- Use only 1 input belt per resource type
- Keep 1:1:1 science pack ratio with inconsistent resource input
Requirements:
- +1 inserter stack (otherwise you wanna upgrade inserters as well as add to iron wheel and inserter production),
- Productivity modules 3 (Those are used in oil to petrolium production line).
* Some more detailed info with numbers below the pictures.
Update: Same result, but no speed modules required, also removed effectivity modules and solar panels. Copper belt is splitting perfectly. 7 green cells for filter inserter line instead of 4 and 10 red circuits instead of 8.
Less belts. Added overflow spitter to copper belt at input(maximum consumption of copper is 1628 for 2400 iron, potentially almost full red belt can be overflowed).
older version 1
1 hour production graph
1 min production graph
Pros:- Nonlinear production keeps the ratio between the science packs. So you don't need to care much about keeping the belt fully compressed.
Cons:
- A lot of splitters
- A lot of belts (although you can see the jams locally on the fly)
- Not as compact as any other build.
Some more detailed info
Iron splitters ratio: 1 : 3 : 4 : 6, total 14, Red : (Green and Sulfuric Acid) : (Battery, Steel, Red Circuit) : Filter Inserter.
Copper splitters ratio: 0.5 : 0.75 : 0.5 : 5.25 : 2.5, total 9.5, Red pack : Green pack : Battery : Filter inserter : Red Circuit.
Copper splitters ratio: 0.5 : 0.75 : 0.5 : 5.25 : 2.5, total 9.5, Red pack : Green pack : Battery : Filter inserter : Red Circuit.
Blueprint string for Science factory
Code: Select all
H4sIAAAAAAAA/9V9XW8bO6/uX3nR67qwpPmwsZF9cf7Ce3lwULiJ2xrLTQInWe9eKPrfj+0ZJ2NJJB8+k/Wxb1ogHooURVH8EnX38K/9w+1m/6/PNz+398+7
59326ebnz/vNj+3Nh+fD5v7p8eHwvPiy3T9/+Pj48HT84OH+5uf/3MTw8Y+bRep+fbzbHba35z83vz7ikH0dcvP0tP3xZb+7/7b4sbn9vrvfLlIGn87w7a+P
R+jd4xHm9uHxcXtY3G6+7LcfMBpSSUOHQUYN8uX+bnv4dng4/l+DbS88e/7jRPfDy/PjyzNIcUtT3GiQTy9fnp43pz9mUKtPA8b2U/vr7esfm/1+sd/8eLz+
Oi3HmTnWMfRnmPS2jpu73zf3t9u7xe3ucPuym3Bm/3Ac5/vmyN27xe7+aXt43h6y0dbn0ZrpLKNHHpu6PNqY47KC+ePtw/3z4WH/+cv2++b33cPh5uc4qc8/
Hu62nx++fn44yuyZ8Tfp4+W3w3Zz9/mE7fMJ/rghn26eDy/bX56JtPWJfN08PUszaEtAkHf9OHcPv7qSX6Ak9yWdIGSnQQI6Z+2Q1c2Xa+Dj3jtDh1/aNw3w
Tci/0eYcBh0X/Rp6hEx1SGH/tSVMBPViaErYTtCRxkhreaTdPa5sg8Y6WCVEWhkJrDeOlyXOxorIx+oRGd5Efrs/Dnp4uN/dlkKvaZc4kuU7JaN0SkLQ6Vd9
1Q1gRRCzgQAh6Esh6Px6UoA3JtJfcyHnIYxd2M+lboqr8/dLTX+NazP5ZhCpo0B9fTncb2631wDn1Yhr9PMQ8u8BJbek1WOoQ0oGVWhGg2o5NahQM+k4K+Do
kcyz0BWHC2pQLWkdJnAW1p48ZmFlIMWxFBSHbT6Fv8QAhPXOcqbeEeAB+yzQ9pkAidpn2CZR6VjTM1ixkKkitCDkkoaMuSYGvhbwSApv0YRB48V+qvHOG0nD
tkjDYq7q+1/ScYtmOYJBcxqNcgmLDrrSQO0ddsG99hjYF6wCkE5wy8+140ETD9pooBKDksYgZFkabQBAcENJNbpCkZlwmDvhSMhhrGwcF9ZY2T421ooI+7BW
BBlbnJnzpTcQoSS6EsRz9KuK15T/Va5/FZtprREKYnIZ+szCB1WhaHGQaxhfHCTjyow4SH0kdxyEF/24rAjU3xcalVYSCatgq4JmL2JvZS9+bO92Lz8Wrx7v
48N+Wx1pDe23qGp6xDM6wVIBGUWofcGZVz08L6ZxLY6+iMobE/zhoIpuxs6BV9vA8/VaC8Q0wzctaioP2qTzfd6jn698o/eXDUQdUhd0AjxiRlOgnQaqi97F
sO0QDQQwoClHQ63UxDOg0UCfHve754p9uhw9SIrYyIOGkliXIxA1eGO141pebcfZfRlHyPsCk1hqk9BR95UpgKArHrSiGXxYKdDWpb7GY4CaX0X9oKAV9fMG
ikThwflVFh7zWQiGVJbb75cJCgn1lTryGCrOPBCidyZDwGULlRPG5SPR1TxjemNSzTO/CkRaFcBDEDgAuzo8ZuqweFU+ZNKCF39dxcPmMLHteTWva0E4ywDJ
qp1loGagnlO6rNTOc8mKBBwMULO8mkIolbVDzm/9pM5FpCoYiLMzqYAS4o9jeoIoULvgaD1ZwAs+oqjr4iI1PgduWiYomPNxNOeFWjvAJk3lpFzwDc+UoJGO
gApUI56EACqm3i7Vm7FBqjcvljMaD4itSz5GtQt/3vqI6Qrpk7gSoosrIeQjI4Zy8hjKhDT15g7Q7FWh6hK0PptfOCah1hLEBDN9XCSQ66O1SrA9qJpHzQUI
2gbKBbTIaQ3lAqoj+XMBM8ukmfMvquoTCt5DbERrIuOkDFiriYRD+Hl1hBrCb1FL6lWPzgnbI1IDBc6b2WF7QXVB2Nu5YXvCYhiPbvDYS66QfHIdqak4IsWU
QPTF+Cef4yYpURZ9wTdR8zoOqW4Vrs0Rym4RQziaRI44Eo8jaWs5+lAAHYlfkFCC+mxaCjSUjPNhFUARwahIb6esQoSloSKyvpAwumtHZQZ/3npsq8vok8/t
kMpiPAIn1ww2+932fvF0e/z3drt43Nz+hiY8eJGMqlwJ6xbWNL6w5pecl5bAq52w0kAlBrU8g1qe1I4hteFJTTypDQ9akVgUtKIJTQbxss6LelBFXSB0RRPK
7w51c6iQvJgzUl457tHTk6ZTFXGBTt5AUEVbCgxdqgwiEhaKnjOxYkv6U5SEeVYRZSwNK3AOjNq43IGKXnAnUH1hH/oqrMRJ667XtUTBydCpMUTe9bpyENC0
KX1flZfwSLuEuskGhUYinTa9ltq/+66X6JOg0Q3C2Y30aRlVTQNnYaFNAmRhmRmo5309+ZUul6FA56vm6XpuhVGQrrMtuZzJVKolIQYVwLr+S0wIvMR2+Rzs
nnAJtMCjr/LRpbjMdH5I2OHVQWZjNMQV50u0hAINJcE+rAKoFGKBBWZU3uiSjooK/rx1ydc4Ovw5v5ZRXRAgRhMuG+1V406jM8fPXYN17zlYes/Blu84WP+O
YzXvOUl0LCTXDW6NXhNdzRsh7qD3qgYBPS5B2aI+jdC5APRpJkwFISY6BEqWg8v2trlIr0lYBTVZLrAeSpZfX1CfkyyvjuRPls9sgSEJEoCZa4GxxNmI3nQL
k54M9ZtugyNrZ8lDti/ULPmMFiAn2BkZc0R0oJz1cnbGXFCfEPYwN2NObeQ3i5WoSw25mEjhmdc6xCXU27DJxwX8HLSzhs8IHFyYMLkJqGbBA9V6YU04KSM+
4XKjmgUPwnVMwNuaMgLO7F8T6cO3Nhk/eGsS42F3T+Ik4HgF4qL76HhxoKEk2IfV2QalItqekNdlAEYMhgMioC1mBk2If16EB5DRJ58/PW+3+8Xt9+1T8W3K
KVG+bUAlEyuiavfxaHyT5GU6qoIJCEpYa7gloIpSs4FWGhBCajd3gIresslWF0cCUlUNQmpFAbgGYFaoJWDmrknDcHcmTnVxgJBAAG/9q2tgAwqb2q64LXSm
VccuHTSYax4c3XCkEwnE5GyTiS6UrhgASGGp0GRomHRKmX8zlLGI9SMI9eVnYJ7RtCWs2BSnZIGiOUneQIsVvenJSTKW3astNSsnicmqsW41XcC8F7DSZoR4
4aLs3D7cH93q++fF7cOPL7v7zfNDkeu84C4T4193++OKn96YeNp9u9/sb36OOJ63Pz58HM+2w8P94nG/eT5FiW6PRD7frJYfd0eaj/v4SMY15O+7w/PLZn8B
Hn5c/PsVNCwvsPHXL9Atp5VezZGCgx8VhclcfXU5Kamy28FscUNDuvyiVJzZYubY16Fo+jke4yBu+F/w9Wjchr6Vf4lxMO1FxhhHZ8c4+pJIH45eW8tRIn2L
M+4dYXF0IKqdUSjx+aIefF+iwLTkGbHS3VIuYROp4YOUmwfEqSLzvniMr/cO/nnrMZQvo8OfVyQWnXbDg1ZEHo3ZwDMLPjZX9gM6m8p+QEEr+wEtS1/TBIc1
j5XX7GHFg/K6Pqx40JYnuONBW57gjgfl9UDg9UCo6AEfVgq0cmq6Lq1woLyWCLyWmKEk1JMWQErNlD+FecXE6yVeLfFaiVdKvE7iVRKvkXiFxOsjXh3N0Ea8
3cHvbd5gYSHpadJqiJ4krYNc7j/NyYqig+oYGR5WFJy7jlHybMGMgssDr5w8boS+lAThQNesHqwuUZoZUpeYidqMusT6SO66RIl1cC6DiIHVXDVfXSLGxkqs
PmSjDUIw6eKoNfGBsiz9nIpBaFGRmr3TssyrGJQUFYS9n1kxyG2xt0Bcfer6bSxU5dTCi547VVNdKlCUPlUUDZh0cIXBUsVKc+FBeeaKtqUiema+KxbSJ98L
BmHSL8l4RizAzS/XozZxBcB9rTWD2rlpXBW0S8u4Yag+lpEHDRely2JlW2BeS4nRAhNemFFlOT+He1oG3+ghHx2+1BUmveykm0B4qZyTgg6lQMLa51ilD8tt
BNfUOeeU3pOrKafALnC6hOecZC/nLkUhgtKHkVmKJTGn/h1XohA0YCEKmUNv+s1YhhZchUK0gfkUwgiXMDplca4oEnQWQmmHN0DlXFBjRyYmIyMVlyAhrile
DsNZ0Qei1etln7kjLG3dMjdrLmf1Qw55P2QbwtnXGJayxFpmr2dMFfL2+/bH7nazP1Vj3eeQrwp2ssqvm/YI8PR8nNyXzcHasUFdCiCoQEw7LlkRjaolC4UL
Groos71m9p/Ud+bxuIJVF79Rv3GZxLGy1V21mgKkJrFxXUpsp0ssVKzZIoEpoFhTmBIUAJFkCgKuTsBd9Xkx0t6v6jO+e9WnEHwZL4SiwpsKWwgIAXGrm2kM
14XYhtWOqbAjATyURkzdjPkVVqxYGOq8YOvrgh3srtRjySTfVDr4Om2nytnswwfMKZVzYq66Ch0AkXAS332aAw0lwT6sUvdpqXrS10wIltvY5WuMxJfg0YNn
dNfYxciIgwQyMXoIiZ4pVja/35tiu4BKMofelXM1klxrpIIukr+JqKRCQISwOI0+GShPoaIfXT6ZsHCl5R2KU+v0zeL5YTGcu9WvldElyNFpYrpFVjTn2zrB
OdtJz8d6LxnNg6ox9c/yoAy3oXIYxLrVrS5HyyqGWKSMoER1lWBnyvtVF4rTrXp7LqUQa5EJGwfa99J1YqXiyLK60oSApjVfDSifMyExX2+AM52w7QteBIz0
Bcfdfe0NHqf7V94BrMg87LV1KqNt9nX/69l38Y2Wph8xJtyJXmcXHMHlG4346B5/F+eKaE54ca5spow4Ao8D6US79DmVSVsoHYhvX3uNz+du8e1rrwn2YXW1
PbxcfxOkCb+Yx4jKePD5GuLiTmnwje6yri8lB8wujCrLpRTh0kceryTCigdtedCOYMqID2ZKRYP4bh05yXMFAC5FDBR5FYXjurNDIWXkuDgygXs2DHGqEAu0
+YJevKyrog7cU2EgGflNPn3LaDVXRMOjz13aPHpGdtFcEWBP8Mx1lnclCCYctAqobDL8MWiJ0jOc7uBcNiqRtamdAa6wGGGZvR7GxgIGddHF134ulaZQO9nS
jgACGhVV52rJ1JbzAiNFBeeArydzU+NXhTkJZduvtwmfbact7tfcDJPvfD2y2QbHqOKruQVvay5dQjjBrD9xqera+SNEmurY20+FWwpEaAi1mQqz1Q7JNBWV
+b83PJOKvSflztHutUMsxteReQjF8F2q7X7MAwaqm/LKNftVRo8Uc0GbqAybne/lzLdy5js58612UykIdm8hu0NxKlffFRnxNXqGexonZYF0HTu24lkxx8eI
l1neAauwi8QbOGHU56srs6iq+sfIQC+dPOK1ndB4OB/KTeXy7xnINbsbg7YnbJR039XBO+6F+vto1t+vWJ3es5t1xQK2LGCnAMo30obt0OO3Flnyyu2KbCWP
xitPCk8bCwLQQ93S8W1w6A/2NCn1vaOrBQHHyk108KIlaWtIOHaralvBDP8QdHYkHKv8NE1khpwIOkvt7sAHyharz+njnT5qA6sHA6tLAqtMaAsmsOok0Lqe
VS6B1S6B3e6B3e+hd2yIUFp0IBZ2K0VWsCMr2BXvBARkxSyyZ0rFHQIBWS0fNTVvV/IW/rKKixW2qAkbcg9pdtN72t9PpVbFnJZKsMUDKDhpZuFyah0Lmprs
YyH82nxqHTop9dmoNtGsrkzatkEq8ZCW+lL809dixteB3m4IP0yd6qi4yuiBK9v4xu7AfFIxH+LOEN+xneh6NAY3KchQUOvCKbX/EwKicHuZll3m2GXLDAQc
KTyNAgmEsAbzpRViWAENmJbLh9JfLh8aaFzTOJc0Tnrbh9W8dRos/bnrFGh5Dh0NqUkoEEpGD4oQPDsuaHIHrMdaW44ILgctwUGTYID69A7UB8fiLB3fepZx
mX2rFlFkNGj9D5rSlnjl1ZfNySL8Q72K45jCWjnm0fqiTrg+YQdkiP6kYakA1o2RUNoynsCIgMu+DDeou866C2dHH1DR7bOFB+7rrWaTWLGdrGrGVOoP0Blj
DZWKmeapQEF7Y7LnW2IPqZTLB+jcoRPKJQocHi6eOKufxvRGhuoQognQiMHZDG05nk+s79MX1Lq8M5sfAwYhBw9gAPqUNj6HNCkLpMIIbAbcNb4zKt8YVeid
AuAUICXelAJP3DUSBESAidoaAl7gRGKg4phWMBsE8sLaL2KB3okB3ImhZJp926UUX5DRIWZUAV/bTSZLJpmMbVm+dhhbO/+WKZnqKFgAWbp0fBsckZ5l9q3p
HAit0QrnoM6rUglaC16qMMflDHO5O3I/9JB8l7KEjZ7bJliXElA6crMEG1xv0Bpr3kuybHvBZ8p1B/Byd2432L7KtN7QuLQB95AP62K9PTlYZ2Fj9KiEWNoQ
nmStAKj1UmHNnVhueE+ulmnX2SiASK+Sa1DiyRVNCyEXXqoEEC98eNRIysXPVguvJrCuFpDrMZIFZ/vIsK2YLmJBJJnbTMUgmKgp5acc6CWja5yrSnB4oN+i
r3+ir7Xh4EUTTY9GbHZjwwED1ZZw5Zr9KqNH7NPhujPCN0XkeyLyLRGljoioLyo0I5NSpNFc/VSuvqfUZnR34V6Jjf/rpKrleio0zk2xuSQ75JINpwJn0+nS
PxdT1kPnWiMTTZF1Hio7P5HpHYgMDhqXjm9DNh1z3Mm3QlIK7HyoKRzTH5zgAFtngvzoHfzIz0vMvQMJyY9HbPDk4UvIBUVxMoKmiDW4RjkXAPe2y/aO9jrg
4L5pE841NvLMY5TMUm3WK8UsMl054eR/et5u94vb79unqh+H949s1WnZ/ttEYkyWD8jADVWcqBqrulmCdTFAIMFC/S2zI6rJruTYkhXbCEywtg4k5f71IMHW
MpXhThBJfhiAXhPaLjQ/DcDhgf6il3cTl75XE5f51pPeTET7vI1NG7FkJN1k0dnasB83E5n4BGaT8tkwvfLZpCbdQ3FGB0XaJXS231nEdSnX8juPmXBoSUum
Jen5QAHHp9Zz7MXs9wEnR4XkWmkpUl/bz7E7oz+rSjdMtHke6E0e8k2O+rMzeF4IoJ3/LWUKyxkzch4ixvNSF7hy0j6erxWW240LCvEzJbYUKCjDzbYstNnd
shLe+ZmdZjG7kDtbVMm5Bdw2cZgxwRGYXWbfWjGKCQlWxj7rtuWt5nU0UQT50juGzcxLKN4AkpHbmOBTIO48+NLyv8CAQ8DcQiBbXpzVngKvyrHtcnEzlgzN
0N5wOSiJhaJ05Htdxn8slaYnteySmbP1Ca612TpxCWqUTjGqLWefWIHU4tu0yG/Z4Yqc6aY37dEwqXPQnqs60FW3e+6h73KdPWlXrtX3UsJ5hkK8y3aKgVRb
P+wGbnz7gQPnm3kpny1Wakw75XSils7T0j65AChkWV0pgcFVdGUWXR9PlYvYqW5ozRWgCEII16OadrUnz+foxO1It00bnRoG5fwKUNcWKoQLr9A09UsnE2ON
bcbzOo7uTNQhq9SRvfMavH571yz7tBJ6wnFigWmtypU0IIGtkbEBuTsxxwXABqFGzMr6SS2ezUTZsiKNSpZQOHaA1B+f+ZuQB+CROGiiyTeOkgAUZAPLs0XP
hruc9fSGS8XOcVjwMOdTw65waq9ZD+BhVjj1Tq2bHKd26p16NzmO+cFoB+8x0tcYXS+8Drjo4kj0jlHK7EjBwoczmSFnkMf6pe/10WWRAqDkhhTL77/UJ9TZ
2Fpq6HUyqfveHR7uF9+2m8PiP9+32z1auLeWRRiYQ1TmYNwaDINcMh21QyalALfOaaEGiwApqn1I9gj8UuGKnYAzKmqMAhYpFKLtErR1JmdFVFHJ0hCc6mVi
TTfOd3GzJTVqZ0pfyLf6NQuz0WF/0nFV0SzebK4/0PIiZOkmSG2PR96yUxnytRwX+Lw1mFjJ09mzEQQTzFKAegurivQVRTaC4QfmNPxlpFE5VMFMyIRd14g8
Po00cY30YqU9Z2lU1BHwTHiSDggwOwLKGOg+tXPdJ//BUZpTDq8r1yoCCmWBTRSOAkm2PtJ9Z81zZc1dHKm6EeeEi6trp6+l5tldIvpRDbjsJgvn8Vtf1qLP
SfKkXYiOoi2Ly57+OQMzs52owD3bvaObidK9RFsWowCIeoeCtAj5n85etkJqPe0x4d6J2RbSrP2o7CPVn2rl9VThGhnOfIxu8OK6X+T7c9VzdXhK7vKQXPkI
3XSAiSFzDRZVsKJE7Bo46ThPYYXrJ/PaC2RHQ/bTB/MQ/1dqSoi6v4LQa6KyJjVGB23FltyJHaafZdrFbOzynIztkGRsuJ6i4UcMM61bp5bv6WixOa/DJhjS
7HE92F+Pit1eBMnI1DHkroJk15S3NbS/kY3ZoxK81OjDfOJwPzsIeD5DiL2bH6JWgpFpp4ofvWEln7xYDhObSiQtr9jiMhtbryicDaYeiJ5beUnBRLPACPFJ
rUfrpmZ6arrTg74+Ky2bHnS3OvV0OnX3WLFbrKAvXp69SNcTvpMeq6h/x7xRefbvgBdc+2F7cOP3Gh/P4uV7r/jsLgqPvWgg9HsV9Pu/9PO/9GMVvrcq4Bdb
PfIbMvnVP+6vR1adtU6WcuQqWDOA05HIwd+j361FZ1msvweJ3h+8lstbAaeekpsTNpXi5jAM7Bzy15lsqOXjEDZYWbYVekqOS1w9JC2/Zg36NYK14VWdhVLB
yzfNc6XYz/jY5htHHUf3urJRLXcHFMxMLUJDu7ZzGEySmaWhwva0wASNZflN0mPzWD5RgAYSmf2M/FjM1EWRT7TymQKvwKSgsGOApOBKUDlA/lPkl5UAFfag
eVVKMJ2kcFUawlU9Eq5K2UFpej/oC3+tY9ya3WN6JCghvVPVpA6nfLzCZN+CPufEAnOr/Yxh7fIJzsjWDK5VNhv767XpzwRXr8hrHrkuBNGNQYQnL22UAqCW
YQr0RdgBnnngPuRCan8NO0N9NjRS2ZjxgCpz7D1EtgrjLYI7kWBHQGeojZRI0CEbBbL+bOrRbfrUZusCJvDWbAKv9BM82TsjDafn8CrJtLB8y8P9QqUkC2LZ
HBtl/2/hWFEnaXHs6/5ld/fK75f915dT+Hpze/yjL+tprFWDA6cCuPUuNJ9vPVpyl3wrC7mCZUtTQPYFTKzJCnMydJ64LWvBaApM35EsxtIcQF2DCkq/ttds
vXqGNaCNEzhrxXdIlyee1OLfwgmKVm6eYBdFHW1X1s6x12qkofb2YTC7XoKvigiri9Uvg/wu7EEgRrBm7jGWu8nxCAgFyCqpWKoMxysgqCzGUhXCMYtWWQQg
3LGm7rv2LFdKHdJgCs5xIkWPWxNLxwOUjDXnTJeeJQhHOu/nrB4DV5wpqEimizRzL6OAq5yKOL+j6tt1qqTc2DKH95wrKZNsIYsefM1ziIdKAtGAYsRm95Qd
MPj6Dw4rJfRFAOJVzp46fUGhCxvYV1fiMprSl3gIRNCEpghABI2CDAW1LpxSHx8wHibJjZDkD0ALqFKEXXE2uBVQvqWAQBs8dp+NLQWKxi5DwRP2GCJS4R8Q
KQp/U6QouNbCpdZD8EjFmtXngT4JVgqgIGWDMH5iLrV0fmztTGxwuiJbViOQ3JQzIeLIyUNh41IwCqetR47Fqflv5JdkvClfKzIyXQ2rciSn9+K855FRPWzj
aFY7JU6bSOfQFrmWL6n0SHR+ep1NWn3pL8rA71rmhx8W80F70WlSpAJqJoURJSmtPiazFcrNhBWQaMaUAFLa3Y5KepJL5fEhpNPsiFcuQkYUpCITTEhEkxBT
iGOups4Q9YMslraZHYiiFiWWClFYFHuCrC8Xy5PeSnPGvmCQMc+u3CPKPAWswyvNqIqOHis/NY6Rk+d4T/kRBEZDXC3H/D3HkE6o4xtBofE9EhQmF/j1V4IC
3AHsPK6vN9nAGaFpBxBusDutDRiYtkADBrul2ZQIOH4h9IJQYagebqHA5oo/0J3UAt1KTYK0nhO63gL6e0IBfnd6DESQ7cbyLWHh6mfg6jNccvPkxsOvkHJ1
oVfVAF8OBZgB7ZoeYva1cv4MPn8j+bcG/0ttxHihpcaJEOmDvqFc81bRKTagQKtAZqeSaXC4ovwYYW9o3eQRvEZhDuL0I5KkeeLLcpaZJ/7h4ymAd4oonv6/
+bD9+vX05e+75z8WPx7uXvbnu01jLO+Ic/jq8XD8Sf4MVVf4WtpXsmOmOrRaceVAV8DKLYJ2RC6FTVhLfRhZuXhaG3Sk5Oeng/ZtR1obuWEJREfmKts1ad2t
LCGy4yCenlmhNImiFx+liAK+SW0yNCvUhi73LRhPYQ+3UNm4Dnq1o9GG1s4OFbCiJjDAUjN46DWNFhs3M9s1O9uK9nDQW6oND3SpPMBimdIZAwFLS8BBb5yl
fKKmfOxqM2a2FePJG0T0vCaOH1nxsqv9xX69I5QSta28/Z/Hw/bpSYq/9YVvhUT9rl1u4YC4YLYLydDukNp+MGzPyo5gOpawMlqJjoCAucTZH4OynHIRA6OM
nlaehRduD2838wy+64Su3p8BjoquXGOvsrGl2CA8tTCgZ2NmdIPK0NI4BUiptqhHVdIYNpMa9wElOOuSPLIcZ6xWF67VUMU4oVZRAwUGZ3CkHznyjlzoW4gL
Su/KAN1OEm5UXYBPWZJf4On4GnrsSgig7qh1Qq2LnVke40AdkhBpM/Xvolfwm4HITorwgXhp6NUs6FbRhjZ0Nwu6VbQiiJsJ/jbsAdAo9JbFMouQ7Zzyk9oX
akmS0APPLE+6Fuq/NihaTrt3TLuUsGiN3Gq4O4eRk5tPaAmTdO6YuFqMJ+WO71x6MuRyB0bUnKdAKO0ldxAv7yyIRO+6mpfjLT0J5X6L0OIMNAizvrDNmEZp
LmrTMAYrNTwTRw+NIAEI9upUathrOD3NJYN5hNthuRkGSNBOcmgA7VADw3T07FdzZ1+6Ec4BZpkysXQJ3WG7GbOPmraDBphlvMaK6vMGAefMHtF6NgX07CtK
zgFdsZF8xFe0nG+A0rT00D9L68W5Wi/O1XpxltaLs7RenKv1Yh7asuN8sxRV0hSVDT1LTVRiZx7oWZs0aZvUDsS6+1+jsc2U+xzg8L7yU7uR9FB8SvT8HDH4
2mIP2HwdagdO0b20g7OVdV9Q6MJmtkEdq0wFjsOVrXTr7CD0cQQi0XTz7EB3z5YgJd6U0uzvbketfsj3G/C1qyU3PvaK3S+hz6gC+7VlDCOj31Icf0mkAd6a
ejVL7FbuW7fmLPmg9yHb3P2+OWK9K4PuS7AX2fN2uy96e2GtyISQfVpi/chMjulNyYY1nT7emcOvGPTxbb31FZPwTwYo1+733eH5ZbN/peH84+Lfb8v2Rv3p
qAW3XL73HVmHCpRUcv0pT3VqyYWxQEFQ2WBygVHbJVpPXqGbRXSrnIwgbuqkYk2oZhavNDvAhm4UaCkrAbfTX5T2ghCKlFDlYo7g6wF8QOe9KtmeoKdmhCCh
V3EuORFA4TiyBqqfaomoUfeErovGT02laHCa4yCkePIG4ECtObRSAjrQAszPFyCZBAmxidP7OsIUAM/1eLqui6emjcYzmbB0LE9I7llEh0UfZin6kNd+qeka
baupWLSjVwX0nUOFK1T5JN/IduqFobu0Fjy12AzgigSMlQMFA9SiNXZYnwGsnBcYICt/0ZI/tUkkExKJrMhFTeSka6iXW7sr9OJ6ZOUzavIpvvyRHwB2BJwg
rRLWAQFZQa4Er0BAVpCTJsh2JBp9JUWTQaHwOMJveayzr9GIcqTfNAlrM147xKyF5p9oRDkS/WuHiHK0G68PK8i0Xh9i1vbzKc5FOW8baVHUsDb1YEwosHlC
zBxkKKh1hbUFSDRELYmTUBSOyFAp5Z7IN7zHw5pd5tC78OTzBiLf8FMu+a7B430wRblycoQU84bAUoOBwTAQJBEsIBYEBgvVSRoCC9VJ0Eak6DJpoh1CqdU8
/Gqy5QcDfMJWAQN81EZjz6tSm3okotSontmWWhX0qkjzQTM7bJ98zlQ1cwTREtrZbNx6PEPSFxZmibO2vsisNX2DwDdz1rtUtA5gbR8jlJfmpw9e07Um8aVl
6gDuZs58PXPmqzkz1+wcLJY6Y+YhZIcNBKTpNDzM6nmPoDBYzDio6wQNHvczJDf1MYMw6yVCqUY85RJXz6c9bk9Q25cfi2+bpw/Ffb1p8vrpSMjm23ZxpO23
ShhTWnPtftBg9WdtLA/jBaH97tv358XDbr+4PWxuf9vdfwMuC8XLLaCo3gIKuWVc+SS3zyuNk3NRrXySy2blk1wi1YBhLozCeAbKQuaURTpHRf+ORYqtPZGm
8onIu9z3q4yXu3CVTzr7k9yZVanSXKBy7JQ7gNrYlQCDlhdJHklMtiQmWxKTRxLT3yWJyZbE5JHEZEtisiUx2ZJYBEMrn+QxDuETHVGT2wqVT2qSWxkFZWIl
pIq9zFXEkyuE5GIpRaXR9oTDQrheRIrw8w0r19irbGwpWgtPLQzo2cgpBRlKTeDBKT3VI0Q+4e6nrnUbYpGuh3CmYyPvU19PlHufui0WCY3pdjRkqeh9z1zX
5+1+5pojvqEhkzJtACfJsHIXSoICjQSJnCPYPdkgDih0E/bKYhnTXYl883YgJldO3uEeAuj9TW9vbXfbGKkH71hS6b1Mb2VtJ9sRd4FUIXszdNiZ7hXhw2Fj
Xwdty74PdkXqiT7/GcSogdJAACtySJOk3EXO6Gz0PGlR7iAvNuJRxlJVYnClnnDGfumZlvoCo3hNzrQ8EZyxXnqm5VEAZq5KrQECLufMNWjbEwv4UrNNDou7
Yhd5sHiekLkYTpCGqtiXbypKDeRVdNufED5RSSh3yBsJ37eb3//4syI4+Rmixpn+GkZJVAaQSo2Xf81yNhXXfx4Jc5p9ASEV+w2iIUrFPM8xYPC9qTRgExo2
q6WA9DtM0fkEUl9Q6MKWTI4PUWeB43CdIP3g0jVmVxSJfnAp0g8uSZBqnZ8gK3CdoLD6Dm+8oXx4/DGmdpwm9wxthJ9N81EVrqjKPR7dJ/M0by7F2FkJRANr
WxeqxpGA1eyJIpP1123RAG6bCQPmSoHS417WJgOQE/ArRRtZDS4lzSndBQkXAUVeJAs598HihmuNxRY3vFog8wobCBEN+doJJQhT2bEfXgr5+S2NqiPOz2Wh
sEFHFHO9rgZVcnWufpyrZOBFqmjTm+9t6ROdMfa6xt7DmM7DmFxiKg6EvXCptnC1T0CqUr5cdtGAYI8IeXd47FJzqMUO9mone7VTbbWzTzrPJDwCUfg09k4p
XAAplQ/S29jS1OSbU8qle9qkjd7WBET1sIjWbSOG6bsRqD8n1Dbr2PqCTpefRUH2BbWeWvsBMdxLrqXJ7GjIVpkggJOCTDS1DQ2ZaGqbeSIQaJIjDRkKkj03
aAbEwoxVN1ggVioa6VyaI5Wag/K03a9lLD2buM1Q2B9PnQQht/gpH1X4cNgeUhLSdtwnpCCOO9NJf1HKJqj/S6l0ls17T1BJWoAkbitwBsOJthBwiFqp/sBu
AyRcLtmmFy/gsDxPvKNJrnFU53StqBppbPB5iKgdCJIXqb5TEnOhkSro0bdMyoNHe0kl5qrDHltYbMnhROkurQN7bJRuzQqwS+oVZuqOLy4nvWc2pe0G1n6s
fSz2bLro23TRs+lUK0xy7yd0A26jvQmTZxNWrD9tEybPJqwYeHYcAKXbtwmTZxOqprh9m4DYhKpjZWMkdljy7bDk2WHJt8MK71W6sQCib4JjrStxAs/dBWGt
pZD9ogmDjX3q33QKpt8PoE83P//vh/Dh/938/HbYbo+f/tzeP++e//i8uzse5Otz61rFzRk4OLkkIWUBxrAI0UM9Ap3QV9l30n0GvUFNzD5Rk82+fvXDxgZm
EoixYwYjysBp8d0ysGquZEBc4OF8XgFkhOaNDHvcoZSKaopMQqHt1IdJEGn8tjDsHS8AShgFj3kQVslj1vq6jEm+vB2lVh68YvCMisnb8ZNY33xzYc4qKA4x
I8j81tMfPzSFyNAp0dcaOz0leqraOmy/7u5P3ewr7tj612uZ12vz+hPM4+Hh9rgQf36tl0Jg+w8nMP3TOZj+6Rxs/hkcxE+V5GyiMZ5FhWmleGjny0AJbQzW
Dh+Tpxfd7SsVaMHoaKPQi6GViLaPXAHQeGhhOEBT3mhEOUCT2BQJE5mCVufDrCOLy4NlfJXk8/Z+82W//Xy3ezr9f/N1s3/afrz8eNhu7j6fbNXPpwGONuTT
zfPh5e33y1+HD4/banvacqAdGjNfBD7vnb3v8l1nHePofsudi0qQNWXDVT7JMRrR4yRccq6M3NA6KlG3MxN6O7MdUPgVRqswwFZRDMaGBUwFqR6MDGBgSY0K
INabb7rysFYCL+xI8ljXuaOCBiUxOuiI2bjSVo758V6pn7wIh6yVj7/cjd9/3R2enj8jbxU97o4q4zzq2fU4su7ofDxuDifn4+bDfx9/ennaHofePxwGPY6r
6nZ9paqlyQevA3Qt6bQDdHt4udsKDhD2ztMr76bA3WnKMIt6i0XrTD7UdN6q2JVqZiHfUmbhprTjzUyYRpQIqKl8oSATnk3v41RXGbuS1TE+WZmfJM+SJHZJ
Unm0gWkCdi2Tby2TZy2Tby2TvZbJXstkr2XjWctGW0v73cQzwdcFr+SzibvDw332fqBXLX7Zv5TALrW46txG/mhOUteLUrLP38Grbt79/H1l1vufv6tUCdlr
gYOG4WAaGFjdfcCDn4Xgsu993j48Pm4PM0X3sL2bJ7nrJZgm+XOk6UL/nyBMa2JLKqIBDRCBAVSb3inMIVMGaKQgo5FfVVWgx0VtikUVwjJXUZdKVOY6bFMJ
yyxx8UjBp2tSxmlTU6R3O+FuHza8yf/Hdr9/+M8sHZGW1zrCdCDBW4URPMmaP0f1TDjz/tpnbfpJOaekT6BblEPUDC4cCvnBaV4ITMLlbckB1Ce2sj9ZZ3OX
vEH7ph86z1gqRrO60kBfW2P17qCEHrxHaDAsP2EknxT4xL5HaIzSeVjT+VbGlsBYk0C1/tGBflVhkO4SK7cKdZcYvzKYn19CxZ/OtmSLR7LFI9nikTzikXzi
kWzxSB7xSD7xSDXxqDni+s1Ej2ZrSrsWLNkrhUyLVDS5vnN4tNTln9T6oAKBKWR4TIsGvPgRs3Gl81+9YRCAURp7lCYbRWygMBTipRapgIvMCo3rShRVJUe9
U3LVMPUDxHuE8P+zOTl+rC1/+8fmfp4l32He/mBO9u9ucr9O4N0N7jTmbn593N2eP1X8qafb3fb+drt43Nz+tghHpNIqiEDxFSjiQOkVKKlARZzgAnZSrMMn
/x7G/fx/Nvtz8dDnVfv443P8/cOv/zpsn18O9//6/F/b+7v/D5iBMx7FCwIA
P.S. Please feel free to correct my mistakes. And I would be happy if you could make this build more compact.