqp2k5wiB6UGDcOR90Cn7SqIyNMPVihLbEMY3uDf1frYmzLaz66hCwoZ22KHM0rWmw5nfd1q/n7ZvbtbbPf/HSwPssz7+XL7+oOXfz45EKcK223EJk9N
kHCxdzU2Ql9sxW8WkWe6WcTPDZp/rfcN8CDm5cgiJelzXuT2/XIXuQ12i9SBc+HxuOljxzXFqX58G7eeTrzBlAUtx7uUBc1njnfy/Z/2Ge8mKPRVqDfAg1jX
8iXlHLuVL4JFn8EL+UaDbjfPd90X4HE6UMIDx4jldKB/jdpo4HLx4WEXHFhjtRe7i5J99+Q/Y8hy7pN0Q1b0XsqA2BuO0aeFTruL8i8I04c6vLDth0f+FWH8
UCdwbP24kX/zRmrkyL97I7F3Ufa2443F3kb52ls4HY29kfL98hlzq3uShh7ZBfZmyqfF6ht/NNasvlCWo9FY0/r4sNj5X46+o/ILvzUajbWx98v5beDLNTZA
a2epgo3duBX6HenYl+aAU6gjTgER+hLHalz5Ew/swWyFGHgK5zXBchl/8aQTZTmTRlw8OXrL66LbxAQFBvtkH8RkI/ccicoQjkd077oMXoSp2Hf7DHxYpBD2
Pyh8UFz/QWP4iRB/OgsXkH/8MsXziJ96GHVzrJGQnxO7/ymwvwF0nYEfr5hk0OHOQfboIzef9XL+8KHZwJ+7VzOR350xdR+7koZ7dTVptMka7dc65JdnDPdS
KGm0lxnJ786Yup/jSMO9PEcaLbNG+0Ge/HL+cJMV4WxWhDN5Ec7mRTiTFeFMVoQzeRHO5EU4kxXhTFaEM3kRzuRFOJMV4UxWhDN5Ec5AEQ59kvUBv17VKa1C
VOGDgK27JkNU8D0LGWWf8UM81J2GNZkX8A0U8NGHH1+nIYRxvTXwzTe55xxfp6wiBLwZbyuwBr7phc066LzkbpLJPXVmq5/ecw779dN9mPZB9Pv0S/LHKdI9
z9Y4tH+IZnAGaRMg7VCnJQuMADH9ymGtfrVfljFBj1Lwe5QVvkF5OEk42pN0Dh52Ti+WRCZCB7pgNH360Ie5zudwoPSYA6VPJWxavLnEyE2UYYoXw4TXjF2S
kQq0kR48P26jBmgwNjZhsCk1ozETJmgKpyeAnkG5GDbsXbuCGCYpMayF7MM1gZF9tN76DNoSlmFH2cV63ilwe1r0MGiJl+qwpjcuVKir37jpnZQlah900bJE
HUVN5Mhce5CJliXqAEeSNZecLFHrS7bV6In52CxhBWiwUJZwl9VRs0Tt00n8LFG7nWP0DApmCXUdWaImZAkJIl1oZaVzAD49Swx72C/W80bl/fP7x/4Zi75e
/vC8wktXgSnYzbJj50tBNDgqBpYf0DzHb5uwI7QHFonZIkCqZc0lJ1uo9pJtNnobBjpbWNBgAczYVG1mtvAbTvxsoVpOtggQUxnZYjin5wqyhaFkCyigeSYw
so/x5Rb0bDGcnnOxnjfKFg/rHSlNDFcyx6VaQ16XwmhgOFQ+EKelCeX3G7mhWXlokZYmVKD9mDWXrDShLtlYo1fcYNPEcCZf3GAh0Ci97VK0IK38Tm1GmlCM
NKEC7dqcNCGuI000hDShoKLCM4GxfQAsCUqc8pI97zRN7D9hvpuRs4WBKnovzY5zcAqjwVExsGaV5DnSX5HEjtAeWqRlCxnoYWbNJSdbSHvJNhu9vgqdLUDQ
6NrkyGAVsP8SpeZoc5eRLaRlZAtZttkqr6TZ+gNKtgDtwzWBsX0ALAlKnOaSPe80W2zWt990u9ly/ry6fdhvNcWK10Lba710O5ZuCquBYVHm9rVlub62zOxr
y4J9bZnb15ZX2Nf+IT5dtFBf27PJkcHWqYUYKTWX7GtLTl9blu1riyvpa/+IkC5qsLhwTWBsHwBbgvK8q+lr3y/7/8x2D5v1R0qygAt7N9uOZZuCamBQFLnt
bVGuvS0y29uiYHtb5La3xRW2t3+MNlhTgcWwa5Mjg/UPIaGFalGyvS047W1Rtr0trqS9/RNKsgBrC9cExvYBkCUocV5Ne3s57+3rcbHq8IJt4SQMMcA6a7Ws
yO1si3KdbZHZ2RYFO9sit7N9hY3tnxLyBNTY9kxyZK8GWOaC0nLJxjanry3K9rWvpK39M0KW0GA0cw1gZB0W4EhQp71dstuNKop+fvPN4+xx/mH+P5Rcsb9p
GfI9iP81KYwGbyPO3VhRLFNk9rYLtrazO9uXbK/hR/0cnyYEWP+61jgOBMD6FtTqo5J9bc7qp7K1xHUkiV9QkgRYSrjqH9lGA3AjKN7pkp1uvJ2i29wuVh9m
g5ltGcliOJcoLmWI/bUpoAYD6LxkUayqyGtsl6soMpvaV5gnfknIE3AsgABjchsQrOCCHQpGlijanbiSVvavCDnCgIUEtNvGudednCOuhmw6rneabR+6JX7j
nZRgAe8m2LHHpZAZFAYzm9jFuhJ5FUS5jkRm/XCFLNOv8WlBgpWua4dj9wd6a6IWeb2KgqugGARU0RVQ4koqi99QsgaIJkDLENZQM4W4mib2l2qCmTMUtFnb
S7hjd8zZrB3g9Wm1BGnhU+JZfo+C/6xyq6DAdgVmKiRuLvEsNPWCnRheRoiZ4UIn5mm0c5NA9eXBEWCFBG8qxDtWxEXDkNEmgflqtSYHPpCqaqEtAl5CwWjz
CC+4CgxcSIEfLT3ihYRHX1d0XYr2w4/6HQFOWCjtte59SKfab2VOv0X6aa8mjPYJJ1LSjK8WZoTK+EJQehAH1g5zZ4bKLxjrv+jFYadxsPvH07Kf+LfdjBcR
LbTF1jP7sU/k7UiTF83MhB/1e3zJqyBeBkw1rQQYr3Qh+rKMnhBhPPxDSxXmOlLFHwipAlzv6ylopD2V022RPgCkpAqfhKKliug+RE5Axp4fip1YuVQRJ17o
qUJd9KYTf6cUPjU00BJiz8zHPpC3/UxdNBMTftQf8amhhoML0AxpFYBDEY2tipoalH/FFEmR8jpSw58oqQGsIlwFjbRX5zRclA+XCalB+fCYlBriB5owAnD8
rAp6agCON+HOrFhquOjt6+EqgpokWmgXrWfwY2/I23SmLnqLcvhRfyYkCZCqgnactTWAQBFJwuUN07HFg420JNFcR5L4CyFJtGCKdxU00p7O6bAoHyhTkkSS
cYSjZ/xwREYojp97R08SwFGJ3JmVShL1RS8Ii26dnc0fH9doh1AV6A+uyY/9IW+7WX3Ra0TDj/oPfJrQ0MoKL8WOBQug0XSaeDkxFB9dag9CktLE66m4l628
v1LSBFhLuAoaac/knINb+6CZkCZqHyTT0kTJe2rih2kz0gSx/YqYWbE0cTWd2Q+bbjW/w69sV+CdMp6dj5wgc5NZfdGbzMKP+k98bgAPxPPy6ji6ACAUkRsa
am7Qed1qfSXd6r8RLtSAIZOroLFb5Bx+q7O61TqzWx2/s4kRgePX8dBzA3CDE3dmpXKDvppu9e3yebu/epCcI8AFxJ69j5whc4+ZvsI29d8JOQJsU0PbyloL
INB0jtDkNrV/vSEtR1xJm7pXAiVLgBWEq6KxY+QcequzGtU6s1GtSzaq0RddYidWLkuUbFSbq2lUP60X2/Vqdjt/2j4vCUlCQVtkPXMf+ULmJjNzhQ3r4Q5V
fKKwIByF9pm1DQBH04nCkJvW/pXnpERhrqRp/X75TDiYSoJHOHg6Gq19rqqcA28Dt8ATUkXg7m9SqjAlG9emYOPaFG1cm5KNa3M1jevtcv3xbv2RkSxqCPj6
Fu/4Q949oOYKW9efumUva0K+APvX0B6ztgWAKSJfkPvXJq9/ba6kf/20WH1DyRdgZeHqaOwf7l4KWr7I6mGbzB62LdnDtgV72LZoD9uW7GHbq+lh33X33V4u
9HyhIXfwLd7xh7wbQe0V9rBvP80J1UUD8Xt+vnWkC6DTdL6w5Ea2zWtk2ytpZH986D2HkDAkVGD4WhrrENrzglMIO2PYzHa2LdnOtgXb2bZoO9uWbGfbq2ln
3y22vfHc9l9Azxng+RW+zTseASzPwUj4CnvbHzbdJ3zOaKH2tp9zHekCCBWRM8gN7iavwd1cSYP7/XJ+SykyJIyqXC2NdQhthsEphJ0zmsw2d1Oyzd0UbHM3
RdvcTck2d3M1be67rs8Z60+cMqOB9mP7Ju84BLAoRNSZPY7mohvh98vnxd3Lgz7Od4TLfUwLU4FuInZknrVZuyF3wZu8LnhzcV3wkeZuN8933Wy9wJ9gIKSC
6w5IQThp87NEss0NjgZoSUzsJbW1kxOhnm2Hbl0PD9s+LRe7vdOOHtIGWtYGNXBIz/BI6ItbPz0TBgfSse9sLzb5xdPCjja+GPmpd6fZetOdOllfVq8fn+ab
va+/ffP9/Z+Oj+5W8/fL7l1fwez/+3a3ee6+/G3Tze/ePcxXd/sJ7Hp/2b69ny+3rz94+efDLx/Xd93+m0IeOTSSHaerm3GYPBw5R3C8NoBDiCpwre+fSwe2
UiMVWFE5maseH2h1190uBmY0ehFO70+9WGVKqscHFcohaiTat6Rq5Muznj71s3le7d7db9aP74YAdBA1NslUNdjv0CNuSzi2P75tDa5ax+8RLA0l7b6shupL
0JCFCXhfrDEVOA8iamBIlSIMr7BSPw03i816NXtaznejcCOH9vSJ0P8dUZQMj3qJW1Rxh2K8rmMyDUQjAXJdGuiPpGVuvkZcMpdg9b3kYLkqMC5ZfFwav4fq
FeZrxCV7CRqyMA3pizUelzx3o2igKRuXjjCoTGRyMFWR2CQAw6+MVxLGI5f7LOk6UeBYUPA+leYQrKgjTsqvXtS338zuF8v9VorFatttvAJoNvB4o5Aobw4j
esF9t+hrt/2dKC/P67rliy5JE6sDnwLXhYeJjQtq7gGph/dHaoTDR90+dFtvlDyIBomjpQatZ+yIqJvtRNwXL4nLPzyK4HTG8zMNupZ2T++HQMFYzgnjlwe7
iBv8etXN3m8W+17FzfGPMhjaPiMMamhmRgzKz6SmDxg3QfF5htaOvhmw6Io0ARubgASDZu3MJh2EBsGIkJ0jK++IYX7bbT7tHharD6MyxMs8r1X4UGS/FtEC
Lao6JirrSMcO9hm1uFMcTwzk1bXLUAdlaGXtGphhiTDqlZbiFPtzcMOabl1NK6RXDk1i/AREbAKenBq6I9prN6ImIh3rhimrz+SIgzqvWoZtzMKMK8OqrCdq
kiPEYq5V7jQt1hMNaQLhgDUYoTMBSfdEfeVWtP/msHpc+DLsADiLJ5prl6GKydDl6G3NkOFy/WGxHUqQvS/MNt1/P3fbgBgVySuiEdiFQs0BCh1f+w4x95uh
3h/Ig4rxHTXpO2JR0Lr1x+HCjwLfgbJpNaFNy3PYdKyssS6AGs5WP0tcqK89LsQqM+tiwOEqk4IZWlBcqImlgMYFY8OyftQEAE4mMIFo/HSRzLCcimhF4uta
EVoIsYqlcXFSY0FjiRMeCGHJKxFWrLqyLqZrJFNYMdM2JHaoiYXRxoVXDZYdsiR2qInFoMbFJg2dEDJfmRBCCyFWgzQu2Glh3ifLt74y84MWVqxealxE1cAM
D8O3SBxPG42YLkRpsRyPIXE8bSwKNW5+b+gcj/nKHA/aXGKFROuihxamcnJ8y3xlMgctrFi10rhIp4U5m5iwkDWWIVE4bSx8ti40aS2qxhrNPq9aNCQuqI3G
Nhc3tLLYl6AMeEoeKVAvogUYqxVaF8+0MF2U5e1fmTBCCytW17Qu9mphXoiRSUlkUBuN4Q4+EtW4b4t1UhKl08aCZOsCkBZH6ZwuiMjx0VxOZ3TSzekijZP+
fpyF2HMP79b3714XACi0RGNVSNu6+oXJnMjSEpT0ctmcrye9WAnVujCvhWkcUHoxsYnxmhzA5Smcy6Do8EcZ1yTcrkh0Aq9MS3odXawVv48wzvvdthDC1nJp
jK9la0N8DatlDFCsgTMGx9R065oaZJfV+MfITKBbio1E0tLRJBBx/3VdUDTuR625osw0krL2zuNYM3V9obbuyj/StrHDeNQCvS/7Gu+fN6v5bec+aB/AFWnq
hr6eUB+xXXBvWcxw/TWI43fGxp2nwVDhthIFtgvttxMhLc4aZzVdwPy0uwRNiDHJmNK4GGs8JkYZF3/iDcPNAuk31L4NoxRcn4cWkFMouMEo2F0uI4QDSYSs
KRofLpJB6MPwNS5xbxBMjZ+ngVFPofHW3b8R1LhbkQkXwkuSjw83zCH0UbE1PlxAmH6D8raU4DSuzkMGmAk03lQNQuNu/0+4Ky2FIvn4cPEsQh/eYny8xivU
G2TL1Ph5GinNFBoX7sbFoMYDLu1onOTjwy30CH00bI3LGvcGJlCT5wFqP5hC46pCaNxlT/cuPf6HmuTjEofcJB+5CRxyE0zkJs6D3H40hca9/eEBjRuP5lCu
j9ckHxc45Cb4yE3gkJtgIjdxHuT2kyk07m37DGrcRW616+Oa5OM44Cb4wA2H25iw7Tyo7WdTaNsohLaFi9pq1781DafjYDpX2SjExvPs86C1X0yhaetuWQxq
2lOs69eG4tcoRbPzNsqneTn7PB79qyn03GiEnt2Nw3sHdvRM8WhU+GYjclyyFjw8fqZU/ZspVN0iaDWjXHBG8mAXiiWJcuEcCBCROju447B6EqqDn+Dhytet
++ljE0/QPlWD4/5KC91UAQvJLZkA+5fnWVL+uwnsvxWYUKdcqNooiiRRZADEBURGsLOeS4BAuj3Psss/TKFbiYlttQtM3SXzwlmsmoArKOQIUX2REezU5/Kb
gLLVeXZp/WkKZStEt8B4RYdHJrcUz8ZR+RCTHxnBTm1u+wJS9nk2K/xlCmXXiEaB0S5AdRe1ipbi2bhOHdSoi4xgMxJudxJQdn2e9bR/nULZGtEjMO7hPMJd
i324cB6tbBREhPrwkRFsvtFdfAAoW58Hj/1tCmVbRHvAuMfTiNY9j7eieLa7kiciVTJA4y8E0XiAps8D0IZrus+v7gbTG3BPxpCV+w+C4tsGBdE0GaJpNkQz
eIiWvegaumz3/PpuMZ0Bd0v93psdfVPc26BQmiGjNMNGaQaP0s60pfRwWebZ9e1ebRdRuLv5V7rdgsPla1iFWxRSs2SkZtlIzeKR2plO0DnedjeBxr2DXEMa
dzdD7j3a0TjFxS0KrlkyXLNsuNbg4VpzHrh2vKtqAo2Pb5CJadz6Lu3coUDx8QaF2QKnsaZGsDFbg8dsTS5mi10qM4GyFYJUcy9n8LwZdycLtMo/OZimdQC6
4e7yiHD9uKs8xoPLbNMZnYd/ufd4ePd0fFz341fBLSjDfTn160/TjZTZIN6TIdg7JtS0Z7lLZ+9UsbPcB8/GurZ7iwR0zcfpqeL+nVX+lSCvKtg+zpfL2XL+
+OSIfnDbutAuNZT5o41Uul0C91z06EcNVzWV+qjePW8f5psP3Wy46Hvb9WX64zqB6wgfKbGe2DgFTFynNvPzR5luufjwsEtmOsIHI5U4pIdSSkResURSG3zd
iGO5evTR2NstJo6I+iIioruQEbpgJBERvctIcI7mFDaIlDdcp1Djnm7GP0VcSXDIp0GghDru+1Cak092SM/MtvGZIb6rSn0XdAb8aSSEftxUgRIB/iqb81W2
cUcb5FdZwle5xTdwceHhfOAavLgwsSHWGu+bIvt34Ulryhcawheqf9VcW1KUOZG3H1uRZUtJz4cOnER/laR+lcnye+v5PdJDXAoX/qqQ30fsZzjnLMtDjO/1
HA8xlBhgCDHAaLaHGIrXurw/wpaUOy9JGV3HR8MTpfi9Cfl9yiJ8z2felXs4SoTtbka4SBKreHJc0C0V2xgvFlC0r1sPJFPfzR6tPZRAGg2gBOS7IypFHolB
0pKmenWTkyAaT6uvg9NYvCXjvYFLNFxdDKOhzAGPFlnvllmjRdbMZc7oQcf8mVc5o4d387+7yvpumzXzJmu0zZp5kxiduqRPe3PnX9JnEnJIzcV43wLNBXP9
YPDLyJl+6LAZIG6mplK7HwbehJh6mh+c+CpLhSrMXIIqowvZi1wngOj5fY+J9v/ocQ4DgDZ9kUAlSPgulxVqbCrUpIp+P9hwJW6zIo89RB7KCD/WUEanokt6
NP9bs7CI9cIH+d38mXuhhzQ6CwfZLBxkvdBC5mjYo01WgLAV1TMMkMWjse9IHhBj38AbsD/NpNwIU34bdCZMV9CjuZAoCs9AyCUu/91eBiG92wvbpNGeqZFG
m4Bpp85tJAGxCOuhvShIqT4P5xUa4rz98AXZamziqUCUmEXt4wW69GrPZEjSqzVderWfrhnSq714Q5ReFCtTpAdkIoT0VMuQnl9Kc6TnxRma9FS0OCRIT3kJ
hyY9RZee8gEXQ3rKr9pIs5A+mUKXnvQSDUl60tKlJ6MVBkV60sszROmVyBoyL2tIRtaQRbKGzMwaokTWEHlZQzCyhiiSNURm1hAlsobIyxqMpCGKJA2RmTRK
5IzMlMHIt0XSbZbgCthclsXRpVYi0uXFuQJRLivG0Z0UnVvnm8Xu4bEb7k2IrEc8cJ8O++qvRnx9UqEFieLm9fqKN/9CWo/422ElG2bF4f6kpfgqwma8e3K8
WhfQdh4oiecFBo8fj9YEh8/hyETI48EBnsMTqAPhQTFJkpYfKDJEj81RiPOp6oAQI8oCshpm0l56kUzi3weHNFXQMFpyJhki8XCezDAKUrkGflWDtwmgvMPM
+RjPmMbLqG9kCYwp8yBmvDRkqD1er+HDMFRmQsMA8INQXijyJL41auIcwZEakREJpMw/MgxI4wigW5EFFyfCGIKLs1N4wUGkGjQMKFEQgjNkwcX5V4bg4qQo
XnAQlwsNAyJWWnC1pAsuWtpwBBfN2ATBpVJ1ZBhAxSAEF8qk8LfGu00MwcVbQHjBQZ0raFhWctD05KBLJgddIDn4PVac4LKSg6EnB1MyOZgCycFv8eNO6c5K
DoaeHAKrS/iCswWSQ3LJSWRYVnKw9OQQWEOWIbgCycFfSYYTXFZysPTkEF8TyhBcYO0kWXANLzlAayXTgmuc5ICgGo87ny+UaxztjH/o5t9+OuyMR1KNdjgP
M7phuVIprjG5bYK/3jOwtpzJSvjr63GmlqJM09swLHe12bAVgj9a5owexMV/d5X1bps1uskarbNGm6zRWdYyhDVodGotu28vGav0ra9D9jrtLJXYLJXYLJXY
lErSK4D5o7Pc32S5v025f2qZrO/CGaZofB2y97xmqcQAKnnfZ35vibPeW/7+vLQXkHD/vZV48/nfNt3uebP63rt/61Z3/wtfVqGhBnECAA==
viewtopic.php?f=18&t=34042