The problem with that one is going to be the shared belt (or more accurately the shared belt lanes) in between the two wagons. You end up with priority on top belt lane to the bottom wagon, and bottom belt lane to the top wagaon. Without complex lane balancing it won't unload balanced on uneven lane demand.disentius wrote:You can start smaller:
The attachment 4 blue belts per wagon-smaller and extensible.png is no longer availableHere the 2 wagon version. Use the middle part for all wagons between first and last.
(also from the 4-belt post)
Here is a variant using underground hoods to separate the lanes of the middle belt back out. The red belts indicate the output of the top wagon and bottom wagon after balance correction. This is at a cost of complexity of course, but less inserters is less power and drain.
- 4 belt corrected.jpg (210.14 KiB) Viewed 8474 times
4 Wagon Tiled
Finally got this done without silly mistakes.
- 4 wagon corrected.jpg (316.63 KiB) Viewed 8473 times
0eNqlneluJMcRhN9lfnOMrrtqX8UQjD0G8sDcIUEObS2EfXeTXl4ys3oiv/4lrKSNico6OrMyMuvP3Zfrh8Pt3fF03n36c3f8enO63336+5+7++Pvp8/XT//u/OP2sPu0O54P33dXu9Pn709/Ovxxe3e4v9+f7z6f7m9v7s77L4fr8+7n1e54+nb4Y/cp/Pztanc4nY/n4+EX4v/+8OMfp4fvXw53j//DB6z72+vj+fz43652tzf3j3/x5vT0+49g5W/lavdj92kf6s+fVx+gogOqrUMlB1QI61jZg5XWscoly39AzM9w5XFOvh3vDl9//bdogFcMni2uzQ1XXrkacN0NV1/ZXRz6wFwF8LB8QH943B13v9/dPP7zAvmneXveejcP59uHp8318ReCm39fs3WIGM9cCiG58doqv4zxbH7+ffU0qSuAlQMKOzX499bTEpEXrH+vPa0YGX5w9uZyiGSDvTKWdlj077CwejpG/xZ72kUrgIkztK2aOUMb0L/L9q8U4+V1FSvAjw78BvCTA78D/MWBPwB+0PHT4sfvDnj/FtwPB7zHfdy/fE4efT8BOmHPKpneqcelzK8eZTSxCnZ9bG51g7OT3o7i42lyEqfmGHy9MPiO/Rx78AP7JenyMsqLJ5JY1oeeA/dQzLFnz/4J8QK7xF0Em13e4iIo6zIX/v21KVf+/VVW09s+uj9//vqv/fF0f7izT7tXouGvuNnC7e9wD4fr/dd/Hu5XP+2LOfrhoFdekf5Cr1oR9Nsm+n74dnz4vj9cP/7/d8ev+9ub68PaJzyYEXnY4HTYiHEDomnLkhy2TA5b5g0OS7i8REtx8F5s3tYSLZU7Kgrtxh0VBb5z9vbyAH5h1fnWhcMvAjzYgM0BD3ZjdhjH/6HbFwd85uwV4xTOXoEH+zQ6jAP2aXLAd85eMc7g7AX45t+1jpO9ka+mAz5i8oppEievwHuiu9cFo8ShDbioDqNXTwDwC3dItBsOnxVz+7epZxsNzN10DvuC2QpT2MOG4D0o96g94jSOYO2e8GWGgk5iyOKyTsH3EQr/im8nFPQGrNNc1un8ysLeTIMDmp708O/OoVt4BJ6WselGDmgadGy4trEZZg5oMyz8UsUG3HBLYw+5Oe9PuonivYUZJgq4hOmX7w3Csvhxh4Ib/BcdEt/ox5X4vu2X/9zcfDuc5tMUVyY7LNmLM2wcz4VLcNiv+nEl+zV53Muq/boXZ2K/ga9mupA3D45tM/TZAeqRF9a2GUJ081RmG6hIXm56JjwzBrTXkaEjWckhPp+8TYmBQuB3IUOB53chEnwHzuH+3QktSKAGjfmVAcQFx/z2Uon8BkTiG3kkN4RsVwByk7pqjw3BlUYYJ7onhCuPdzTCjYZrE8Jc1TUBHBjQPo+BgOTNWzABAwa0h5y4amvCMGHACcPsT+tWG6k4Q4hmw1S/r98EbyA1v08u4Xaefq3CyZwGx2+Xc5shLzwpq/DP5I7w1av//18QzsEc/Vlgeym+U5WIuf+xCpex3ywZuuA0sgRfsfM7MUfDgPYBlJHTWC8stBUXMg+cLVUsXhacLW0KfMDwtv2JECU5+CYc0UjWzpi9BF/I4pyc48riBKIVx6leGjrV34YjDKDjiEcawaDJTQW9Lv6kbJECe6BfqWu7tuIMm32sV5xTm+BlijcZb6Fh0oQfzpJN+DUcJU0AeRw3GTGvx7EBG4/j7CEDuciby28C8jhuwjDx2hap4AuEdVmIFt5JQpxyWLvurW2owbFL/VrjiBOOyK98GXfxRzBt8JBMKtfjhTcSPC+8keDJVeVL5JD9s2GIRPSwooCwomfsmCtHQydJhyz5JkAxsk+OmW8bfOgMfOi+JQ2hVWIbmpLLP7FcWMwrvzd4YsI+HUfYEAkU5WIbyE6ivqiIBkXfbESQsmpt3NFBYotbOkiW9lTiJc+5M3CzB4k37vYgoMdlQ7cHrRR9CZT/pHoed3uQ7IF7P0jomWfhRGvz3hDSACqVDErovFGE3WRg4cHnBJAnEe3VHHjwOQHkwecEkAeftg1D8qfY4uVUWAzZj5sUXG9mMdrDrk6YZMOARKI0yu7HlWZleMV+tvmQpCWuWTIGv8xPGXEEGcB0+fIjxuSV/U0smWFecWLGgsP5CSCvd50MuLkFftI8b0n4JfdNQCQNUZr9a2ZDngXD22YnHVCiaX6bL8/3SfA83ydZO9P8mES+4DBbgq/81iD5bw1iang49hFjqGYuFv9FJRaMQC+z+pHKG+IzpQ9IzDihZ+/6HHmIoxHGEdqEcMYu/QSwYMDJGuBFOxPAhgEnQ+6g/YnwiQVtVYRGILEsPld8sfvDBW/rGBsGVOsotiOCled1KDQliSW7aUtTU7zhwsSqoIZHsmpzO/eT1eMu4pkMlBfxBKVJ4cKCBXvQNbg9cWVSSNeTtkaTl+7Yk1RxTm1R5oik1KQWDLHilJpEvG1IcElF2LF2nrRb/Dm7SPqchLWl0xae4FokEzXqAdqbp/GeCTYe78Zs49FuzJPhYm9vgld5lbsNyJ29CWCngJMRDyxGktrULm4tkj3uznvnKV/azhvp2U45U448T1X030/1DMVZE3OXDZUbAdCvWPYkTW+jfpqE3qnoSUIf/KYzgPuega8i7aXERCJ1fSOs8Y/U3ZvwT34HT7uuGtgxlTp4F1qhoqzKUbn3GCXPaDR6Byzx79S3ltAH9xuj0th6oS33gtKbHdebS+jRXR6hdU5fqJpL6ldPxVySSYpbHRU1k1BRl2SSBmMN85xNCxVy2e3aF6rckp4XWGAYYw89BHxtL52lKeDuXbZxQXuVV2fcxMPvh0zwcOuuyXj9hen58tVZCv6+6oJWIQVnQ69sj5kXn9sPHkTaTn0C52/gpcxJ5JGgbceYcGiTlKdIsvtOXCj2SRFXlEukscpEQm/s2nwyf7iH+gRvQzznL2FJXFmSlddqAi/ISWAwWHairJuU+HV18l9XJyBD2Ud9agrWiYDikrRBlpLIz2FViv01Sbji3N7lhhTlkshFqndIoGdLlHcA0KOsffpyhEHT5Ckr+jaWNPQMww8JnDYUk8B5d7Gs3DUAwYr+rc4dRlISOG7arKAX2sFZAscNnO29Axq0hKCzxa3JJmxxPGgfRMVZRWA/9Fz8UWAVIg6XquUXbFFgnVFgscc83FGWMuZ3yhZNaWTPSPXHgIrp3klaNHa27Wpyy6Ak22WneGliO38DZ8l21cluYjt32YBkOhzLCY1/Uh1ezopBG+7YYFu24UewJnhY/2WvywbybVVynVvmOasq3bMCPcrePJZs/rivs4SOI6rJPOKISmJLWzgr4J1e79s7BGhX1jZIxzWhE3rYeZvwyz7Ho9koxe0VCS1bU6/uK/du8+O9hrqyBDu8LJ+w9btxijUHrwsV+tOmEfDVuWLjETeInLr/9nIk91W9vTcG7iYrmQVf/UvolV3OTyyBG8na+2RsKCvt4Bpz4LJS0x55wX1ju40XqIioK4+UY6lWU9ATdcYk9MyTBaCnawa9RfZRnwlcaiChb+gYKzWMzQt2NiX+1NlUwIO/XWxXwp1MmpHorCP0ae1zJtA6A/sY5HqSCR7Wk0yGW7HqfiiT49eVKG+h50CdUvv5uhzGBpH8cDtgeUMbk8kIIi9LGDZg5EJ4oeorEzXKcMBjz1SDL9w9G373LEf88IG0n2LzX3VJzyBnIlop8vnCJCxv2/ay4YlqJenriMlWoj2z0ngi94CUF6Bywg+NT062RAXPygJK9HXxGdkKdQvaaqGPikum6BBcoz7cynLtgAEylCrbJNOulRI4LZGVDJ7pEwgaOi2ftZ2NTN8Q18jS1xE09Ea1HRp8h+IODR13spTgC+5rqcHjLpeT47vgjIa9rkvyZSDs57pzcSYyQrRh/JmMIDTeyECOEqKC629yqfHlr+XNJsif1ZAs4FanTGbeJU9ZTEuacUONbumGNm5vk8vZuGGTy8k0e5QqwzFaXIQw48mrzCd27Dj8lJYRTj4EoUguE+FKdcDjN+w0+IjLpyV4nJzQ4HFpQQgKPE5GaOwrDmYleKx0mWx8IHVZHHTpa3WTUwWoW1ZH32nRwIwfffNjxs/rDWYbxusNJhsGeINCC/HcgTeYFVzgDUp8/S3PNb68bDUIhZF5LF4fyV4Hw98AXbLr8DdAnyx48DrOizuTFENmt1cnjR93RNemH980TpZBo3iTSes4sxgEjXMew59aNGWHhUhVXg4CgWl5J11xJisnfHlheCiXV1ZZeMtYzR7AJXw5eCT8wjOXEv6GFmFFwW84MyrR503CJPa4E63EPuAiBIm9IVVZSYQ+x6DSm8kFCFVeolAJPuEwUYLHLcI0eFyvoMHjggUNvtGwS0LHkjINnr5VMPk8RRzVfWD729XueD58f0T6cv1wuL07np7+8r8Pd/e/3K7eYuxhLO0xfvsvqVs95w==