All blueprints have constant combinators at the top for the input, and a wooden pole at the bottom for the output. Throughput is one tick per operation, i.e. input signals may change each tick.
Improvements welcome!
- + add
Latency: 0
Combinators: 0
The one thing the circuit network does for free, just connect both inputs to the same combinator or wire - - sub
Latency: 1
Combinators: 2
Negate one side, then add - * mul
- Latency: 2
Combinators: 5
Limitations: All powers must fit into 31 bits
The well known rearrangement of the binomial formula (a + b)^2 = a^2 + 2ab + b^2 => a * b = ((a + b)^2 - a^2 - b^2) / 2 - Latency: 3
Combinators: 20
Avoids the inaccuracies in the simple multiplier by putting the division before the exponentiation and processing the lost bits separately
By almania
- Latency: 2
- / div
Latency: 12
Combinators: 113
Limitations: Inaccurate by ±1, depending on inputs
Approximates the multiplicative inverse of the divisor, then multiplies that with the dividend. Special handling needed for dividing by 1 and -1. - % mod
Latency: 15
Combinators: 144
Limitations: Inaccurate by ±1 depending on inputs, inherited from divider
Calculates remainder by dividend - (dividend / divisor) * divisor. Thus also produces the result of the division as an intermediate - ^ pow
No blueprint for this. It's certainly doable, I could chain 31 multipliers with logic to feed them the correct inputs, but that's huge. (around 2100 combinators) - & and
Latency: 3
Combinators: 12
And, or, and xor all use the same concept: Split the inputs into the individual bits, then add them. For and the result must be 2, for xor it must be 1, for or either is fine. So, test for the correct result and set the corresponding bit in the output. Since addition of two bits will at most produce a two bit result, we can split the inputs into even and odd bit positions and handle them in bulk. For and and or we need some special handling for the upper two bits since overflow both from and into the sign bit are awkward to handle.
Split even and odd bits, add each pair, then select, shift and merge the top bits of each addition. Special handling for sign bit - | or
Latency: 3
Combinators: 15
Split even and odd bits, add each pair, then select, shift and merge the results of each addition. Special handling for sign bit - ^ xor
Latency: 2
Combinators: 6
Split even and odd bits, add each pair, then select and merge the low bits of each addition - << sll
Shifting left is the same as multiplying by two. Thus, convert the right side into powers of 2, then use a multiplier.
One version for each multiplier above- Latency: 4
Combinators: 13
Limitations: All powers must fit into 31 bits, inherited from multiplier - Latency: 5
Combinators: 28
- Latency: 4
- >> sar
Shifting right is not quite the same a dividing by two; also, dividing is complicated…- Latency: 5
Combinators: 199
Sort input into groups for each possible shift amount, then do a hardcoded shift - Latency: 7
Combinators: 70
Shift right by shifting left. a >> b = a * 2 ^ (32 - b) / 2^32
- Latency: 5
- < less, > greater, != not equal
Latency: 2
Combinators: 3
In e.g. x86 assembly, comparison is the same as subtraction but ignoring the result; we can do the same in circuits.
Subtract, then do the compare against zero. - = equal
Latency: 3
Combinators: 7
All signals that are present on either wire, except for those that don't sum to zero.
The trick for </>/!= doesn't work, since circuits don't distinguish between zero and not present. - >= less or equal, >= greater or equal
Latency: 3
Combinators: 9
Combines the circuits for equal with less resp. greater than
- * mul (long, unsigned)
Multipliers that also produce the upper half of the result, treating both operands as unsigned- Latency: 5
Combinators: 72
By almania - Latency: 7
Combinators: 66
- Latency: 5
- * mul (long, signed)
Latency: 5
Combinators: 63
Multipliers that also produce the upper half of the result, treating both operands as signed
By almania - >> slr
Latency: 7
Combinators: 62
Shift right by shifting left. a >> b = a * 2 ^ (32 - b) / 2^32.
This is a logic right shift, i.e. the sign bit doesn't "stick" - min and max
Latency: 2
Combinators: 5 for one, 6 for both
Calculates the difference and conditionally adds it to one of the inputs - Filters
- Whitelist (non-zero)
Latency: 2
Combinators: 7
Filters left side, only letting through signals which are present on right side
Author unknown - Blacklist (non-zero)
Latency: 2
Combinators: 6
Filters left side, only letting through signals which are not present on right side
Author unknown - Whitelist (negative)
Latency: 2
Combinators: 6
Filters left side, only letting through signals which are negative on right side
Author unknown - Whitelist (boolean)
Latency: 2
Combinators: 6
Limitations: Values on right side must be boolean (0 or 1)
Filters left side, only letting through signals which are present on right side - Blacklist (boolean)
Latency: 2
Combinators: 5
Limitations: Values on right side must be boolean (0 or 1)
Filters left side, only letting through signals which are not present on right side
- Whitelist (non-zero)
0eNrtvWuSG8e1LjqVuh2x75FktFj5zuQVGSHLb8uSLdm+O4KkFGB3kcQxGugA0KR49tUAPAv/2QM4UzhD8UhuAd1qVANVleurTABFVe5weJtoYNXjW2vlyi/X47/OXk5viuvFZLb6/uV8/o+zx/+1/WR59vhZ5Z/rv10Wy4vF5Ho1mc/OHp99OV4Vs4v3jzP+fPbF/OrlZDZezRfLx5l6PvtycjVZjddfLP/9+XSaXc/fFYtl9tGzyaq4erIoLs/fTRbFi+/4KLv96PWiKGbbD3e/mP1i/3sff8c/zq5ulqvs1WSVlfc4zwTLXk5Wy+ezvy2LZTbOFsV4sRjPXhdXxWyVzV9lqzdF+Y3Z/Goynmav5ourm+k4+2hcin9ZisueZOPyv3+R8fHL9UfrT56WYj7JXpZ/+mj7vfPN987X3/g4e5Txs9HZ5KJ82M07W05ez8bT9Qtbvb8uyje1vvHyG7Px1fpf48Vk9eaqWE0uzi/uX9vZj6WE2WXxw9lj9uOL0Vl5u5PVpLgVuPnH++9nN1cvi0X5BY+o0dn1fDm5Rem/zkqJkttP1ejs/dnjc2Hy8kqX5eu7uP2CHJ2VN75azKffvyzejN9OSgHlr7aSvy//fLmRtlz/4dVksVytP1uuxmutyEdny2L9lYefza+LxfhOUT45+/HHH0d7j8HvH2NV/LC6npbqdL68Gk+n56/n08u6pzD3T6HLB3r4HHp09ra86btrMlVzQQFf0NEvKGsuKOELWvIFuai5oLq/4E9gePSi8kb17vUaNOPVZLoqTZmi6e/m88u1Yl/Mb9ZqISoqPvL++GJe/nH7Y3X/Y0748XI1nxWVX7P7X4sfX2w+ns1un3Oj1Gz9X6WvqVrbpPyXKb85WVzcTFabf5aWWavJGn3t7pivXYW8dnHw175x6Lsv3tJevME9YUXjZQxPuPdG3k4Wq5vyk+1L2XzjvBhfvFm/mj1vyR96y+/KX85vVtc3sOwf6YpddY/rf7v99z06443wsJyGj8XxccPDp/YVazJCNfBS8XEhkcSQ7Wd/YRiRHVkLbIwG2xreALvi/cDtfAe4R8cAbgcP3gic2fsiAFyz2Jpv1kMcFOT3BeJTIOwg4PLdbz/0uqwFyZyI5Hafcxv7F9PyKRYlmtfzadGOozKb6JD45PW6Vd7/Jkh7XNnLj86m45dF+frPnt299/Pb1/2k8tZfZM8u5tP54sn7Yjqdv3vxybNHm3+Xn7f8qJT9toxTb/colknjuLHSCe30doubr98ThVoQO9QCz5/PPn87n1wuNzv58vOLi5vF+KLcKZf/2Hy2nFxdT4ss+oNlL99npeauJrPXm+tcTt5O1o+ZvSxezRfF5rPih+syAC4R2Wh8Np5dZteL+UWxXP70q+l8udpQFNmyuB6XllFM3z+f/fJ9Np5ejWeTcc+JBJf/HIgE645MJFReW6d9PUwkOBbGXKBEgrWRd7RNy0Feu7us39g2yWC1MjgkgzfschEZolaGhGTIWhkKkqFqZWhIhq6VYSAZplaGhWTYev3AFMTVC8E05PN6IZiK/LJeCKYjX9QLwZTkV/VCMC35db0QTE1+Uy/EIsSejsTkWXckv/fbCH7vdxH83u8j+L0/RPB7f4zg976M4Pf+FMHvfRXB791uUbZyzreCHIG43aGMZe4qrHEO3cnXMTzwn2N44L/E8MDfxPDA38bwwH+N4YH/FsMD/73JAyNC1l55K0YrJfRWlINEXc5X9a4tR9aEXU6cysYZcM2oxuZHi5XznsTKPEKsLCLEyjJCrKwixMo6QqxsPGuG19XnrKuzr4bbNka47aKE23mUeDtOwM2jRNwiSsgto8TcihJ015+G7NGr6Dki0cXyU4TlOkZcbmIE5jZGZO4ihOY8jxCb8xjBOecRonMujhWe00KdcxYjSucyRpjOVYw4nesYgTo3MSJ1bmOE6tzFiNVFHiNYF4eK1qFVwETLRrA6cjZC3XEEfAxaPbI4P8aRZ81OhXj87MlHEAfLR7C9z8N6+vQo0HEydBzM0ZJE8PBTQOv6bna/OAZ2/hStBiixXC69++2HV+U5WYM0USM4fi4se2fOYufw+LPPjmLPZDTM7l4oR7SC0/2G9egPcQ/GRNDyzIebLOjIyWESUgHq6iyDVucBA7dmOohG5ssjExCy1KV7m6ZxWVxMLosFPUuDBuud2DiYPljlyxvd5D+tr3PW3TWvBV2//36zL/n+1WJ+9f1kVoo5e/xqPF0WCNay3U3WLJ7AMtsWqHFFRFsHBWq9yfpl0khbhgn2oUV//c0ptkp7hqq6bqUIktqiPEPMJjUhOXu9V4LPv/rVccormA2JwXex5rprNLYnieoM8NKa6rljT/RgzUcdeM9N2kvv2a4B99pU63XYgl09x0gL9jPfvrd9mSUWc3KczHIiLbPg4uhCNrtN5sU7JLSrITrFIEKBg0QkGb0w2mmIoQ2BUN4LMFhXwpkgqc2GPTtkbsn65/EtZEcfRmjlAz5vEkiN3S6b0cx/1XyzHrkwRisf7pEFkxByAtustCCLS6pHHmW8HAr7gQLoB8vCg1D6SfxQerW4KbD9kML2Q6jBt++WEYfglVSvNhrcd+U9UZvdfdfT4yoLkahqUQWFrdV7f3fNuhFBdL2yGFBZRPIxFB/jPHhwSLE0Fk62+BhcUr3aWFBtZPIxwH6/RRUMGWoiTccd2LKhsl4ohbRsAJZC/aE0d2DU5g5st3EkY2KndeTv7xo8rIp1+4X/87/ZKLssrotS/2evs/ks2+jX8vns8+vrxfyHyVX5xdvOEFc309Xkejq5KCW9XTeKWN93se4AuddGcrT+wez+FxsB41X2rgz/s50ulJ9m316XRjieZm/Gs8vp+iZmRXFZXK5bSW46QmxurLxVtmn+cM763c9B863iWnX0fg6P4vRz0Gwb5VtRk+5f6XagI7RzePDWPNdjLEI7B80Z+YI8QjuHBy+UpRK14ZWo1ZeXmYBShfvYVIVUq7H8p/+Dypt3mlqe14gB6ye+bKjC4J0LVM5518qHaoXKueha+VCtCDmXXSsfqhUh56pr5UO1luPc+CofHmK9GL87fzVZvkFqlD1dTGu0haJ1k8V8dj5fFB7Nw6qUD9OS9sEKkzx+8vgxPb4O9fghvp4lJz8MJ38e6OXPWTQHT3HtR217XQ3ojRvu8ZeK0jUZI/qqSyvx3X+4SVwg0UeumArrhs06FmZxb6EqTQF4TxXg9EyvPUwfbd5RLKVsI04B7AOPbIbrkbE22+pQJa0PnPSA4bAQHL4s6oPVmz5wqWa4iVgusEl9pEJPzcXwrIcaQLQAYuECTlK8wSrTvlSKN7oXZQGl9cT8NbBi80GUoNLeASrYzCFbJG9FmC8nTR6qnPNBkBL5tPZB7lAMh/uoF2UmBjJ36vgdExSv9B25/zgKcjqw20WkqsgHoYsacGK4CEkMZ/56xy77YjHgEgsF4ZFHKonpwGPYvuPVw8IK5g5V0PggRhgyHroRD2KRorfC31fECHPDok8B/r//+a8eNGUxIIpEioN3oDhUsqva/hVtfk7Qi4o9XcoE8WwOLw3UXA4PWTKJ0RJzOCIiCo8pKoiwfpR1r9eTExTlQ/tXodptSAvP36lRog6KEoeDaKfydcGw9grCBqJOPFTjYaxHT1Bfd65WJ2nMwD3WyaCzA8lQVB/+3RC5Lo4muygU8kMVQ7LD10C2hrPEOvhWh57D9Wpdgh423HCWQ9t26XGlhkiLiRw0KtMTo/oZ2BT3pPwY4nIoOlAzeqjLIami1RfoSF946wmEDHELKTqko9jkTWFLlERKTeBkDau0ZHA92W6cJOgUUL6DNB4L8vzdUtc/nKRhqneInqIjOYgnMcFIoFkpEgXjQPGI1EKyPeL6v09PXAtPpCg8yStcYcS3JJJxogN1Y4boS4lUSzsqKg/0p9SIJaggaDD+FMW0roCISJsI2zllM3nUJqQ8g5CEx5q4RqJTRUw5Ei7kiH7Y0amEOsgqgXrLnb8T9xsyD0kiG3J0CuJJTJSVrHNKRfKl9dGpa7cU6bEkDqZlKCKnJnlIWsbQo1OpwOhUo7v5jv5UhJxO6AGXq3PoSFARj+9lhxQZk3YLPhurQ4TIv0iQf6kcJKQVrgkp7lnjPAyMYJDtEfkXqUPOFobsCwXUE1YTmRNpgs4WTC8jjuPkpglBbV0roW4d0nWV25QeIW3QcYPpy2CZExTYCSw/Ij50LiR5tC/Q7U50OsAo6vq37GHEBJTwKz0N9aUns8KRq6mDr0Q8h1R50GnIkL2/Imf2iyDatdmFKOJYMcWCDkcG7f3NiaHjIYnmA/L+dWh4ODwBFfIoT4Gp8iS1O3ILtuArESN/JYLObQYd+ZPDPIXRJaqr3EYHIoOOcobs+yXUPuUA0KmQcpOhR/6+s1KJsVue6X3K0xLHkcejB1+JmJ+hdNBJ06Ajf3KnJMlDKNQWF0IkD5QJOngacBtICSVyO+LxrrJBB0+DXo3liU3JhVS7DHwn5jlnlxALpzzjChXOjY1o+QHwlYj5AToPOhMbspuGqDVHPKPUHQizys5Y9cVNV9rinSC3UZMJ0ppvtp1sErkz3YE7471D8TQeWzO0pUIjtrikNuw93Jf27J4MMR9Fh1XcqQHvjjSHC3vIbiEknZ3sNsJK85Lzv33bZMJDQ31QNXHevVZBB5tDNmDf2Hg6tL7B4geCvkOFn07r/u07lnCrpCazxiW1Ye9hPbVq/7slsqI6rI4wOf+GJX4HLfrUKyhxThO5HG2DTj4HHd2RoRMMVoIY0LqQCfADd/4GbS/TaLa4pDbsfQGJh4azxDI7kwcdiQ3ZLRgWyy0YqILSENsdGxZ0EDZot2DwWsgG7Ov6T7Vg68mDssRqL8ODDt36HtN9/c1RlACi6YwvHKeO+RXdy8J+7sOi0JLn/VLKHcfLseJZL8bEwxbTIUOth1uuHdf8yVGMUoVC1gCJCjqPHPZqKbE2/u2ktSFnlBvfyYckYq+Dzj7FcHt/GGhTYywZWUtELqySUwy5zINcySnAqTpk8NB2WRxFbjBjMbVnkJGBTh2MjlXTZwx2X13rOowLOsAcsAe3EPdgGdVpWCJLYcOqMQftwd2hPDgZPLBJV/XMMXnwh57Q051LQ4kfxsWqzPNJsnmc2gzLg04hh+zBJeTBJdmDE3dPNqymMsXgpNYZHPTgVPAkyDbmyYM3WZYndU9Dfd0sj5XR75NkRZy+GlYFld0O2YNDA/8s+eyp5pv1yIXVRaYY/CAenAqeAT24TB68ybLA8XkeD65i1Uf7JFkdpybL2s4TyvqlSk9Pv51Drd23YSMe/FvX/fT4pBA+OOs/9Li5NjCJJ00eOH1VksRkAJcH1XMNeCqZ8SBA71rok6SghgfOE42znEh5OxaU8j9g1bAMBpRMco+8bW9aVEPQIj4XRpUNerY6fdvsoOwv56NBiXyME0G53IOft+08JIz1FNWogGa2o8A7adUvhoX4+8sKkYd3KCEoUO0bTvohfYfnoPN5RyzrdWHd1AYcIiioByrLiWPDnA5KyR/2yu1JMrQGjsWajDH0Su4gUZ/pTs6wAZMzxP15u30Tj0Cc7c6+sAFzsURKrB0jYsWbc0GJ3gNeFHWOAUJsELhhPLqTXKqfA+COk3nvcoyX3NsG8EZQWMhGtDegqD6QDH5Uct/uTfq+YKjGxjvP1VQu7e9aW6D6HKKlYiRCqjfVgOeFOYNanqT6QxnSC7WnmJwfBRMbvEaN2sPxZtDQEYs2OTtGbCQazdnpkHEvygzEsBpMBcocY4xRQTEhOb1qKN15G0DxtH6uDcJbPSLjVNxs9+jOnNLhscMnfaAOb4/V3V+HsPiPecZzMCapMINZPpWKKZV6RBCcYrs1UvdaLA85qFeD7ilQYy3Q0rZnrExTUWNBAUnqnXPrG51vEdSY88yJMT/jQaHLENtZ0mLLfYtSqOOk7glYUBZMXzC8h9CcoE/OnsHsGyC6L6eve0ED+Hpvgv95LBeKHVIycptSwBCDMkj6bojH86WMY8GMo+KjwY1AJbxMFRv+CKMNI+/ySO521ElWg0KAWSLVyDXVf7QEQ86HkMC0R9OVQ1OxR8kflrDv4ry5j7eBsR+1u/+9L/AcUZcu0hs0zHWnF9Ny0757CtYqYLmhriZ8S2Atr8bT8h1My0dblCHg9XxatO/CpPlUIa8j9PbLr09WxVV5qy+nN8X1YlLiPjqbjl8WJbhnz+5QPb8F80kF0xfZs4v5dL548r6YTufvXjx69mjz7/Lzlh+Vst8Wi+Xm2bkt/ZfjxkontNPlU09ml8UPd5hub2ej38uLxeT6LgD9crwqZhfvH2f589kX94a03Pz7r2+KbD4rstWbyex1+d9FdvfM2axYvZsv/pFdzotl9mq+yF6Vr2mU/c+b5Sq7e93Zy/nqTbbRzGW2mm9+viyBzLbmmpX/eVfaY/kgk4sNOuVr3jOGzSu9V4ISuPPNb7aPuNllbNCZFMsqVPdKhO4gZEWJTH6ok6QHnz08Jaq1hS2rtCp+WF1PS+TOb23i9Xx6WfMU1ZIr++nOTqj00W/Lm767pqi5nkCvVy0D8lxP11xPwtdjQdfbbix/QqJdKaqvU39K21i+mkxXpY1SNPvdfH5569xvNpx3Rb9H3h9fzMs/bn+sHtq/58fLVWnllV+z+1+LjcOn1rs21682jQ0BEagCfngEVAgC4sNAwGCr6wMT58jqqnZbETWP/93/Zsy19Rfx1lZBXVvZztrKn8++Kl6Xf82erR/qyeY9bJa1F6P1QjnLxpeXyKpYv64ddomUp1wizyMtkdXaQc8SwlmUNVLSLyiiLJKKfEEZYZGsvtC0SNa4aOJEPPS1q7Qyemp5iG2ccUdY0XjZj9OG/BT1qu0lhs2ljk1thHAgVGQgPtScTB0ZCocGibKSw4wEiZ4zCPrsBlROzADzPF6AKckBptqJMJmUz2dfTq4mq43ulZ/8fja+uLhZrIPOl++z//O/WXZZXBel0s9eZ/PZHVEzKv//m6K0iuIyWzOLWXTSqrzP8fTiZh23LLNFcTVeP+pifUu3ofBP/M6L7Dz7aPejR/vx8sfZJ/sffpr99c3NMhtPl/PsejG/vLkoLxb9UbJxeYn1mytX0avisoyiin7H7FVuVLCjx+yP4sTs1RNk7mpiHQ/tg4bs1bfmux5jEUL26qmY74I8Qsz+4IWaGMFj01qWVwK53BNDNslgtcEgh2Twigz+cDtPliFqQ1oJyZAVGfJehoJkqNq4XEMyTEWGuZdhIBmX81X1rf50nLq9JUuI9nf2GSz/6f/upTh8w3FeI4bl0MN9+UDcVgqmdn+qStnqHcMU76uqlMoGGFO9r6tStrrHMOX7c1VKZVeIqd83VSlb/WOGgPVi/O781WT5ptYrMNtlh1mjLRStmyzms/P5ovBo3uZo+8R0wYMVJnn85PFjenwd6vFDfD1LTn4YTv480Mufs2gOnuLaj0pJPgjo1YBb6Hnqw4n9zDunNHKVhhs84Bep1QF6t7UolrpObnlJbHvXOeOwXwpw+oxDSx43AQHOO4rdy3cU1OLnII8sBtwSH8onpdais5ByyyHDgVV3+XLQqdXNPKSgq6dwHaeNEZaNTcywFiGVkoOxHmoA0QIIteJRdi6o4ywFnG0h/p7LUlCcQa9u9RRWcOrKpjqX0nGWQk9fMNEMNSePl2fU7n06KEiJfFr7oNwthsN9dJyGAh5zhlqRcWonMhMUr/Qduf84CnLQcAlO7TVmg0KXAffRxkqFOXVf7EL2xWzADUqxQkvuCWs48dSQ5yFtptiAm/wyrO0ekWjkQUTGoPHQWCMh7uEyOJHL4N1bmbNedff99z//1YM+iGDrbE6kOLgIGS4+aLuCGEJBJuK5be8MJohnc1yGTLMaDLLknWtLzEHsB8Xxdl2sgogZ8nwxDu1fhWdUvPZMf9TUKDGoO/qAECWuUTueDmz9K2wg6sSRSDyI9egL6qebAss91smgswPJUFQf/t0QuS6OJrsoFPJD9e86dff2euOHaBZB7C/MXVDQY4YbznIo5JGeZvmGSIuJvPPYTDboiQgRbIp7Un4McTkULGT20sCWw3rcNBboSF946wmEDHELKXjIMM5Be1PIEiWRUhM4WcO2hzpM9XIU55GCTgHlM0jjsSDP3y11/cNJGqZ6hyh/iOh3PcSTmGAk0KwSiYJxoHhEaiHZHnH936cnroUnUhSece5cYcS3JJJxogN1Y4boS4lUSzsqKg/0p9SIJaggaDD+FMW0roCISJsI2zlPL3nUJqQ8IwyFx5o4NNxJEVOOhAs6oh90dCoZZHsC9ZY7fyfuN2QekkQ25OgUxJOY8yxZ95SK5Etro1PPHDzpsSQOpmUoIqcmeVBaxsCjUwmOvlMa3c139Kci6HRiwOXqHDoSVMTje9khRcak3YLPxuoQIfIvEuRfqgcJaYVrQMqT9iA9DIxgkO0R+Repg84WBuwLBUfw0ETmRJqgswXRy4jjOLlpQlCb70qoW4d0XeU2pUdIG3TcIPoy+vUEBXYCy4+ID50LSh4Vg5lWX/+WPYyYgIpWpKeJtvRkVjhyCW3wlYjnkCoPOg0ZsvdX5Mx+EUS7NruQmm/Wg8yCDkcG7f3NiaHjQYnmw/H+dWh4ODwBFfIoT4Gp8iS1O3ILtuArESN/JYLObQYd+ZPDPIXRJaqr3EYHIoOOcobs+yU0ef4A0KmgcpOBR/6+s1KJsVvC45OlxydrsvcPvRIxP0PpoJOmQUf+5KZXkodQqC0uhEgeKBN08DTgNpASSuR2xONdZYMOnga9GssTm5ILqnYZ9k7Mc84uIRZOac8KiXNjI1p+AHwlYn6AzoPOxIbspiFqzRHPKHUHwqyyM2Z9cdOVtngnyG3UZDur+WbbyaageWzNg0422YAjXO5p1kqHlmtYUgzoOxTM8d5Bf5rFWjO0m0ajWeOS2rD30J7a07/MEFORdFhpXnL+t2iQCQ8N9UHVmugBVNDB5qCdv+fsmQ6t1/kfBvoOFX46Of/bdyzhVklNZo1LasPew3pqT8BiiayoDqsjTM6fFj7Sp15BiXOayOVoG3TyOeTFgQ6dYLASxIDWhUyAH7jzN2h7mUazxSW1Ye8LSDw0nCWW2Zk86EhsyG7BsFhuwUAVlIbY7tiwoIOwQbsFg9dCNmBf13+qBVtPHpQlVnsZHnTo1veY7utvjqIEEE9nfOE4dcyv6F4W9nOf+4WWPBtPOVhLqWW9MfswJh62mA4Zaj3ccu245k+OYpRgvbMhZp4ZFXQeOezVUmJt/NtPLA05o9x48sYMcSib0SFnn7kbbu8PA21qjCUja4nIBVVy9gW505R5kCs5BThVhwwe2i6Lo8gNZsKp8WQbaSi1z+hYNX0+ScbEqeswLuQAc8ge3ELcg2VUp2GJLIUNqsYctgd3h/LgZPDAJl2VM8fkwXc8pac7l4ay/oyLVZnnk2TzOLUZloecQg7ag0Mjra0ke3Di7skG1VSmGJzWOoODHpwKngTZxjx58CbL8o3cgvq6WR4ro98nyYo4fTWsCim7HbQHhwb+WfLZU80365ELqotMMfhhPDgVPAN6cJk8eJNlgePzPB5cxaqP9kmyOk5NlrWdJ5T1S5Wenn47h1q7b8NGPPi3rvPp8WkhfHDWf+hxc21gEk+aPHD6qiSJyQAuDynqyQc8lcx4EKB3LfRJUlDDA+eJxllOpLwdC0n5H7JqWAYDSia5R962Ny2qQaz0c2FU2aBnq9O3zQ7K/nI+GpTIxzgRksudD37etvOQMNZTVKMCmtmOAu+kVb8YFuLvLyvEyUYOJQQFqn3DST+k7/AcVBXoiJ00XVA3tSGHCArqgcpyT9U3y4kcqtMhOfsDX9o9WYjWwMFak7WGXskdJCw03dkbM2D2hriBb3cAxGZoznanZ8yAyVoiZ9aOEZEFdS4kE3zIq6bOMUCkb9Ukkp4bziSAJuvnCLnj5O67HGM29zYSvBEUFpSTOeCpR05hdmSpZsKDyIW+mInqA3Hkt5PctyP3bdlZTsVVdJ6Vmqu0Zw+xPcaoGMmgHIshe0MszGOciogKqZEeNCIG9YWaGjPokI7DPcXk/CiY2OA4btS+p20GDSUebFp+Yjk78vITNA0xH3C75T1y1weJoELiQuZc9RSS8+NMOqmNjdtAIXI/G7kBxQxDsZOGJcX5CB0wK44xKgPEWPctkDjlGsQOn+2GrkF7p1XcR8z5XKL16AVzVJh50C5q0MsYlG/AODWyYCIosmBDhgQ7ZOLUnS0DcziqBdWphRQhdGhds7ikwqSC8vgG3XKoZk2BAsC9JY1Tw3amg8L21FqvNlTcJ78lhi+VrGAmKMAfYrdr2g5s36Jy1HEqqgnaoHOsnmB4D6E5QRu9PYPZj8kZuFejr3suqFC47yb4n0dyoQzjpTg5GZVuiDwPSjDtuSEe0ZdCBeB1UDbgw4K2y0PemzGOWReVqOI8YLvMnRsyJAKDhJoWw8H0ie0mjIrHYMqea+PwNoykL4j0lL4zwejLGn6xJo1BCRbbE43pd5X13qZvf1cIMmbk/kp1X23AXoEnDSxh3yUG4r5DAhj7UXsUte9aIHXpIr1Bw3TXs6y0Hu3hlEfWKkX3KOTVxARE6X0NCY+S9LR3SuUlKQSV5uU2KE4fcBXI3jmVx6QElTfiLqBVcCRIojeYO0D2Ol3z202FyjKIPKATSV9N5Tj+S0Ddt5mgEnOCBRwtDtx7+SI7gaWeCV/yi6TvYAWV0hBblml5NZ6W72FaPvui1IHr+bRoPR/hrrRN5H0dICISIqAMvjeefq0oBz4Zb3jPvq0Uh+aQMinpGupLAZTU1V7IoABMDdmFYSyJJK8qKmihV8Pt8MtqRmCNgLirDT1ymKaDwudBo2foDtB3rs4xwkFSD5aE6c5Jpyocrw2OvJEYErS1brwkOcqzQVG+SqlodXuw/YAfsP4OslqtP6dGzC4gra03qiBYT8iRPdwkmsxGRk7mAcls/Tfi4yXRCBe0L9+H3HXe9ezLorp0yQJy45JLp7phyYM2wM3GzLsf3aUg7JmXGGv3uYraMEWKoBO34ayWgWyQlOiqSTY0GcQQDnHVrHWU3rhH0BfBDrJana7PiSs6cS5990Z3HSqIlhxyBarAKlClJlNmktpfRuogBlMM+ahSBZHK+97A0OHtIKsBfxPEgQ7aenWg9Xq2RJB5+2U14G+7p3qLlLwJsB0e3gtkvb2b8zbt6SCrQXtc12GpJ9aeHiZmSqxXsLRgALf/hTYViSK9XmlU3nWgRnI5rS7H179OguGmA7cbbfrUQVaD9rCu0z2Ty6GQCy0KoehH9opK9quAvCxrobwsZIWsXQDLr09WxVV5qy+nN8X1YlLCOjqbjl8WJXZnz+5AO7/F6kkFshfZs4v5dL548r6YTufvXvzHs0ebf5eft/yolP22WCw3z85t6XocN1Y6oZ0un3oyuyzK96HWL3V7Oxv1XV4sJtd3ofCX41Uxu3j/OJPPZ1/c28nyccbE89mXk6vJahM0lx98Pp1m1/N35RWzj56tn/NJ+RLP35Xm8uI7PspuP9q8ru2Hu1/MfrH/vY+/4x9nVzfLVfZqssrKm5xngmUvJ6vlqPzXm6LcGxSX2VqNM+AVfkJ6hetnnpUvcbV/W7d3snngbP4qKx9m9aaYZTfLIv5tlEhOLjbqWerZnrFvdMqzC9sCvuF0Nro6KZZVxb03KXRDJ822At3kh9rQPfhsJwmw1jVsHcOq+GF1PS0V+fzWRbyeTy/rHmPblUTfeoa35X3eXYazmksI+BK85RJM1lxCwpcQ6CW2/NtP79gD97bzh77NbPUD/moyXZWeoV6Bm1ar/Hapurnr6nevwCNABquVwSEZvFaGgGSIWhkSkiFrZShIhqqVoSEZulaGgWSYWhkWkmHr9QNTEFcvBNOQz+uFYCryy3ohmI58US8EU5Jf1QvBtOTX9UIwNflNvRC7CTSpQ3QaYkeN+j12JL/32wh+73cR/N7vI/i9P0Twe3+M4Pe+jOD3/hTB730Vwe99HcPv/TmG3/tLDL/3TQy/920Mv/fXGH7vbzH83t8j+D21O9GWdiBrULcoThAO5j0JB3mEcFBECAdlhHBQRQgHdYRw0EQIB22McNBFCQfzKPFgnICQR4kIRZSQUEaJCRXFOdYPu9xrXEHzjxb1j/IUYaOOETeaGIGjjRE5ugihI88jxI48RvDIeYTokYsI4SOXMeJHrmIEkFzHiCC5iRFCchsjhuQuRhAp8hhRpGCdPaVpmuuLM8WVLbTsR8ZofoqxvnvjP8h5l2CrBOrkJOhM9AGNLft0Jvrvf/6rBxPHqGBi5TXkXt64VYrIVvlgGE+MhLwjjUDgVOTMXg0ympZP7dAEGqZMhtnWS5XsZrEuQuSGAUELJh/ugolV+FML/GXISfdg4CAZiLdNILVRkQpavQZsIiwHEfF1BvaliFMnzGkcURkZ0Q+1F+eBbMwELUP5kNvWeGwCbExCHglog1aqISNG7zQC7cY4tbrRBa1nQ0GO6M/I1laHGNHW8Ak8VVtTtpeIPTqKrUFN8rinGJk3p1dTflqPbRA30hdsz08CLj35HSpM4+SaAE4sCeBgRcAD8xVIRUDovYfXA6x/9+Kzz+KVA2hqOYDaKQfgNuXKE/yJyu3PIVde5ebQufLVN3WgXHmVuwPnyqtcp1z5lCufcuVTrvygcuUfrA8pVz7lyqdc+ZQrn3LlHwScKVc+5cqnXPmUK59y5bf+keUpVz7lyqdc+ZQrP/hc+Qdb6JQr/6Hmyj+gsVNK7pFy5eWhcuUf7OBSrvxRcuXVQXLlH8SayTA//Fz5BwtmypUn5sq7Q+XKP/CUKS87IIsXy8smZyaqkNyFVP0QlmsfK1f+wSqWcuXjI2JwK5GR83c/UETcgTKvD5Yzr3LV98zr4wyk4uQtNgeHOHJ+qLT5B9FfPuSpIp7wgV4QAQ1W5bJ9vi8nX5fLQyXqK9a/ohiRn2T3Th+2LGMWYQi6Z/HMixbEMJezkAW8p+UcJymdasluh2Z/CmohDg9ZwIeMHKePGPSMaeEQtyOIqzsXIIWuUViHM9N13/ZGvtUUWHfbYjlBPDDhMiSW60/R1WkHMHvm3wAmj0tqC/uINec8iG3qvRIcbSY71yFB+S7WQnYNx/YkUZ2BDuGR+6IHR5gTTSwjHLVao3c7TrVenAVjLLlw0PEG7aQaobOdT0VTrLVrLgaMkIgn1xxnu5gYolMMYhQEyFVSLUwE8VCDDG1ItfQ73tF15aQJktpCKM+sW6HJ9+Xx/1RvIcIYLT3cIynOkNQIwan8V80365ELY7T0cE81OIeQY9hmpQVZXFI98ijjZVDYBzmymAtsP4QafPtuGXEIXkn1aiM75xqfVm36N6sYVAWBrdV7fzfNuhFBdL2yKHCnx5KPofgYzxGJyCHFklg42eJjcEn1aqNBteHJxwCcTIsqKDLURJpOGKzz2YP1giGdz4ClUH4gnc9M185nzLnns2/ni/Vs8lJrbnudvV7Mb66X2av5IlvfQla++eXk5bTIlm8mr1bZ+Gqta3dt0C7n2Th7M15cXswvi8vbb/R94nclPuVH72L29Gmsid+Vx8h3+3+JKAO/dcsVavuk4QO/bdsl8hgDv7f0gbSnaGKGNDBqXxWJ5Q4depbrxjekf7Z1YY0VsM2rnoo1ddSeQCdTJ5XUSSV1UkmdVAI6qXjSWq2/2j3OUFJ3JPeZGq2kRiup0UpqtNLnoaTbPZrUwy1UVnHq9juMz7C9e/+7uSxHy+80sZphsJApJlKmpBRPq5Kab0sDNyrpMIWkL9jcQ2NOAw1rD6SZBrvMEE/yu8zwlB+OYR2rgYIMNKym4gbPwbuvmlG6w40OVf3Tgp1V7pMjgS88pqsOZLoKHKZsUMQOdNLJDn8s3poKTequ5zM15i9Eb0VZ5YebN6p7Z5q9aBw1CgmGLBEuAxql64lR8l4apfIYHTigVHG42QoJRct6gqLoJYrGg6IDUZRw1xUaiqInKMpeomg9ldlgPYrScF8UGoqqJyiqXqLoPCgyEEUL9y2hodiXYFX3EcV9WxtRO5jUn+LlcA8TGop9iW5ML1H0cD4trQvqURQH6VciXV+iG9tLFPGOJe0oSrgPCQ3FvkQ3rpcoekgctBWBpkY3IInj+hLdsLyXMPra9oE0urZwHxAajL3h4npJxnEFd19shdFQ4xuQvXF9iW9YL+kbX9NDDtI3htqQDWwSkvclwGG95G+4h7/hIH9jJNxHhAZjXyIc1ksCh1u8BWkrjMT8AIFOGOpNiNNLBod7GBwBMjjGwX060Jr/E8PYSwpHeCgcAVI4lhjiCHCsUN6bEKeXHI7wcDgC5HAsMcRBO3Cw3oQ4vSRxhIfEESCJY6nNj8COGKw3IU4vWRzhYXEEyOJYaoiD9qroS4jDe8niCA+LI0AWxxJZHLh3RF9CHN5LFkd4WBwBsjiOGuIYEMbe5OD0ksURvtEVIIvjqCEOyOLwvoQ4vJcsjvCwOAJkcRw1xAFZHN6XEIf3ksURHhZHgiyOI4Y4EmRxeG9CnF6yOMLD4kiQxXFEFkeCLA7vTYjTSxZHelgciQ6HzonThCRI4/DexDi9pHGkh8aRAsWRmIsjQR5H9CbI6SWPIz08jpQojsSzKgkSOaI3UU4viRzpIXIkWlOVU8MckMkRfQlzRC+ZHOlhciRa1ppT4xyQyhF9iXNEL6kc2N6ojX4kWi9V8Zs8dfmlFZPvlb4JpLGrdLR6VGmDioh5mqpUU+e/C52CJlgyRg1fwFKpag8APuCuyeQCbno3gD1jZcSthMpD+t72xf52W9Ucq80n8/SpV+gOkGp6CqyMqlZ38zTRzFul3Q4SMU1fdehx45JtNY7e3rEtOLoknj0oEdS9i/esNZE+SXMblWMhB9Wk8J4z1TL7oZuUZ4yHMqhJEQkSpXDY8mRS/j4UbSZFzF9ReK8YK5JJEQfaKoeaFJGrUgaHjSeT8jcFaTEpTuSnFE5qWJVMiji7VIOn3IwTc4cU3jbXymRS/g4tbSZFPLrWOE9hE0/RPPR1x6TQjANOpJc03oLX6mRS/nY5bSZF5JA0Tk/YtM8lNMFpw4bIQWicg7CJOmqelLzj7lDqiBPpCY3TEy7RE9RJxhqlJziRntA4PeESPUFoJNXmCYn0hMbpCZfoiabWNnsmhdITnDo8EKcnXKInCF29WkxKEOkJjdMTLtETzUPUH5qUQekJQd0C4/SES/QEocVam0kRqSOD0xMu0RNNLZ/2TApNoxBEesLg9IRL9ASh3V2bSRHpCYPTEy5tgZvab+2ZFDxfhMhcGJy5cIlVIrQebDMpIj1hYHriQZe7oZuUJ3vCwNO2iFtgo3DYEj1BaAPZZlJE6shoHJu0zyX0dmzBRhL3ucbg2CTqqKll4J67Q9NmBZE6MhaHLe1zCX0220yKyEEYh2OTqKOm9o27JmVR6kgS6Qmb47AleqKpXeMebCg9IYn0hGU4bImeILSqbfOERHrCchybRE80tc7cMym05YIkboGtwGFL9AShbXCbSRGpI4vTEyztcwm9gNuwIe5zLc5BsEQdNbWY3XN3KHVEnSxrcXqCJXqC0Je5zaSI+1yL0xMs0RNN7X73TArNbKHO1rY4PcHSFripve8ubA7dAisic2Fx5oIlVonQ2rzFE1InZzucnmCJnmhqtbxnUig9QR2V7XB6giV6gtBmvs2kiNSRw+kJluiJprbXeyaF0hOKuAV2OD3BEj1BaPnfZlJE6sjh9ARP9AShj38bNkR6wuH0BE/0RFN7+D13h9ITikhPOJye4ImeIMxUaDMpIj3hcHqCJ3qiqVX/nkmh2ROaSE84nJ7gaZ9LmG/RYlKayEE4nIPgiTpqGpuw1/Myz1GbIvITG8kocGmnS5g20mZUkgoOTkPwxB41DbHYtyq0N4gWVOBwjoKnzS5l+EubWSkqOjgVwROD1DRTZN+s0AIcranA4TyFSHvhpiEi+8Chm2FtqMDhJIZIBBNliFKbP7RUdHCuQiSugjIaqQ0dR0UHZytEYiuaJu7sOz2UrjA5FTicrxCJr6BMqmoxK8Oo6OCMhUiMRdMApP0pHWi2i6EyFgxnLETaFDdNGNsHDt0UG+qmmOFshkhUE2XiW5s/pHJNDKcsRKIsKHPe2tChUhasw+SOSiyR9wOd/NCgEMe1tSFC5SKYBOcUGRSOn+eIMMKYov01ad9MRrThLBydeLR3bUPlOJgCFcIlhaDP6Rt5x7OMaLNF/Brh00ZD5VWYBjXC9kQj+jzMU+1PE2xC3nf+w2zgDDveiDw4xrU6ySn5Ap/zH3nnyoxoQ1G8vsA3sIMZKovHLKgRefIFfl+gqL6gZgzbyD8BBxq61+wMwGGy1RlUyRn41v2RdyLOiDbOxe8MfOuJpTLDPAc1gidn4HcGhu4MrE+LWOC4wEZnwMHxtlYm6P3QOzL0+25+5J8xA421a4aeg9CrtA40rgPOB6MgrwMWXQd8R4qWegbFBagRiUNq1Ij9hX/knXQzok0+8muE7zTMUg+3OMgqVkeKpeWhQTc0oy8PzKdFKnBEY/PyAPKHNrFFBOg5HXof58ht4CjBZuhBotAm6rh5HRA+GMnUsRboOuCjji31rJyDBKJLBGKzRnipHzKBqFEC0dcXlVnq+TwHCUSXCETC8kAnELmPhhZ54OjF5uUBJBBdIhCbnYGPQKyZWTWiDVzyOwNf5YSlpoMIkEB0iUAkOAM6gch9BKLggQM9G52BAAlEl1ikZmfgY5EEmUXSKIskvCwSNRNJgLyiS5QywRnQKWXho5SFDBxF2uwMQALRJQKx0RkIH/UjyFloBiUQfY3umKVmoQmQQHSJQPTrhqETiMJHQwsdOES12RmABKJLLFKzM/CxSDUTzka08Vx+Z2B8zoCagChAXtElSpngDATdGfgoZWECx782OwOMQHwwVi9B3wQ9nS4SPtJR5oFjSpuhtyD0iTtuXge8rB+ZOzYod+ztCmWpyafCgRqRCMRmjfBRP5KcgWgMqhG+DERHzUCUOagRiUAkLA+avjz4aGjJAkfuNi4PkoHQJ7qIAL0lQy99dJGUgeNHm6HnIPSJO25eB3zcsSRzx8ah64CPO3bUDEQpQI1IBGKjRkgf9SPJGYgWJRC9/TgcNQNRSlAjEoHo1w1LJxClj4aWKnCUbvPyoEDoE11EgJ5OF0kfXSRN4DjeZug1CH3ijpvXAR93LMncsUW5Y+njjh01A1GCBCJLBCLBGUi6M/AxT9IFDhJudgYggcgSgdjsDHw8cM1wxhFtWKffGTifM6Amn0qQQGSJLiI4AzpdJH10keKBY3YbnYECmUKWuONmZ+DjjhU5+dSi3LHyJZ86avKpAglEllikRo1QPjKwZmLliDZu0a8Rvn7gjpqBqEBekSVKmbA80DMQpY+LVCJwZHTz8gASiCzRRX7oHZ0uUj7SUenAsdPN0INMIUvccfM64GP9FDn51KHcsfIlnzpq8qkCCUSWWKRmjfCRgYrMIjmURVJeFomagahAXpElSpmwPNApZeXjIpUJHKHevDyABCJPBCIBejqBqLzMkwsc9d0MPUgg8kQgNq8DPh5YkwlEhxKIyksgUjMQFUgg8kQgEpwBnUBUPgJRs8BB2I3OQIMEIk8EYrMz8BGImpx86lACUXuST3lOTT7VIIHIE11EcAb0DETlo4u0DBzh3ewMQKaQJ+640RloH3esyRmIDs1A1NLnDKgZiBokEHlikZo1wkcGanIG4t7wXb9KKJ9KUFMQNUgs8sQpE5Qjz8kLhPaxkVoFzqNvXiBACpEnwoiCPb0NovbxjtoGTk1vxh4kC3mij5uXAh/xpw19KUD7IGrrWwqoWYgaJBFFYpKaVcJHCJqcrhJoMat2PpWg5qJpkFwUiVemrBD00nbtZSRRYllTM1M1SCOKRCNSsKfziNpHQBmUR9TUxncG5BFF4hGblwIfHWw4fSlAiUTjJRKpmYgGJBJFIhIp7oDOJGofk2hQJtFQmUQDMokiMYmNiBsfk2gE3R2gVKLxUonUNFQDUokiUYnNKkFfABiacGa8TCE14cyATKFITCFluBI9/dT4mEKDMoWGyhQakCkUiSmkYE9nCvG1nUoEGh0y7V7Y4U67Z0xg4+6NzxXbFgWg/LgBYYMjbHqHMHuI8NOn0SGmz6FuA1mDE83bjL6DrAYVsLgKuN6pAD+VCqiods4Mvdqoi6wGFXCwClQmpfdFBcSpVMBgKmDB8cVtKtBBVr0K2BxXAdE7FZCnUgGHqYADJ5e2qUAHWQ0qwHAVUL1TAXUiFeAcUgGbg6NKW1Sgi6wGFeC4CvQvHNSnUgEs5rcMnFLYpgIdZDWogMBVoH/hoDmVCmhMBTg4lrBNBTrIalABCauA6184aE+lAlg4aAU4jK5NBTrIalABhatA/8JBdyoVwMJBi44ga1OBDrIaVAAn/1z/wkGWn0gHBMN0QIGTp9p0oIOsBh3A6UHXQ3rwVPygAANCDQ4catOBDrIadADnB13/AkJ2KoJQYAShNeCwkTYd6CCrQQdggrA6zaY3OnAqhlBYTAcsOF6kTQc6yKrXAZfjOtC/kJCdiiIUYEzowNECbTrQQVaDDjBcB3oYE56KI5QYR+hycJhAiw50kdWgAxzXgR7GhKciCSUWEzoGNhJv04EOshp0QOA60MOY8FQsocRYQsfB/tFtOtBBVoMOwCxhtUF5b3TgVDShxGJCJ8C2wW060EFWgw4oXAd6GBOeiidUOaYDEmwU3KYDHWQ16IDGdaB/MSE/FU+oMJ7QKbBJaJsOdJDVoAMG14H+xYT8VDyhwvIInQbbgrbpQAdZDTpgcR3oYR7hqXhChfGEzoAtAdt0oIOsBh3AeULev5iQn4onVGBMaMFOcG060EFWrQ5svojqQP9iQn4qnlCDMaEDG4C16UAHWQ06gPOEvIcx4al4Qg3xhDWm6en41awDnWQ16ADOE/IexoSn4gm1wHSAga1+2nSgg6wGHcB5Qt7DmPBUPKHWmA5wsLdPmw50kNWgAzhPKHoYE56KJ9QG0wEBNvVo04EOshp0AOcJRQ9jwlPxhCbHdADt5NCmAx1kNegAzhOK/sWE4lQ8oQFjQrS3Q5sOdJDVoAM4Tyj6FxOKU/GEBowJATMnW/GW5Vtejaflc0zLe1+UKF7Pp4WnXLx06UjrEx1QDb2+/fLrk1VxVd7qy+lNcb2YlOCNzqbjl0UJ0NmzO2TObwF5UsHlRfbsYj6dL56sf/fi6dNnjzb/LD9u+U0p+m2xWG4enVsmjePGSie00+VDT2aXRfk67Pqdbu9m09xiebGYXN+p0pfjVTG7eP84M89nX9ybxbL8d/589u2byatVtpi8frPKXr7Plut/Tmavs2nxavVp9mz9rE/KF3n+rjSRF9nTp3cfbV7Z3YdP9r72Scaz77KPBM/O97//cfYo498JXj7b5GKDV/ni91R885I9hr19BZsONhvwJsWyiuQ9ixgSLxoT5iN83SNKW683jPubXhU/rK6nJY7ntwbyej69bG+HadTGLt6WN3V3Gc5qLiHgS7CWS4iaK0j4CrztIfKaS2wDwZ9eMbmvtLl1H35wX02mq9IS65W1yR/nt81bbu76Sdwr6wiQMZm9mlfEnK+TjO4EyY2rJro+35kMccBHh4Arb3zXutNi+6BHx51twQtw1f4+++w4a61pXVpVwxs3oHZX7edo2p131G5WayEcksErMvi9DAHJEBUZomJgiAxZkSHvZShIhqrIUPcyNCRDV2RsnYWBZJiKDPMw0iDLsBUZdqsfmIK4ihC3FYJpyOdVLauoKqYjv6xKqbhzTEu+qErZqivD9ORXVSlbhWWYpvy6KmWrsgzTld9UpWyVltnG5anWO3o6mNvdBYs4hMai7lMcyX3+tvradEf/+buqENPRgf6+KsR29KB/qApxHV3oH6uuPO/oQ7+sCmEdneifqkJ4Ry/6VVWI6OhGv64KkV396J+rUlRXR/qXqhTd1ZF+U5ViujrSb6tSbFdH+teqFNfVkf6tGj7kXR3p36tSWNWRIlLevSn3ztUQYIt2uXt6gQasdT7VoT5VHsmn7myWREeHuPsKz1nFFb1AOjYSe93mHXZV21fKYlCYD9iJGLuqo/TEVO2ZLNSpZB3oIX6w9y94HADOjwGAayRQ23e7jDoliIeYhnbDNQ2GJX1RG7GLEFOJjUd/CSDCauDtpW6JkMiQhBhtBtNQo3bqsm/eUWMf7LrTMapTw1MXKpx1XxA7Qlp7HWISQsQzNZWTJ5MFLUNmwF3LfTMnsRwEz0wCTp4nEpI8NCCfSVyZdpM3sOkBnDoTxAYFH2bg5UC+El0DokaNT1znaU5EyA40zIMdfoTHq/F0WUAotthWnb90NIx4BwZCRrasD2Cb1ZAp5FnhwJGZ3BOTCs9EL0FknXiHgprtjCWtBry1hnLoFRUPcOpdpbKFCMaRRpx9dmQ/SdjX+fbaihg38qDikzg2E6MxgdwpP/n8q1+dYjPQbjiSGGBwGbSdVn3pKrtbI3wsUKAqcUGNKFTn6e798mb//ue/+hj3cSju2431FfFkhIfxHoP3d1CgoKmBQhh5MShQSBG7LzoQRH6Ch/ETg1qISMSSFxgifctdSJ1YT7c6RznfxaZQcWLxpgijG5IH4+BcZklM7xcdMiH08AwlQoSmiK5LdGh5UTEV0ctRmt8dw3UJ4eHJFMKkakXES4S0qRk0XuSx9AKcTq2J5/JCBjGiQ8GuHhOPtXFPMzApQEyp9hiWa5Hssdl/eio2hEP8qyT2gBI6iIEdMp6K7F/Bk2BJ7OEmTBCbNGz/6rE27mm4KTWIKbEfl7BBZNSQ7dFR7VGC+TSS2EdLuCC+KvnS5rXPYnmHnoMwIq0iw2iVYftXi2Vd7PlXMMtDErvjSBYU77Dh2qgk7yfRvYfwNNPQxPMCyYP2JkPG1pMHLCFuR3iakWliIoIUQfEtG7T/9eSJ+xBXoP8VJhLmMij+HbINk/ej6N5FeLgmRewtKFVQfJzW3mZr9lm7hfy3L9uFOG9E6qD4edj+24QhrjkYP3vicUWcLyKD2ocO2sYt2X+Da7P2YGuI5znSBp1mp7W5mb/w1BJJA52teoYDGOJZuezAZ9nkvxs4RjKi9TbM42Cq8pDzdOX6gek5Z9JIK7S0J0lEratBaUWPWA+hgmqI+oLOPTinyRJWHtPj0DhHRTxIVUGzdHpvWP/59TfHwI6rkFKwPdJBUkMqsoEKsKjMohAPp6hMgWlHhph0qYIauPTeEo9jiEpgVbEeQyWeuCkVwvj2Bbrd4RPHaoitoO46yjM2RhMr05QOGQbQ95jlkyNB59sgcixBnewrg2qfegPeCbb0ikzXoEcp0mOYhljXpoLKpwaNrYd81QxKxfQchxpi8ahyIXT6YPAkpiSMPIij6SbdMNV5CF0+ZButscERjTrzYks8ztRBxV1p7aS3ndsLTaGmTZJ4XKl5CN09cP/qSafWaMot8bhRB5WHKdNLzB6dpsSIQwV7eysesYBIy85tmZTpE4P2ND6DtlrcQAQa1OtTEzNktQo6gzB9oc8ObVOEEi9OLrn0QEcsHtG6Ozt9Utt6QHYeuklkm5XVb+A9Z68KqlTXvu09MdtZmyCae9BLn4TYa+3JfzTEwyNtg9jtIXtWSfasEotqqHs917n9Wopa/GdBzQCZPI63NDkIIE9LY4cjp72lEbNG4q7PsKBTi0EvfcpA5udLOyOWdRgexF0PeemrybYnHjR5oCV2GTAiiKIedpyJGZtvZ0A8kTcyiMgcdJxJNjaJGRtxB29UEJ/Zl5aX/BQDwTQUaxhNRdoQiTMT1EqnN9idBDrMTypsT9ACLS6pHnoTlAM14NkP2lNrqHWYUbeHq7t/tzngBXDR9boT1PGnN24jP8X0OgPxeMZg8VWL38Al1WPvgmLrvjTuPcmsSYMt9+TAzhDTBeyWUVpejaflE0zLu16U+F3Pp4XH4+ebsd3UJzXd9XJ97+W3J6viqrzRl9Ob4noxKUEbnU3HL4sSmLNnd4ic3wLxpILHi+zZxXw6XzxZ/+7F06fPHm3+WX7c8ptS9Ntisdw8OLdMGseNlU5op3+8n/vt1i90ezcb+mx5sZhc36nQl+NVMbt4/zgTz2df3JvD8nHG+PPZt9fTySor3hazbDy7zOaXl9nLyWo5ysbl/1rfQ3Y9nixG2epN+Y3lBpZRtnwzebXafP+qWLwu1n/MVvPrzS+z+avb35UCNpB9mn17XVxMxtPsTfmL6WT2Ons1X2Trx1z/oHzEycUGtLpp6pt37bHr7ZvY5C1tIJwUyyqe9/PeUBchK1lGJj9UaNE4BnNd5VXfNf7+QVbFD6vraQnx+a3lvJ5PL+ueo9LI1+7OuS+X47flbd9dVdS1Y4OvZ8jX03XlsvD1NPl6rO6C273iT2B49KLyPvWntMXj1WS6Kq2Zounv5vPLW275ZlMFUVHxkffHF/Pyj9sfq/sfc8KPl6v5rKj8mt3/WmwWBaqfJR7joa/dHPO1q5DXLg7+2uvnVBAz2g3uCisqL3sSKUvBtFJmnWdziurY3X2JZ9piTk2zxQW1hGuM2JLCQqd6stpeRqZyTI/3awoyISCJfQkcCKRJQDbOmCFnxjN2CChZHhKx9sVNn9/7aX0SP30gcyRm6bIOuw6bltqHL9t5VkRyQ1W980tccJtKELPXGMdVwiWzPpZzphq2ABfaSgDN00Lb5nl3SWCmQ1bXPWnE3SmT3UPikwLMDp+piALsOdKBMgAYMQOAKdzNGhTCn/vKyzxZowyqnGHEBACmgwJfnlbIunVvDzsRsi7uSSMmMLIw7ikfTGcaoutrQYx8UseIJ3XMBtll3svEnOMcsmITt5kvInLNWBJ+Wg+uw45hq9AqhRzDhipmpGPY/zveKSzjnY9hVcRj2EWxvJn+7E5hpTzlKezX30Q6hJX0Q1iexziFrbw376moaT2GpR3PSZFORVsz9IjdidDXrtKpqOdUNEfPo8muSSSqdiebfzeBr51hdZ3JeZ+cCGeiBiOAJE9HaXTf18TQQ0DygxxuS5WApBJCLbR7fggoXUj4mM5ODmqNhzvWljqts1iSEPl0DE1jYgc5Eu2wKzTJrI/lmw18sA0HTPxn3tsj8pGoPciJGXikXd39pCPt1pVzj4VVIcFR57MXibtZlY5En7UfVvvTC5BTtWiH2VKmE1Hvxv+QiSacSDt1OO2WOlklmKigQiKe/UO0gx12y/7loBimLDfW8n6mMciQHUnEo+5qOJTSFMjRKc+pp8E13/SdZHcJc3qCXX6CJhJYlkJ85HgeFOYMOsFEheUGtS9we7ENA3I2cNH1ysHABJWKamAJKqGKHSlB5f+LmKAiqAkqfCdBRXfKT9lJTJnO39X3B+h56ok6aerJf0bLPVFiNxWkmm2iY2SbKNV2iTxGmb+SLZeoTWFBcylUSmHBTh3iFParlMISKYUF328qkc5RvFpOrdSPm6xAhpCn09H2Q80D1QCzQ+UsqNRt41hnm+xgSQsq1eJ7C7k7F2rH8LQdsg5UOg47ZGmn75xTNFs94aexqvFVqjVEK7ihwU77jD+1tJ+Q2UCjjlR1ZgJU2xR475Goo+8iUkeyK3Ukns++Kl6Xf82erZ/pyeY1nL8rreXFHVl0m7VRZOPX40mpytn/KhZzhBKqSVPpxAeR0l1YpWFsHpDu0p630jpQJgYXVHkM6SsLkjGYIWbJF+Q8Qh0S27pnmUico9UhVWFOJA5xcxmnDKmq8XK4p5eyNaqwh2LQqoovezmA4PxIE7FivH/beVGWKQcVykGFRoU0NxxwXtaLFnJXkBRQyE3uJnCgZgKba734LGLEbQ8VcV99WBE3Z4eOuJ8eI+KuPIYvAHYxAm7Ojxtw8zwF3CcIuKswp4D7qAF3VeNTwH3sgLuq+CngPnLAXV3MUtHehxxwV5D8EAPuiEOUWOcpSub57PPpNLu94rIMscerbB1eXy+KZfkisvksK0rXUyyydRA+yoofLorr1ab71urNfFnc/uJyPvsfq2x5c5Wt5v2OyCt58h9yRF55DF+EbKK04tJ0zt3FaMUlU0QeYUAR3IpLp4i8PWJxaESOeiXZq4Y9//7nv36282gONmqq6rzkcAf67nZSO1DTnvwwLbRMssgIaXCuH+moUg9vwx2SF+7tqRTDIisZqfAiyZNJYglsQWmMhPxTGoI6US8dqRd7EPx4dwvM+zQh5kn/+kpyT985X8er5rRLEStHtAKnwPrfc3KOKD8kg/YkHoN2W+DZhUFzP/27WGaxT9s3VcgHeB/95ObEz4Obq8zROk5+qggjA0OmlXciA+Fp5YkMPEVRs0hkYPSiZtQPJu7hWMXN4lDFzSKxgUesaOaHHjKeLPJ4pc3iGGPGh0wIHqCcmTzBOAahJBIlCGzT6XbJw+aIU9t1884DilOpBFbFfrBh4/JAw8YTU3wcpp/hXYcjNWYXMJn8s4yLwQHUviHGutmwCT/1tW6HbTedEgQNQJZknl3Cg8mJM3I7nxEE3nu0sraYhwTsuIcET9Mhwf6hVf7zOCRwxy2pq7y2o5wRSHbkMwKXzggiJAyjZwRVmNMZQUDCMJ5lWtX4xCsf+niAHSbLNE+88tHzvsXBskxZIpWh4wDt6bLnpZX5gTJNeTLLoyd/iwMdEbjEJHZtekk/P+AHIY1599U0nQYRQhia3fKwCcqHmt2ayvg7HwblUXsaH+6IoGrQQz4iYD+3I4Kq8aYjgg/8iKBipR/mEcHTmEcEPDWbvm3OcvBk/tuo6vDN747caoMD5QM6BlXPj5zOz1M6/ymoep7S+T1U/eH6vcnUbc/b7c0dKgGf69Rt745ujfD+XecwIHEyKAGHFX3nLem9fmKc2HJPdWy556ihvjtkpP9/xYz0yROJ1W7PvTL0/9tsfcGClrjzvphO5+9efEK6+VFWKuE8u17ML28uJrPXm/nFN9elu8nejKev1hOM158siuXNdPV89sv35fevxrPJuOejjPl2zqcIdOO+1fCTSFOLK31eBfdE1irK3kGQL3irvsF7B0l/Qtm6d8A3K52eEI6aKz1G8xhRc9PKktdGsPXBc5MMViuDQzJ4QySNyBC1MiQkQ9bKUJAMVStDQzJ0rQwDyTC1Miwkw9brB6Ygrl4IpiGf1wvBVOSX9UIwHfmiXgimJL+qF4Jpya/rhWBq8pt6IRYiD7ybVrg3/2H93m8j+L3fRfB7v4/g9/4Qwe/9MYLf+zKC3/tTBL/3VQS/d7tJ2Mo53wpyBHJoh5aSuaswUzl0J1/H8MB/juGB/xLDA38TwwN/G8MD/zWGB/5bDA/89yYPjAhZe+WtGK2U0DuN2smiLuereteWQ+Nbdo9xJUq1wcT+8WLlvCexMo8QK4sIsbKMECurCLGyjhArG8+acTBXXw22bYxg20UJtvMo0XaccJtHibdFlIBbRom4FSXkbhho0i0lyqEOVp0iKNcxonITIyy3MeJyFyEw53mEyJzHCM05jxCbc3Gs4JwW6FTEBMToXMYI0rmKEaVzHSNM5yZGnM5tjECduxiRushjhOriULE6lj4Qrz0V27Iv3PYjYYAzaaQVWpqHZyWff/WrU+TARmtgY+GyEzKIoncgnt+jaE+D4l6Bl3dnSu4k59/jtmiBgytSyFqgkhb4S70ae52DBYEObkdFxlEnl+wr+vLugsjlY/79VJsa8PxgJSnM9k4N1hu0KvxPnx4DfeOtCtutHem+gHsltbh27tEtadv/rqg1xipkDPCwdWnfze8gTu4EYHd/iUtu9ywqUJuojVB1SJprX7RpvZ9Sp1mb6IEkFChyGN+dv1OLJTv0g8kT/l1iDzC2ED6EpefvmqgBYCuZ6m5T/8yb494WdwWMZmpUBheya2ysqMRbyTCJovnz3zV6WtXyvOt2Y6/M2YYwSL772v27IDY+4WATmyrxkByCz8yJBASP4hB4BzLR9M4hsJO4AQ61mhG+1di1/10T4zUOtqqp0ggnNU6phWR7pVH/ffrSKM4wgnfP7YLUoaAi3YE6dL2zXf7Qdr/roeUS42SOc3iVmo4B+VIin+GxEhPoT4lsGgcbylSptORPG7CWGMu+51Eh3lUQD1a5DqkEHIw/Ra23DhHi4Rjv0OBApei0gR9sQ0TmqLfc+TvVxkAuqUolJ29ai7PBzqj2fCk4QE0Szw04TjVxk6JT3HKJcYzAc7+4S9FpI9fusRKB7ua7+VOB9iDOkz/1Yp1jJ7V7NCq0u5TEEiiBJ3wJlqJTn/XWIULkX4QIOkwZ8KQMBk0G1MTdgpBBXLbs5Qp3nLQXzqjnkgLb6KmucpsOLIQKSpTrCchiB+XPPjuSI/QQLxwaASk8xLfwbD0M+Zw0+ErURVYHUeqyL+fjD7Xr0VFcCHQ+eQDHYILY9yF7f0GeVMUlBLIlg2yJINug1NbheP86NDxEEVcQtr5NkGd0hyFXUQVfiZiCL1wQ/T9o369P6xZkHnROMOjI31DBkNgmmnWV2wgyC0pEH3jk7zvg4VCHX+nJJJSevEZDLqMIvhLxuELyoOOKQXt/iM05gGMQQScbQ/b+klycIqBJXZI8T0cSZwFJGVSGMujI33cYJaCpXlJ4PLKCuZgR7RANvhJxfolUQUcrQ/b9gp/YLeigNgg8FbRs3jY9HIMGXEtDRNEENUHgg3buGq0DbsQWl9SGvYeSl55iJUXMgJA26NSPDzn6M2hhQ9dxnQdyGy7otCY5/1tDI5/C1XyzBUWV01BUHci7PDn/W0txcJOHJuePS2qzYA8nrzwVtJrI2igWdOg3ZOfvywsOcQu+ao4oboMHHdck50+qXVTkBmlKQIuDIKIsQkZcDntxUBztD9KILS6pDXsPZa88OqmJyTxKBp0KDnlxCDF7X7J0FLfQocWZTW6BtvCT2+MpqAxTea6riWyt0kHHPYM2a3IvKqWimjUxh0+ZIDY3H27NmIK4OUXOwFHEDByF9gjTKGyDaQmkPKycxEzPxMrB9klSkfLwlAsidPMhZ2KQcytaEnmD/IDOgyjZAXtwDRFsmoy0JmbRaLCStMrBJg/+8JV7CDEF5dLoPFYmtU+SjpRLp3kQKztoD24O5cHJfkAE8apD9uAQC6bJh6uamAujJejBZfLgZB5qx1NCZLcWsTLifJK0ilMHqVUQdZpicFJ1Sw56cKof0EGp7EP24FCaiiav1ZqY0KIN6MFt8uBN4Ghs/IEnBtex6ll8krSNk9OsbRBLnmLwg3hwqh8IatPP7HA7ywiBIWKIvWVMHpKhPGRElMehAZ0gwIzhdpdufEE5VTNYSPrikDVDe5IAfXgbTk5uBNMNCVdq0yxP/oolHoSYIBqN9XSO23GSHOikqIF4d0M8yTZBLBob9jxHMh1iIMbN+Ih0TcRWhuQkssFPRJNgft8eTp6UM0POchHq6HfSpp8M2/o16mcQeTfwdeNQvsd3tEY8XzcaZIgMCuyHyxChndPppI2BeEFDTGI1JiSJddgxgjbYWr6XRMUwe2QAtwveiYTvBNp7NOheED045F3rwbyGJxaxxOQL44KYKj1gZMnDWTXU8ch69h22yUhtUGUs04PeREI9bQxxXKZlQUv2kI0LImetaLS99Z/qsdnSZcur8bS8x2l5X4sSn+v5tPC4PfapAp6Fqi0CvKOqrkB3ZMlJB7Y2Daz89mRVXJU3+nJ6U1wvJqV6jc6m45dFqQxnz+604PwW/CcVHXiRPbuYT+eLJ++L6XT+7sUnzx5t/l1+3vajj6bz2etRdjNbf1pcflxe7G2xWG5eBbdMGseNlU5otzaZyeyy+GGd8bZ+x9sb3GxWlheLyfWdIn85XhWzi/ePM/N89sW9TS4fZ1o/n/3t7lpZ9KcZZeXGY55dL+aXNxeT2ets9abIbq5LC8vejKevsvmrzSeLYnkzXb/WycUGzRKXPXPbgOBxMdsXsgk9NthOimUV6Ptx37C3clsiQIhDeasHn1U90Sdn9aOk7h9jVfywup6WMJ/fGtTr+fSy7im2dJu4taPKc5TL0dvypu+uyVRdK2D4gop8QS7qOpnAF9T0J5R1RRbwBW3YE255i5/Q9yhiJafU7V6vQRVfTaar0ovUm1bTSpbfMgo3d0V596Y1AmSwWhkcksFrZQhIhqiVISEZslaGgmSoWhkakqFrZRhIhqmVYSEZtl4/MAVx9UIwDfm8XgimIr+sF4LpyBf1QjAl+VW9EExLfl0vBFOT39QLsZsQlRoTNm3HUb8nj+T3fhvB7/0ugt/7fQS/94cIfu+PEfzelxH83p8i+L2vIvi9293DVs75VpCrFfQwdn03n19Wfi1zp7ZKlkN38nUMD/znGB74LzE88DcxPPC3MTzwX2N44L/F8MB/b/LAiJC1V96KWZ9v660oB4m6nK/qXVuOrAl6t2kCcVSrRdcMfYJYOe9JrMwjxMoiQqwsI8TKKkKsrCPEysazZhzM1VeDbRsj2HZRgu08SrQdJ9zmUeJtESXgllEibkUJuWvJTLfrYAXNwTrUwZpTBOU6RlRuYoTlNkZc7iIE5jyPEJnzGKE55xFicy6OFZzTAp2KmIAYncsYQTpXMaJ0rmOE6dzEiNO5jRGocxcjUhd5jFBdHCpWh1YB2+DlGX587irDIk1P6mD5SboDk/PnGZQ/zzRthWYdjq5E77Bjp+ns7OvHTK6b6SCpDXti6SrD616qrGlPsM9PkWSxi8+hrJg4m4PhVTBVLmPYHpiciW49YzuYpwaWESsdGV73Ut04DdsnC6xHfoul4pJa0efEakSGV5VUcgaG7JXploxaLifmBDMdFAmrnlhuvt4vn2JIAtSvj1MXRxMU4vYEFJ6v+9GeAhQWMq6+ERQbFHsOHhRsHCR1M+iCwshBuS9SzODrisKJbeJ4HhQRDspaSAu+FxiiG+MsKFhLwLTMrCJ1gmoEBuc2bMWVieH25uOefQ9XIcMJG/HCGQxrEl6Xt5pO2/VwcNcjiXwFx/kKa4eHHYkT2q1Z9FmjEBimZHvswELkyR5r7XEHUU+dOofq0AWx2zjvwEywhGf9ejeiB42tsQwnYmeCWKVB+1fuqQn3WaPQIKbEniQ8jP8YsD36xupxz0Q17iD/SuzzwV1ICeig/Su5A4zIQVsk9hAUeRDtNWz/6unvwz3jzoUDMSX2DhQsKH5lw7VH4YlfBdSPjXu67ShiqYbgQfHrkPEk56age0nuG3BLPDUVIii+ZYP2v9JjrR5rlhzE3ESyZxkU/yZ7bkbcE/8KqFsa9/QGlzlxPVZB8fGQ8SZntaB7Ve7hHiWRWxI6KH4etv82YdYswSw04eFDJJGTEibo4HPA9sw8K6jwregQPyw90zcUMTVEdOCrXMK7fr1t8t/gXtjX0VYpIrYwd6XyPPnvBk7KZ607/taCmKs49izzkPh73eVhqPYsPfG3FGH88g6exAwxGdSCcNB45uTpRjyUfx61Dr9txJaHxNeDwZbIaY081ozyzx3tVYTEz8le6X3+9/6uIf9MnAUjZUh8PGg8Bdn/ontd4qwXqULi34H7V41aowczYstvqXHMeLK3mppi7o1fd/4O8ceKWKQlDY6nSHjWr2dN/hPcaypiEYS0OHYy+c8GzodsbfWYUe3NheTbM9NLzB4dibMXSPGd8jDuiphlr/KQLPu+IHaaQfOcOrWDS6iukhisKBaSvDJsYxNQpavyjH/UxPIHxUNSUgZtbII8IkdgfpR4Gq1EEBM6aGOTUK2/8s0XJuYCKRnEbw7Z2CR5lJ7E/CixjEGpINpr2CsbNKlNeYhnTTzsVTqI7Br0ymbIKxs0t1IR6xRUGEcy7JXNQIh4ODJN3GWrMGZk0CubJq9smB8lHuioMIKkL71wdqD77LOjYAe5P01MIdZ50C66L4icAhCFxfWevGBN3IlpFpRj1Jt2UqfoY6mhjr/awzFq306NyEFqHrS3Hnp/QyUww9o9DNBQapkhcl06qHlwX0DlJ1npQDP17OEMkTDRMih5qC+InaRBsIbaV5GXujAepDd94Jxhip3GNypsCdvzjVBal/YUYRhi6aoOY1NUP1t1H8l3YpYosC15o6WaoMQhNeTm6hoqPdJEWkvbIFpLDbfhufJ4MW3CopMGvFxIP20mhouXhrbhhlgeYPKgTZkY9BoEnYoZYnK/YUE7qiFbiDoIHjykffag8YBSNAzxDNKIoBWEDRgPF2Ife7sc3XioQvlpPbYyaDViQ+YmTI7tSrH4ofkEzRCzPYwK8qMDtluDxRmmGSrThM2WiVhejaflPU7L+1qU+FzPp0W7R831ZtYy9Vni65VB7910vXdFvvfa3Wv57c1M9sdnL6c3xfViUirU6Gw6flmUanP27E5fzm/V5ElFW15kzy7m0/niyftiOp2/e/HJs0ebf5eft/3oo+l89nqU3czWnxaXH5cXe1sslptXwS2TxnFjSyi10z9uB1Bvht5ub7B8FZfF8mIxub5T+S/Hq2J28f5xpp7Pvri33uXjTIvns283V8qiP8soG0+X8+x6Mb+8uZjMXmerN0V2c11aYvZmPH2VzV9tPlkUy5vp6vnsl+/L71+NZ5Nx+cyTiw2udRO+N3B43NKPlQHfJYIblCfFsgr5/Qgc2MPJrR0JGebhfK7qk7P63rP397wqflhdT0t0z2/t6PV8eum5Zb47Zr30I2/LO7y7Jhd1DUPgC3LyBW8nNu9Wq8AXlPQLyrrsD/iCmv5KWR2pcn/Bn9D3aN02s0Hkn9I4sFeT6ap0HvV21LTU5dXR8hU7QoZQs1oZ2LBxXisDGzUuamVgg8ZlrQxszLiqlYENGde1MrAR46ZWBjZg3NbrB6Ygrl4IpiGf1wvBVOSX9UIwHfmiXgimJL+qF4Jpya/rhWBq8pt6IbZxenztxOSG0A/1e/xIfu+3Efze7yL4vd9H8Ht/iOD3/hjB730Zwe/9KYLf+yqC37vdNGzlnG8FuVpBDwPVd/P5ZeXXMndqq2Q5dCdfx/DAf47hgf8SwwN/E8MDfxvDA/81hgf+WwwP/PcmD4wIWXvlrRit1Lp3x0+iHCTqcr6qd205sibo3YnaxIQ1i64Z6hRrho6xaJgYq4aNsWy4COvGehhP8MLBY6wc62zB4KVjnUV6nLWDZocVMQFLyLoEPnwN4SrGIsJ1jFWEmxjLCLcx1hHuYiwkIo+xkohDLSUvkMos1+DlHerl5QkYkbwnjAiPwIiICIyIjMCIqAiMiI7AiBiPdz9YQF+lVGwMSsVFoVTyKJxKHFKFR2FVRBRaRUbhVRSFWKl1oHY3jCbmLjM8b0xUWvjbnuSN6ZOc1O++c/IQZgZVjDBfe8Ucb79Yqwsdzr140oXbd0puYOp2tQYcuMVcoDYQ64sYni9XOf/qizasw1J1kloWRm4pznJoGBM8zMs/bKAWfzw/T+UJ/7YVuAl/sP04h8cB+dtJ1moAnsUntjk5XPey1v5Y6EOVaL4B1MpTE0wd+MHw3D3heodoHwZOe/CkWtg24+OyuJhcFgt66E0D405sHCS2EEgtNm3i5lfX48XmZh+f/fuf/90ZibWo6/ffb/ZB379azK++n8xKMWePX42nywLByVMhyjy+keWNOZr1vpi6muKj0irZPQPypcSYFxtqCPtTYtUVsyGZgoPxpyimdW3XiMeCzGEetbqBTR61ASnPeErmGW/GoIoFQWSuOM5cVc6Ahx2dcoh/8o2PVp5hEdTm5rwD/2RSdIrjSVzdOAd9qU6+1IOTh5vjnriEcSw6FUTml+Ncj3QpOm3kY7CRgP7dfEd/ivM3iqXo1IdpnUcl8i9cYR61Sqgmj0obxLLnU32MAFTdLojMDtdB3KnspUc90lGaJA9qgVoRcdtVblPJKjdBdKoccGdnBvX4OAB0NijvoSfQicP3y6l/y54IhWkIXU9HTG7QjqmN2hF6JWJvE+6C2N4he39BPzY1IbRSy9wGYrtPkQeRv4P2/vbE0IVlOg3H+9d5a8/ZCoO6E3FPm3nha2pOzrsKvhKRlxY8iJcesu/n5EFWQkLbc9lVbqMDEUFU9ZB9P8dOg+JDJ4PyGgce+fvOgjjU40p4JnUKAY+sGFEniIJXIp6ZCBXEpA868jfkpTyIsmtxIcSxUEIHEeuD9v7yxNCZoKzmQUf+vnMrDnF6wjPrQeCzLke08zb4SsTzNtGBU6xE/rwvboFJI63Q60KBE+SmCPqajmWQEee0C5y7E7p3KJ7IQ1i0NqkRW1xSG/aeUZ7Ss/dXxOxDmQed+vEhR38OTswmu4WgdESi25As6CwwOf9bQyTTeRIagyeJTYglDzq4GbIBM88Omw7tvoGOjgF9B0ovT+v+7TtmcM1xk1njktqw92mSR2cVMX9SyqCjwOT8G5b4Ues08BYtgqr1JHHmlVRBJztDXhzo0DEBK0EMaHFGr9JqauDOX6Ll6I1mi0tqw94zvUZ6aCFFTPWUJojyH7RbsNHcApQKKolZgrJDfadNbqGhy4S3lqXJLUATLKUvh4/K5bggNjcfbjWagrg5RSZ2ar5Zi5zKwa4KGoXtQFUW+U6FxWfx6ytWixukYE16uDQBJXtJFyuR1ydJsTjJXIoFEbr5kHM8yZk7LYm8YX6AB1GyQ/bgUHqdIiOtiDlaSgTRsEM2O3oOJWx2VPAkWDaep+W3ybJ8vfygRCjFY+VS+ySpSNl0SgXxqkP24NCeSZHzrBQxz0rpIK40BU6kYkcBenAqeAb04DJ58CbL8vXihCollYqVE+eTpHScSkhlgwolBuzBNcSiaHLYp6m7JxdEa6cY/BAenAqeBimwKmudPPhDT2ixftoeD25jVbT4JCkXJ6tZs5B8WBalD/gD/bizcVgdqm7gF6fgwfe6DdjuzPfIW/fcslYQN/I6KBmO9XQexHFOv+h7aQ1ls2liQoMOymYbtNV60ga0h5OhdysIvhJUS6U9Eb8hnovqoFw3NugpMfT9mYZSXbTvuMtzJm6Ix2FahaRJscHPBBEGSznaw9GTIKXJaXbcHv1O2vQXrPNuXPWCWMeBRyyH8k2+UwdiLpZGSUmDAvvhbmnRPsT0XaaGaizJOwsbwi0NOTo9GHIevtcQp8ZpF5IxOfDo0JMxqXPMkxL2C026c+g7MWE7l3rdM3nQnlcPWvdAItoQO+0ZFrRb1AP29BJExGOTRjRBxINc9pAhgqh/Ixv97fpP9dhsabzl1Xha3uO0vK9Fic/1fFp4jId9qpDWXmSTlug9Wco91b0xcolAzTfLey+/vZnP/vjs5fSmuF5MSgUbnU3HL4tSHc6e3enB+S38Typa8CJ7djGfzhdP3hfT6fzdi0+ePdr8u/y87UcfTeez16Ns/Vlx+XF5qbfFYrl5EdwyaRw3Vjqh3dpk7uZ8883M8e3tbbYhy4vF5PpOkb8cr4rZxfvHmXk+++LeJpePM82fz759M3m1yhaT129W2cv32XL9z8nsdTYtXq0+zZ6tH/5J+V7P35X2+SJ7+vTuo80rvPvwyd7XPsl49l32keDZ+f73P84eZfw7wT99Pvvrm8kyK/8zzqbz15OLu9vY3MMom3xafJqt3hSbl5G9nKyyy3mxnP2PVfb8bFl6gX88Pyvfz+RiowHPaualb4DzOKbta9yEwRt9mBTLqnLczwVDfZyqdOwyJszH7a3x+d4SX99G+v6mV8UPq+tpqQrntyb3ej699Nyz2lja2/Km7i7DZF23G/gSecslOKsrpIEvwdsukdflKtxf4qd33I5txSMZsbmCH91Xk+mqNOd6bW1aUvLbTfvNXYXdvbaOABmT2at5Rcz5OkC8EyQ3Cw51tWqPDxiV/8ctKW981zowWmBxooVjdc807bkBTQsuqN1V+zmaducdtZvVWgiHZPCKDH4vQ0AyREWGqBgYIkNWZMh7GQqSoSoy1L0MDcnQFRlbZ2EgGaYiw9zLsJAMW5Fht/qBKYirCHFbIZiGfF7VsoqqYjryy6qUijvHtOSLqpStujJMT35VlbJVWIZpyq+rUrYqyzBd+U1VylZpmW1cnupZp3bSyHr6eDUtWBZ1n+JI7vO31demO/rP31WFmI4O9PdVIbajB/1DVYjr6EL/WHXleUcf+mVVCOvoRP9UFcI7etGvqkJERzf6dVWI7OpH/1yVoro60r9UpeiujvSbqhTT1ZF+W5ViuzrSv1aluK6O9G/V8CHv6kj/XpXCqo4UkfLuTbl5roYAW7TL3dMLNGCt86kO9anySD51Z7MkOjrE3Vd4ziquCNhzUdcolnfYVW1fKRtwul7rlooRjy1ZB36IH+z9r4cVxADg/BgAuGZSth0aYg0o4yGmod1wTaOmZW4bHsQZtkyEmEpsPPpLABFWA9+RHrNESOCUXFVJp9GmJwffp2lbq7BRlp4Zs9T1RuGI2d4hxnkf5gN7EKEuMzpomTEDXmYk3OitDS+GDRlpxNPgeIoh+kTiyjNqrXD12CCxkyazQaHFcLwiqZ9P2KB7Tg0HHZSWrZRCATtQWjbbSct+cuS07PqyjDxkon3jOOoO7IIc3trWzaqgNGvuWSs5sSib43xFpR5CqwFHKzqkY2UjHjxoB6Z6snLl6+a5p+j8D1WySmIIyEXQJqsnoLB8/RynAAUb50eMF7gE4wWGInKkMq5///Nfpy/k4hDF5y36JKaAcRW0Vx68t8N6fhFn0HAdtHkavLezGDcriEwfD+MhBm8rYJNaQY0NOlANqu8B9FHO+xjU8p0TK4K5C9qiDt1MWuIA4njVhmG4OHNQafihxXDbNwoPjy2gtk+KilcHXkAlvC5vNZ04mrh5BCGp624jdh04BD087Op5U401yNtr4shATKn2GEZBJHskNzPY+7s+yHD4sEyLIeNJbogoFGaLktgTV4SxFsP2r552YD5rlBLElFiLLsJIjwHbI/e0XNu31/YWLp6hfJyIZxhbMmT/Sm79Jyxoi8QB6sIGbeGH7V89zbqF5xS6ZUQmadJuI6YuKH5lw7VHmcccZC9EnHmGMg+KXweMpyA33kP3kkJijfwbsWVB8S0bsv/1WavwtOJWAsRcRbJnHhT/Jnsmj9YLm0UvNDqvtgFvERQfD3k95mT/De5VvU29iXsfKYPi52H7b99u1VPlozSIuUUHYDZg3oGT0smea+151FqJxT2D99ARx/5297V4d+CrTMK7fr1t8t/gXrjDUMV6bDtwVzb57wZrHAVxVt7xlVR7tSH7ZeX6MgSRSSOt0OvHOUF2inQYepqYhypdyI63L+jcg3Oa1CHpK/WDZssp6nTRPKQha+8N6z+//uYohzgypJjFP2+MOkO2cfpvUFuV3hjoKea3+wgnGXb85pvm1IAnD6EfBo0nI891FaHHcyPvfMlabEUI/TAYbOsx43HTy6SMZK8yhF4Ysr1yhRG2e/4ZooclccKNUiH0waD9ryT7X5AKlMSJvEqH0AMD968qcnqZIWJmQtLpleklZo+Ogxk2k9w3zV4Tk+iVDUmi7wti5weHjJBxzckVEB5oqcbmgri2QRubhOrAveOiidUNOu9cy69O2vvnAW9z6C5Aq8UN1gRIeSa5SWjsmHf+LjG9SAelFw3bszqqZ5XYokkdi81BO+U9sdPdnhtPj2udRH67xfaIbLgOSusZ9tKnoGBEe5gVQ52CFZSsM2hvWJPrRqRCPdASc250GIky7DgTal3jHSpOzHLVYdTJkI2thlkc0TmR8JncOoxB6UtXIn6KdvEKQ8SSp7tbInZhyS99we4k0EFNcrTBtmgt0OKS6qF3QekZA+4vqvMwox1hQ90RK8dF148jzYM2K71pNHeK2QUai2gdFj+1KAMuqR57FhQ796VN10kmjWion6ohs/GGSDKYLQt0O367mJZ3vSjxu55PC49HzzdD26hP6rrr5frey29vxr8/Pns5vSmuF5MStNHZdPyyKIE5e3aHyPktEE8qeLzInl3Mp/PFk/XvXjx9+uzR5p/lx22/+Wgzv/7j8hJvi8Xydsq4ZdI4bqx0Qju9HTTPNwP9tre14b6WF4vJ9Z0ufTleFbOL948z/nz2xb1dLB9nKns1X2TzWTHK9OZ/vpyv3jyffb1Ru8fZs/UTPylf5vm70kBeZJNldjWZ/T93n29eXuUv4x9K6ePpxc16mvoyW70pssvJq1fForx2kY1nl9m95ZRIv8/Gl5fLbLLKVvN9geVzTy42iNYN2tsA4TH6Hz2zSx/KqKEgK+93Df5GQSbFsqot9/MGwGnyskJmrqPTvfnjldnyt5MjdzsTwhcU9Auyupr7kCe0HZ5Qhjyh54Ki7qAPvp6kv1HdOrK+wwU9D8h1+MT2BwjqGOMxH1rcu/n8snYoJsVcL+blH+tmknPCj5er0uHVTngXyBhNd5BJzw9gPvxrVyGvXRz8tddPvyAydPB28YHKy+FuF41vBKAns5TJQw2YfeDlB4wQI2duMzDLlzwBleHYyb5jd36KCajN2Nldu4IGMUWzUuyg/oET5X06qP/s5Af1jMyNQFQt81RbMBVtbO4DB8wHPYMLG2TMqcgzYhc0JkGzlD01y6c/C7MkLaZ7hqn9o3hJtFjV6QqD0GKM2AimMoqWeEeSckeACbQTcFeT2aOr8Q8ftZFqo1bKjca1ifwB1/b9y/n8H+sHuf/kdhfWhYwzz2e/ud3I7RJvo2w+m77PpsVqNZm9zlZvFvOb12+y27tfZu/eTC7eZONFkV0vimX5Isuv71Nqz2ef36zezBfZzewfs/m72YdKsZG20Xqb5smdirGNbnJFa5uq29TWv5ImKbd2sJVzzjx76yZBa8WryKnW8d/vthF574vpdP6uemfVNOU7kRISWarrqvYe9b1Ahb6897V3uH1oDQm8eD+ugsH4lukwkKDryewf9dphEaqJOm0LtRGZbCTZyKlt5OV0fAEbSf2hI3H+BRQ46+2JI3fiZ76fRUc9kgtYwVpIYiIfnO/8ICwQPe/Xcpx2LXtdrcgt2xEyili8pXBAeWRAP0xSkdxoH+ow6EmVth1VZVcOtdgLVw7x4Vj7kbozeYrWDbkjASqnrWSMmCuE4y97h39TY7Vf9MpL7KXoYss3fDQOB2IsMZgt4dVeYxiEqnYBZGj7MTwNZd4TlHtej+3JnUUQ9yRls7z5hNL/S9/JP4lNrmqF1Qi/HabN7Zzz/7vepE8ny1X20Ww+O/9fxWJOI5HzrvmaOpwins1XiSa+1yvNEgU2eArMnpoCu5yvHoBaEWRPwTeLw/DN+jR8Mxd5nkcyuEj2di6V0CyWrbFIFiYZZ3Fsi0WyqCj2xDoaUzxiWqPENHWDq9mHQ3AcqXU4a9/7AIxG+x6XyGjiFLX+gEirX3y43KZvwAa0v2LUHVI84lvzD4bbOpLlH+bkgpiOh5PTWqaTC+QIca/j3AFQNBhXVXXViZH0vXCAgCLzTVGIZZ0oR1LzXE8HSKiS3HMi2FxY7v2hh4Sm8Y26K98YpsrtfOMv1xuSLnwjOyXfWLwu15O3RSIb9XaMQSIbU75dIhsPSjYql8jGRDYOkGxUhyIbq8tXyp2sHfkRng7rj5X9TCMtz8KktOYDMkkUgpLHy4J1vTNNcZp+ZkfKcNOHYgW3PYLTiU68ExySV6X5am9u3agL/2+6O+9EPCIslY6YGOe65sW5SAmxNvGW+Ok7SEySicg4xGPFsjHiMezG6YmOd3QesTNlAPH45eRqstosNeW//z4uhSxrOcTs6qa8sZdF9nJevtLxLPsoz+aLjH182HL6nzlVuT3ZsjJRlYmqTFTlAalK/UEbWyRb6x1DmejJXuRC0kLhynrFE5t1aJbyuBmRlTJOyxPxfLBUN4XmPMZiL1Xv8BUnmdBzmEzXg2UwVuMW3u8U1E96RVRyb456DEeLcooVL5snTjFeMmPPSEPVE5g/6GTHD4tT3Fq2UT3kFO+IO2IDzs6zbnpBKfrKr3/mtKJNtGIqt0604nHKrfNEKyZaMWU9BmY92g+HfDpRifWhCEV9MELRfTDExQddO6sOle9YXdr4ABs7NrBKEAvYsaBdo806aayES6xEOCuhIpZg2q4lmDZSbXWe6Ei6WwV6+BIN219bTSSfXEfyKezGyZW0EPkk6+Seb2bAbIXfUUQIk/MTjwSSN1veaJe0GV+sk/S+/6nfIIlYY5SHax1aPb9unbDTozfCW97Ij/8/hWX0zw==