All blueprints have constant combinators at the top for the input, and a wooden pole at the bottom for the output. Throughput is one tick per operation, i.e. input signals may change each tick.
Improvements welcome!
- + add
Latency: 0
Combinators: 0
The one thing the circuit network does for free, just connect both inputs to the same combinator or wire - - sub
Latency: 1
Combinators: 2
Negate one side, then add both sides - * mul
- Latency: 2
Combinators: 5
Limitations: All powers must fit into 31 bits
The well known rearrangement of the binomial formula (a + b)^2 = a^2 + 2ab + b^2 => a * b = ((a + b)^2 - a^2 - b^2) / 2 - Latency: 5
Combinators: 39
Splitting each signal into parts with 11 bits each, that can then be multiplied by the simple multiplier. Looks like thedarkbunny (same thread as above) had the same approach, but ended up with a larger and slower solution.
- Latency: 2
- / div
Latency: 13
Combinators: 125
Limitations: Inaccuracies for large numbers
I was originally planning to implement the algorithm described in "Hacker's delight", but didn't like the loop in there. Near the end of the section however another algorithm is referenced that's more suitable for hardwarewhere W is the word width, 32 for factorio circuits.Code: Select all
p = W + ceil(log_2(divisor)) m = ceil(2^p / divisor) dividend / divisor := floor(m * dividend / 2^p)
I haven't figured out how to do division with numbers that don't fit a single combinator, so the version in the blueprint uses 31 for p, rather than at least 33, which is the reason for the inaccuracies. - % mod
Latency: 19
Combinators: 177
Limitations: Inaccuracies for large numbers, inherited from divider
Calculates remainder by dividend - (dividend / divisor) * divisor. Thus also produces the result of the division as an intermediate - ^ pow
No blueprint for this. It's certainly doable, I could chain 31 multipliers with logic to feed them the correct inputs, but that's huge. (around 2100 combinators) - & and
Latency: 3
Combinators: 12
And, or, and xor all use the same concept: Split the inputs into the individual bits, then add them. For and the result must be 2, for xor it must be 1, for or either is fine. So, test for the correct result and set the corresponding bit in the output. Since addition of two bits will at most produce a two bit result, we can split the inputs into even and odd bit positions and handle them in bulk. For and and or we need some special handling for the upper two bits since overflow both from and into the sign bit are awkward to handle. - | or
Latency: 3
Combinators: 15 - ^ xor
Latency: 2
Combinators: 6 - << sll
Shifting left is the same as multiplying by two. Thus, convert the right side into powers of 2, then use a multiplier.
One version for each multiplier above- Latency: 4
Combinators: 13
Limitations: All powers must fit into 31 bits, inherited from the multiplier - Latency: 7
Combinators: 45
- Latency: 4
- >> sar
- Latency: 5
Combinators: 199
Shifting right is not quite the same a dividing by two; also, dividing is complicated…
Sort input into groups for each possible shift amount, then do a hardcoded shift - Latency: 9
Combinators: 69
Shift right by shifting left. a >> b = a * 2 ^ (32 - b) / 2^32.
- Latency: 5
- < less, > greater, != not equal
Latency: 2
Combinators: 3
In e.g. x86 assembly, comparison is the same as subtraction but ignoring the result. We can do the same in circuits: Subtract, then do the comparison against zero. - = equal
Latency: 3
Combinators: 7
All signals that are present on either wire, except for those that don't sum to zero.
The trick for </>/!= doesn't work, since circuits don't distinguish between zero and not present. - >= less or equal, >= greater or equal
Latency: 3
Combinators: 9
Combines the circuits for equal with less resp. greater than
- * mul (long, unsigned)
Latency: 7
Combinators: 66
Based on the second multiplier, expanded to also produce the upper half of the result - * mul (long, signed)
Latency: 7
Combinators: 83
Unsigned long multiplier, expanded to fix up the sign - >> slr
Latency: 7
Combinators: 61
Shift right by shifting left. a >> b = a * 2 ^ (32 - b) / 2^32.
This is a logic right shift, i.e. the sign bit doesn't "stick" - min and max
Latency: 2
Combinators: 5 for one, 6 for both
Calculates the difference and conditionally adds it to one of the inputs - Filter Whitelist (boolean control)
Latency: 2
Combinators: 6
Limitations: Values on right side must be boolean (0 or 1)
Filters left side, only letting through signals present on the right side - Filter Blacklist (boolean control)
Latency: 2
Combinators: 5
Limitations: Values on right side must be boolean (0 or 1)
Filters left side, only letting through signals not present on the right side
0eNrtvQ2SG8exLrqVvhNx7pVkjNj1X8VHMkKW/y1LtmT7nQiSUgxnmiTiYIAJAEOK9zwtwLvwFu4W7lK8ktfADAcNoLszs6sAlFzlOOFjzmCqG/VVZmV++fffZ68mt9XNfDxd/vBqNvuvs8f/vfnJ4uzx88Y/V7+7qhaX8/HNcjybnj0+++piWU0vPzwu+Ivpl7PrV+PpxXI2Xzwu1IvpV+Pr8fJi9cH6319MJsXN7H01XxSfPB8vq+un8+rq/P14Xr38no+Kux+9mVfVdPPD3Q8Wv9j/3Kff80+L69vFsng9Xhb1O84KwYpX4+XixfRvi2pRXBTz6mI+v5i+qa6r6bKYvS6Wb6v6E9PZ9fhiUryeza9vJxfFJxf18q/q5YqnxUX9378o+MWr1Y9WP3lWL/NZ8ar+1Sebz52vP3e++sSnxaOCn43Oxpf1l13v2WL8ZnoxWW3Y8sNNVe/U6sXrT0wvrlf/upiPl2+vq+X48vzyYdvOfqpXmF5VP549Zj+9HJ3Vrztejqu7Bdf/+PDD9Pb6VTWvPwAsNTq7mS3Gdyj991m9ouT2czU6+3D2+FyYsn7SVb19l3cfkKOz+sWX89nkh1fV24t343qB+q82K/9Q//pqvdpi9YtFtfr36oeL5cXqWJSjs9lNNb+4PxWfnf3000+jvXfmD++8rH5c3kzqs3O+uL6YTM7fzCZXba9sHl5Z12+//dJ6dPaufsP7ZzLV8kBBfqDDP1C2PFCSH2jRD+Si5YHq4YEfwQAOQWNH9e7zOo7B6/FkWcst5li/n82uVqf4cna7OhaicZ5H4B9fzupfbv5YPfwxR/zxYjmbVo2/Zg9/LX56uf7xdHr3PdcnmK3+q1YsTdEa1/8y9SfH88vb8XL9z1oMW0+ypm67O+a2K59tFwff9rX23t14i9t4Q1d7jRMv/dTe6/F8sfxhb0fejefL2/onm01Zf+K8urh8u9qaPW3Jt7Xl9/Vfzm6XN7fktX/CH+ymelz92+3v9+iMd8LDShw+lo6PSw+f1i3WaIRa4MXi43zMhpTlZ/9iGKEVWQ9sDAfbCl4PueJx4Ha+A9yjYwC3gwfvBM7sfZAAXPeyLZ9sh9jLoo8F4lMg7EjAlbuf3ta6rAfJEonkxs+5s/2rSf0t5jWaN7NJ1Y+jMmvrEPnN289W/f5rI+1xw3EfnU0uXlX19p89v9/387vtftrY9ZfF88vZZDZ/+qGaTGbvX35WPH+0/sHLvj+q135X26l3Popl0jhuNHPOCbvxZ8vVPmF4BLXDIwj3YvrdzWS8XI6nb4rVA4u7h9/5+jcX8+WieF+f6oLduf3rz4yK92/H9Ucv5tXK258Wby+mV5Pqqnj1ofbkF9W89qpXTMBifH0zqQrKnnzckgLYk5ipACc3VAD7eVABTmx0nTsGFeAU/oFBqIAGKNADg1ABjm+eZ0L4pF0KvWz1D9td0641WOsanLQG7/BTKWuI1jUkaQ3ZuoYiraFa19CkNXTrGoa0hmldw5LWsO3ng3ZAXPsitBPyRfsitCPyy/ZFaGfky/ZFaIfkV+2L0E7Jr9sXoR2T37QvYinUnA7ExTVvkoPqvd8G0Hu/C6D3fh9A7/0hgN77YwC991UAvfenAHrva4Le6+VqZekadG1JeolvQijOP4dQnH8JoTi/DaE4vwuhOP8aQnH+LYTi/HuX4qQscjVbtquRkqJ/dxlkLOVoqPpZncAuLSOxS3kAu1QEsEtlALtUBbBLdQC71JxKPzcNWxvCsHVBDNsyiGUbxrTlQWxbEcS4lUGsW4Uxb9sjB3tUJDXmhlSw+hQGsA5hAZsQJrANYQO7AEYwLwNYwTyEGcx5ADuYi4EEwLZ9cs5C2MNchjCIuQphEXMdwiTmJoRNzG0Io5i7EFaxKEOYxYIN1rgmWJTcsY1OVZGE4nZicc+eHSMY1xbR7onGqYPFv5s0TySI7IRGfnEMPHazSoj4IPPhBgSvm+GHSPBZfYvjS8xeng/sZvcAppGAcTpgKkUV13Fv7GAkidl0yGxHJugomfTUXvseUzFxSEwkHROdoqpr32UOaDtBQ40jSUimvEw6EQlq5crHauL2xde/ii7FimOTGrWX0RAJJryU5iSYtCV/9YAi+wVPYAXJeFniyYNWkkAzAGiANhVY8916WYNJaUfUtcahawtrbDgvAzApaWsHRhCBEYBEQb9HWva89LIiM7C75j0IrAaAk0jg6EyHbahKlm4FzS7Xt5t5zzmF6OASl4zP6USH1RmvdjN+hFWagCwqJHZ0+sOa9LBr32PI0XZ++rMTMzo9Ym2Wtxbqdk8/KpJ+ZMBqBoknnTixLuPZ6nF36k9N1J8cwNYisR1AwJRZv3ZI46iXmKQ6HnuYOiSmxovoTFn/GppUUe3T7dUkkm/j1oskTVn/okv2ufO1X3d8SSS7w50Xl5q2/rWAfWt97dth8ipKn2rcbP/2SBUpc0UANpJEBqkE86LGE8azJaLUoX8FkT8QgP6VyMRpwb3Y9WwrdcsqyVcVyMYaQniR5knfl/va048PEjKQfh2QTuMyph0+JloKUXq4Uw4HJNNkjq89YN95JxLT1wSyzZQgcz6qzPxARzJFF3aWhp1Exh6FoWNXZuyu7k597+1Hav4mBRIvS8eL57sNhxjRXkFj5nz4NuUSacOH4mQAKUJa/dKr9icWRE7S+7IlyIekQPuhEw4w/pFlXdKLXEka2hafeYS36nukEuLNkAVGkvvwoGnrUUHK7JZIy196FROlLWxoPSpoVyBEoiDzt6VXTVLiwqZ9TP9OYVNeRouJs77yyZNjSJsk1UhIZGKa1F4Xkomzbu9IiNAuJEXTanu/t10QGi9z0aTbBUCKg4iUJTY6bwoUpzQ6b3+jcI3OsU294UbnDNvonImdTueM785M+/304vLytj4p1apv+f/9P2xUXFU3VX0op2+K2bQYT+tTs3gx/eLmZj77cXxdf3CxHm52fTtZjm8m48t6pXdV/bnVe1erhud789NGd/3RP/7FeoGL5V1H9Z3xa58X391Ul6uZaetu6quXmFbVVXW1mqFWXI3fjdcvVr8qK+oPFOcs7jbomm+IbW4P2wb9UZg26Fuv3DZIqtmVnAVog655iX6gDtAFXXOOfh6X/l3Qt76fzN0m0+s22d4p0ng0MOP11SCt0FL5NJ5k5cf/PKzi6NPczluWIXZV+6qjNxsf3G3unA/th9ZsN3cuhvZDa/aJO5dD+6E1+8Sdq6H90Jod3s4N1A9tG+v5xfvz1+PFW0qPYGB8X8tpwZy68Xw2PZ/NK+Dk0RoO24PMYty6YbLGzxo/pMbXvhrfR9ezrOTTUPLnnlr+nAVT8BjV7jVQdEP5XNW+51U171fubJMbyHEj8e6XDUP2bPl/9YveXMzXL/r4bHh/rdVCNx9+WO/6D6/ns+sf1n7/2ePl/Lb6yes67ekjyAfOu+SIfpP9TaxRODfdtqhwfnJynIGeQaofd4HFHVk/7Ii4iiy/JJ3ZAyW6/hicianJXXpxYPMsxJ1gA21hNbWv8gj1mHDTaTXbhF5q4yBA6GULr3vClQzPCTqR0gYLm0M18N2yjVIBBL4fOek+5ME69W6ZMHHCcX6a+dwEs5QDVb/hmvhuWSYJw0Ubto1s9ETvzrtlOySszGj9RBmQb4bupqzpeJlsDRywlbLxMc+YTViAaF2U+aEa6jbNgaTxIGUqcXGoPrrN+z40HucP8QIbBpn/OEoxCYl94OpQjXCbV3/0yBwlPZ1BI2SUX6f4UJ1wm0ZA0jqOlHLOkewb5142gE4YD+PXlD9U99otGyBlPEicAHZyBZdeN03CeJB7WUL98ZBWdKP3LDV4hITrSPGEf/3jn+EjCq8vJovKw0oAUZSH6iK7ZQekLFck3xM9ocCPC5AJ48FJeKhDdXBtRmrC4PFznY3JHX1qVQ9i+lB9WTWz0SF2mvm/tC7J2AFVovSypWW6lX9Qn1xO4tuw440E8+LbZNpDMsGxbtR+qe5Q/VC3PCSZ9lBgqMMmJ06sQnecHsAzyPR0IxIzAJODdTXd8olStsG1T7ciFqxj6ZZPxBPGg8SNKiwe2ssn4olPkaU12tPlodqLbrk9PPEZ2bQWetIdqofolueTuqQIUn6UKQ/VJHTLveHJT2/t6XDXbnch/U7pl03Akx9kLYiDrA/X6XPLSckSI4iDrBU7VJ/OLU8lYctYSJIRhsWD7s2zhgYr0+3xvt9FH+5c22MKyEO13tRMZLzaO7KP8JdMn+4zSC9UDmAFZHrYIWdWjIAmnjtlyFRMsfI4gFnQWR5b5RFqRjwCPdoepgjbSHcAKWEynu333QjvXfXalpLcH3QIoZS2fgWkDRrBoKiYIkv1pPPio7I8diMKtEVWpFwXhezhq0qftqlJ4+mw+lURo4wK2VtFMS+2K239yqjSttN/gxMxtUhMvao4yoSragSpyskgKweV8PEnwuDx89SPCvAQFYmPkcB0cIPM7VTSx59IGk80X0P17aGBEAYZZFDKx99IBlskxzYiSbOmYm4DybP28UeyPPcgDnigmuSPSMBf1UhOQRkffyVpvNF8EJk7ALhejeT6lPXxZ9LW35C0SqAOQFMxB/wnjeST1AA+SWV5bte/HfJM9VU1ZGsjc9d06ZP0kTK2AkBAuZC+lQbsb4vMXdBeHUFS5i4kqfLUItMU9YDcHp3vU5yEAdU+hsj5ahtIBoWXfawTvk/R/bKpvq6C+A1kFayWXr5uytgCvq42frG1HTyxk4u82p4mg2e7DELshfKNzwzEVHv5MynLqEHrX6qvimxyr42Xv5Lvzm79CuQ+GBKXqEskntbL/k1bvwKIUTlCzZGYDeCDXJbBdhnqGt1D9E0sMp/aDOB7bMau9e7b0Z9QHyRSQbBF5j4YOp8jyqw/OzhXCFFABrGYcZ96lFJGidmj09Q0cFKF0B5jg6xYMMIr4yvhXiGKxpois0iM9KkKikWCzvkJGpHL/UAvsqQLEDWk8WiUV3JX0spP0ZQfQIFZZPqO0V4pWykLm0ILm6IJGzJyb/wycZIWNk3qumig2BAyfmD88mtSFraW9DRkcAiAFgq9I2ln45dGk/bNR2rcZIHEJ4tMjrGlV7JEwma/JrVNd8hkCcu8yOKklWOJVo4kj80AOcMOO1uee3HKaVsqzodZ7LIdrfBiFlMWNoMWNkPSkxYYreuQQQDr1RCnjKUF204DtidPjoItjdBClnhbr+a3ZcItvgzJTXNASopDumlWe7FYPMrr6kgCRHK+rKT51Z0C5seERAKYO8W4EGP8NF6/77V3hyFDMtaPKIkEULU7v+JIPXcNKRjtkGEZ68dwRNNB9CRSRjPikWrP+TEYCdsVltSV2gGlew7JODk/hiOa5sjSqtU9fwLNZmnME+RRIWNkjns5yzzlAXKWZsEzpObzS9koE9Z8JAO9lnWkiPhVxqQMiKH1FWclknR1ymdGQlnGqbWO48ZaS5MSZG6g0171DQlLiWOHAcQQB1yTL5EjDbh+cvrx1rSbxQEpFaxEuqXOEiHUGUKGDNUCEGLdVOflpqas9Uqa1kPy26z06TnLXSp9IvD2V7/BJgBVxyQWN+ZhZceK2/lxcHMSunBIJZCs5NB6Douqz9TfQKgGiMXf8UL6BBH5VnOvDzoky7Bed7ALFQ0yp6G8HRAqcgqSH07VsyUW1gFkxQbUz9U2rPzfVY0iIuz7oJH6XjGmsTpSDbXysWJ4ICuf7Vj5TyOw8kkhX8aAQkrGFBZEOv2xmlMZt9z94jg3nKTJFdr2IBIgQkQiV+cxCpaDtKOloYj254gciDDpaMfl/LYiSRqpExXjHIuRo2HEGhjpzFNBFvzunUR10jn2EmN07oQ5KpQH9wnEScIqLbZEvwKEYOZY5oQxjzLXaFA750waaYVeNZNuwvfNt8exQhwNPqxDxrgXrxVLn5OP4OyMqP7sOKIFzEvaC6jwcCrRjyaJHL6jTRhv5YH7TA+secikF8EYu/I7HkBlCZkdgmp2YAkQpjxSB+LH8D+PdYPR0p84uiUmAUlNdNZYdgTQvMi+RBLbJO453d1GC73oRIjsCLR72fuWPS0ax6B0Em7Rksw08d32P4Cl3xi9zkXw7JYgoggEWq1bwomUjVBZU3dLPChVZMoG2ZRsLa9UKYvQdmIncSvNoe5PPqC5qc66DxHpIdDV3egMqHkx2bppj/Ps6zpawgqHeFDB8NaNI77b/sOQDX3WK1HPkM16tzOuFOg2lMRAVCN6IWOyap6dPljIaAm6HMp54pCRJLphJWbINMMbJ4V16wY9ZTS4g/OD9CXjtDMgsXJK5ImalHoGFM+ycyifiQzoqJ9E5D0kItp4phYuyazEO5W4CHwgNJEe4nhWuftA2OGJXPlAwC5sH96OaDB3g0glnHhW+SiVb7yiPiCZ3AmoKImA6gwoBlBOtLks0X/uBpQNz7TMatYLRLQWFRvqanF9Manfe1K/znx8eX4zm1T9Hq516zRz9FdoNebr23y8rK7r57+a3FY383ENwOhscvGqqnf57Pn99p7f7erTxua+LJ5fziaz+dMP1WQye//y0fNH63/XP+/5o3rtd9V8cZcUb2u5ddzU38k5scrtHU+vqh/vj/zmddYHbXE5H9/csxpfPpzixeOifDH96mJZTS8/rP/3H24Xy+J+S4rl26p4X5/iRf3Y8eV6g+pN2TtD6w14wKHeu/PVH51tXmhNUa33clwtmhv7gCOVPJKNjiLGs2p4jwUqd7P+W8/e5uQtqx+XN5N6E8/vzuCb2eSq5ZU3R0/ovQqH2vZ7V7/h/TNFy/ME9XmNLYKep1ueJ8nPY17P23AaH5HoPwHN7dS7j+s4A6/Hk2UtPphj/H42u7pTgLdrdrlxmEfgH1/O6l9u/lhtiybwx4vlbFo1/po9/LVYa01sH7quoY/EfW7Cevh9Vj77LGLaZ0O7mbbElVNuJr07LTTsxfSL4uPN5H0xCeBieriI2Ivp1iXFX0y/rt7Uvy2er77U07WluL5lXo5Wt9S0uLi6olxS7dfMYW8sebQb6zzQjdXoEQVpdM6CXFkS/0AR5M5S6AfKAHdWc0PzndWiS5Fz36nbrvIV1u9lYycf0bVe48RHMkmiPMX0zP7uSl1tmOnbrQJv98+1BYwetOGOarNt7itFYhMAksoclGo4D2fRSbRF53ZMOmbMi+lX4+vxcn0y6p/8fnpxeXk7X1l5rz4U//f/sOKquqnqIzl9U8ymxZp5Wozq//+2qs9sdVWsCKkiOMVSv+fF5PJ2ZTssinl1fbH6qvPVK93Znh/5jZfFefHJ7o8e7Ruonxaf7f/w8+Kvb28XxcVkMStu5rOr28v6YcG/SnFRP2K1c/VNdl1d1ZZMFbeRrOxGf3F7WCP5P8IYyVuv3GZcNExIZgIYycpK/ANVACNZWY1+YABiZ+v7yRDWWte1UjYspxIw2rrWYK3WFyetwRtr8G1nGb2GaLUhJWkN2VhDPqyhSGuoVkNYk9YwjTXMwxqGtMbVbNnc1Y8Rrs0rWYR5vWPYs/Ljfx5WcXQL/7xlGVaSvtxXW8ttVqEduz81V9mcO0Y7eF83V2l4nLSj901zlc3ZY7TD9+fmKg03jHb8vm2usjl/zCCwnl+8P389Xrxt1QrMDnHpWk4L5tSN57Pp+WxeASePlxT/3B7EP9+6YLLGzxo/pMbXvhrfR9ezrOTTUPLnnlr+nAVT8BjV3pH+TCUBMWkxym4YQM5zWgxwnfZlNmHrfqAMKOwkZyLOMlKcn5wcZ9VP7wG4Cyzu2B79RFxNll+SzuyBUqJL96C2A+hmukSwdRbinpjCTltrEvYKi73Dtiwgs6tmkzLFy5QHO9ByxLG9tzid7hbpAQKH/TnpPuzODabDIWOH4yid32kD0aDZGEjOiN64bssySRgu0rzhtvq2VjgUHQ6dlVmr6UYxCXfFh2MbMJD77SvHsjVAFyCO9J7pLeOa5hmzCQsQaf4juim79TEHksaDNNaZI8dxMudz34fGY6sGMgQy/3EMZGiNE7E9nukt1JpXf/TIHGdMGdT9hcQdYFvf09usNY2ApHWcJuk4JPtGb6y2ZQPohPEgUQLY7ujcixJIGg8SJ4DtGsel102TMB68pA14gLqRCaQVTew8tmWyRdUm91//+GcEjXIdEUVkPzHuRQYkLVck31Ng7TI/LkAmjAepb4jAejjWJ1LDIqljY+wUs373+92PwLu/BzGsJT2ALeDRIbY6zSdAjJRmJJC2tCi9bOmEa0H38Rj1MmiAzkPG1wTz4tvS0XmtlpcABiML4jAogZwaIriXh5SO3mvfZQZImqTZ3xLp14oBPINNTzciMQMwQcbjhPTyiVK2wUncqEQyCUJ5+UQ8YTxI3KjC4qG9fCIeyU1THmOkJ8Ko6wdFYy8S4+X2RAIKK1cm7SlAIWV2KCwofpkEqUuKIOVHGSwofukESYGCsrtAWxjpd0q/bIKkVBjK9QSBQZKgknk5KVlihKABo5CeiuRenkrClrGQJCMMiwfdmzcNDVZGIijbeHx/DDyk7OdfJKkQ0iCjbZLu6RuT8bq6O+m4GrW2S6ZP9xmkFyoHsAI2PezaMYGkDagpVVRMsfI4gFlgWR7b9eMIb4332iLIIjo5gIAoM3atunRHGnX/7xUpjq6QmUHSehFKaetXADEBzAZTVBlFlupJ59NmM2UZbZGxEd5368UOOctP+WVR5LuxWxqBwW6SVIGhkL1VFPNiu9LWr0BmmQQmo2viGG2FnOynvKo4yoSragRpmKpBVg4q4eNPhMHjZ3rfofsPUX1BCczBNUhSWkkffyNpbAF/Q5G4NgncngaZt6uUj7+RDJ5Ijm1EQlxTZdgGwlz7+CNJyzCa76H6khLwTTWSD1LGx1/Jd2+PNAPsgqbxQQDXq5F8kbI+/kzi+tt6Ik7liyD/CMknqQF8kssy3i6jHfqb6qtqyL5G1hPo0ifpI2VsBYCAAvgoReKbNGB/W2TugvbqCJIydyFJlacWmaaoB+T2lPk+7eDgIQnb0ZFEDl/bQDIovPwhnfB9iuarqL6ugu5T7CRa6eUPpYwtxF4Yv/jMDp7YyUVebU+TwRPJGY8AxKnxmYGYai9/JmUZRfNRZF8V2eReGy9/Jd+d3dIIsA+GxDfpEomn9bJ/09avloooYN9yJGZ0PsiJLIPtMtQ1uofom1hkPrWh8z2OZ+xa+qpw0D7d+T2J77HI3AczgM+RWX92cK5oxNplEIsZ96lHKWWUmD06TU0DJ1UI7TE2yIoFI7wyvhLuFaJorCkyK8hIn6qgWCTonJ+gEbncD+wjS7oAUUMaj0Z5JeslrfwUqRGcAShNi0zfMdorZStlYWupwhnhazt6oEVG7o3xijQkLWyaJmxQbAgZPzB++TUpC5tGC5umCRsUekfSzsYvjSbtm4/UuMkCiU8WmRxjS69kiYTNfk1qm+6QyRKWeZHFSSvHEq0cSR6bAfKIHXa2PPfilNO2VGjKEZnZbYUXs5iysBm0sBmSnrTAaF2HDAJYr4Y4ZSwt2HYasD15chRsaYQWsuzbejW/LRNu8WVIbpoDkowc0k2zXi1sYpEgfhIBIjlfVtL86k4B82NCIgHMnWJciDF+Gq/f99q7w5AhGetHlEQCqNqdX3GknruG1J3aIcMy1o/hiKaD6EmkjGbEI9We82MwErYrLKkrtQNSsRyScXJ+DEc0zZGlVat7/gSazdKYJ8ijQsbIHPdylnnKA+QszYJnSM3nl7JRJqz5SAY6K8t+1cdKpPXg/EpnUkbM0BqPsxLJyjrlM0ShLONUa8fxc62liRHS73HaqwAiYSlx7DCAGOIEbPItc6QJ2E9OP/+advU4IOeClVjrzdIgbJrcGcL+WC4AIdaPdV5+bMpar6RpPQNZc0hPdm0XDjbAuUu404QjOUSMMSwizMPAjhWR8+PE2J2E7hpOKe9hpQDWYxyLKveIbKQjZ3hHqN9zgs4B01jchEcAIxBuAfIr7rg+fYIsi1YLvU/kkMzRet3BXm80yJwmjOGA8J9TkB4VVInkWFgHkBnuAdTP1Tas/N/1+kMZJLugWZIk8hKrI/VQxwwrhgdyzNiOY/Y0AsfM0KxKoHkLYxYLovHw3dJ2BBwNMrRrNqDphopdE/7iODaHomk6gYXEETWdiUTTnceo6hxkpJc0FLG+GCtJKOqSpXNfLee3FUnSHA0jrN/FmBcvpdO9jvZCvcB9xLEWAuPEEAqj4pEO/97i5u4qP6qHJbDmOhMeleKBRCtEyQiTRlqhV/3am0L2zbdHkTJGYxIZsnP/+oNUdER06IiTBPNb3KF+UCCPmWNtdaa8SPtYGjx9FCmzjd5nx7m3NKQS5cFUovZieWNXiYdI6sTSfLsYGiqG2LgZM158cOQieDwImSbpUIH2uqxHSlT8MvafR7I7Sk2y7lvgGXlLmvOiCpP2zWj0rsASU7wkElMq+2Zo9nDfLKTGozk2+sUHVJbo7JshIlcE4rAbnQH1Iyb7Zu1M4b5U0RIFOMSgCIW++nhJfLf9h0msphZETe2ypu4+U1BuMVdUTa2xuoDO07gIzVl2Ck+f84Pdn2QeRpdlvj8R8VBCUKcbHU1Hh+X7sz0auq/rDA01yMoVBn9/CuK77T8MGxjkhn6GeNa7ndHXQLeh9QrXJtyDca8wAKIEsOFaTsxVaUaRZEyG5rPTZzkwScMIUtUC8l2U6oJVEJmeZuj2pLBuGTWnTGPpoL0VsdQDSqtAjkpbnwUSoCYDigLUEmtAyICO+ql23kO1Y/0ZQc25sVmJdypxS4xNQlqeETmhvQ9INjg4031ihFdwJmlLzBEbdEhseEZIIumns47H6HjOvYKhIGXcLWVqeCJ41st+IEoildANoibmgZdZKlFSSUxRoBJR3YCa4Yn9WSr9QEQLnR9TlHCvy71MfQASqbDWifPKfoylISw/RSU1k7RcA4lsXb5e1yOdMelelesT3VsWKxkNNWx0QjKvJMdIUCtPod0k1KFS0OxEiSXKJffymNORNKwTvCtr1LR9ia26kMKjD3NKF1fHPnNI4gSREFHYggspPQbcp6MnsbhBsGAzu6XyMs4TbuC3F5cFbieFLZuQ2ssOLGNpc3SMghaMWQHhAnVW1GjgjJdXFUtX5pKL0wAnaG1VFJaLl351SFmgaPkqGjLrNShxaEPery4pKWRxlgVs8EGOtsba8qr0suWTUpc4RwwET2NVpmJe1noWrD0fGBYsDQmWBD5gsL6Y4j5Gv02489sexQ7chQZrO6oBLVrKwJAEH1z5/XEggTLNFa3MTGGDj0p6DBtNG7MW232E1ouQIrVY/Dbcx+L6YlJ/j0n97vMaw5vZpOpPmF5NC6EE8rC5oUr7tGpK5kzhWC+KJsBZu924GZ8mTmnrb6gLkKJ1MVZQaZIusaBanx5PaSt4fCmZclShhPLBNDZ1VjmfGQ2pa1sLhQGdpwu0D6xAAqtLHyo2bXVsidJFNqd33VZs1pJmPoGRpEHd52Q71bEW3vb2LsBY1klzjznl2Yjql1pao0wNSi02rU0Ln+hL4nfsvq4d9edfcLpHM1gdS5/gS3ZVB8trx1FxwSRW+QRm0r5n8c0XNZWL0JCKN9iOVJpOMrlMVnTErrsBpvq1GluLpo1PdC5t/KAom6RldWlsXbceMtsnY4bySA3NIzXY9BI9IL1EZguni/0ZQaII6UfsRAVT+nTtzJbpYGlrXxEtb8arF27a95pF2yWmpOKHrYUyfnklKbcJV7RSJ4NNsjPCizPVUYrUoxOxLxAoWPvdSC+eM3FQiBlY2Gweo7x4ymgayZ5i4ndLRB0bXoDgg4L5Fpv0aLQXXZm20BmiJsSmYBnjRTWmLXT47nOa1s3SQAkWFlteaKwXU5U2vhaNr6GVvBmISbbYtGXjvCz+lHvPGZrFb7FBdFt62TEyzhL5I7VcNzTj0mITzSzzsvhlnB0njgUKrUunLYnabf8D2ECa5V7mi0y4+YuxB5I04XUjpdxtzNDqry2Wjrd+dEeckJwfBRLLvIyEfc3W2WXekothNpEuY0jFMO0HpzZux8vqun7+q8ltdTMf12CNziYXr6p6a8+e3+/p+d1WPm3s6Mvi+eVsMps//VBNJrP3L//j+aP1v+uf9/xRvfa7ar5YfyFumTSOG82cc2IVRhhPr6rVl1zt1OZ11u0gF5fz8c39IfjqYllNLz88LuSL6ZcP53nxuGDixfSr8fV4uT4u9Q++mEyKm9n7+onFJ89X3/NpvTPn7+tj/fJ7PirufrQ27jc/3P1g8Yv9z336Pf+0uL5dLIvX42VRv+SsEKx4NV4uRvW/3la1VFRXxaotZEHYws9QW7j6ztN6E5f7r3X3JusvXMxeF/WXWb6tpsXtogr/GjWS48v1mavP2Z4srs8UoH82gK/DJuuzOq4WzYP7ICdUVSbNgz8rjGddNHRz1/ZYq3BvrJRl9ePyZlKf2vM7IX8zm1y1vfMD8SW0Xcv2u/ql7h/DWcsjBPkRvOcRTLY8QpIfIaiP2OjAj3sMYFtunqDXT4DRfT2eLGs10H5au26O8q7P6+3aCm+c1hFhDda6BietwVvXEKQ1ROsakrSGbF1DkdZQrWto0hq6dQ1DWsO0rmFJa9j280E7IK59EdoJ+aJ9EdoR+WX7IrQz8mX7IrRD8qv2RWin5Nfti9COyW/aF7FrixBpeukO609T9R47kt77bQC997sAeu/3AfTeHwLovT8G0HtfBdB7fwqg974OoPe+CaH3/hxC7/0lhN77NoTe+y6E3vtrCL33txB67+8B9J7a8YOR2TOGqhbFCczBMhJzkAcwB0UAc1AGMAdVAHNQBzAHTQBz0IYwB10Qc7AMYg+GMQh5EItQBDEJZRCbUGGUY2v82O7NRcPpR0vVj/IUZqMOYTeaEIajDWE5ugCmIy8D2I48hPHIeQDrkYsA5iOXIexHrkIYkFyHsCC5CWFCchvChuQuhBEpyhBWpGCDNaXp0ISOTgs3XOiE48B69+qhDdfBJsXQRihvkdNRjQn71z/+GX5Q2OuLyYIyKczR+r8gIRoQWRGBRaiR6RImSHyABJkOtbQjRdR5EdiEF06UI5nlqH9kNa0pC3a8m9dtlPBIKloCDHqwm0/MWKc9+YZR29tgO/953TYpT22jNhwCmzUCv8dWOmo6ojIwoj/TJDN+IBkzXtdQmXA1N5jGRzPvOLZcx3rdVCkjhm8LRPKeOLa60XndZ2XaHS8GS1sbYkhZ46WPrCmbSDlqa/4wxUrnQDsT3l1Wx5E1B9yLuogFytMUOTp8jSMJdXRBOkc2g+eclh+/Ja2Ckh/f/kb+6fGrv3v55EnxManaOzteY7PjzU52vFQ5dRxTBVPan13quCrNoVPHm9tyoNRxVboDp46rUufU8Zw6nlPHc+p4UqnjW/dDTh3PqeM5dTynjufU8S2DM6eO59TxnDqeU8dz6vhGP7Iyp47n1PGcOp5Tx5NPHd9yoXPqeFyp41vkdE4d90sdl4dKHd9yt3LquFfquDpI6viWwZdTx+NNHd+6jXLqODJ13B0qdXxLs+U0ZY+kVlqaMjpRT/lkAeRiAL/U81Cp41u3U04dD48IfSxEqeJLZ93JqHv27BTpkUC6qjhUavhWhksZZwPzIyFigJmjtJRweaiU8C1TrkzYdrAAXqQRRlwdKiF8y9ZLR+cNKjPjxKGVHOkw0XO/t2yHdPQiKvma7SXnE1FDThrl9LkNjKWnG9HFZL2YIMukufCx+WKpomDl6ns0Yfni61+dwsgALiUkAcGlj9kXTZVSKc1pQCGVKgnerw0FFjTlY/ll0EhUnlD9oEngipNY81D7mIdpqUd0oVffvSWw95bxsSXSkrZ2YIgkkmCAREG/x5r21se0z8C21s/2AisB4JBTKTm9GN41VKVOt40BBxpPCFKKheA4tlcMYD7KjFe7GT/CKk1AFgUSuwG5Fyw97FCeMUHaUPqzEzM6+1HyLG8t3PseYoLE5DtgNWSjJTGAOREZz1aPu1N/SqIsAkNohUZiO4CAkVm/trLBBGlF3aF76xkkpsqL6UxZ/yqaVFHt0x1/AxlNENqLJE1Z/yq0/jW+9usOtkh2RxgvLjVp/bsvjaPeGCsn27cD5dV6Uakpyyva35REf1MC8qqQ+ZXC+eRXJo0tkPXCJSUsIgH7VyJjWbL0YtezrdSNAMlXFQ5n20qvfJjE70tIAg3tvpQ8kAwOyJYRGVOUDyqJPqhE9iSVdE6IZY6vPWDfaeMQs9OERWJH53xY5gc6kim6sNM07BQy9ijp3A6TGTuMvSIp9opC9iGRA2p/dL7bUPErSeTM0ZgZL75NJtI6HcXJAF4c9sayXiyZTLgDekuQD0mBAtABwqmQhV/SeZFlSUOLbm4vGQVaBXArCplSqkovrixtPUrK7JZI9kQxL7YrZWGTaD0qSVegAkgUhSzHVNyLGEta2CSJelZIikR59TpRPM6CywP0DUIahj2IIBOZlFe7E5VwuxPFDoKHV7OSWPDYLW49koSQqoiUpFnre7/vas+vNG1sURNAaShji9oPVYRjiwx2bJHaGVtUL/Ri+t1svizWXbvuBhW9mc9ubxbF69m8WL1CUe/nYvxqUhWLt+PXy+LietXr636G0dWsuCjeXsyvLmdX1dXdJ+IeQSRNuBsPUpTPnoUZQbT1zuXu8B4RYAKRNLrnCa1DjiT5EbbvEaX/BCJpNjEDafMEojyBKE8gyhOIjj6BqP7H4oeVxrlrgXnseURNVX5YLZjnEeV5RHkeUZ5HFFQLHmc6UdMYPZ6pmKcT5elEeTpRnk4UcjpReZDpRNK4UxiReTpRnk6UpxPl6URRTSfacqh1ytOJegdAAK3+0PM6Sjo+Njp8BDtRhyoD9asXAEzqUBOKpNlUY8ho8nqYNNIKvYr+n6IxI6dkgGMrvBmnYyOiw+YBmhP1zAR67jli5Zo71Liiepd+PnJ1rLkqQD4pk55yN/JEWdJRVvGhvHPJfXYkcKkFho48yAgzz60ZlJcnnefGdua5PY1imhskgsT2J9h2CfTRR1v2vczz3gbV0TB47hFOqFwkQsWjFCqgNXfPpCSvGtDGrCQUipZFgqKIEsXh05PaUaTPT8KhKCJBUUaJItTbgtjrVGnyVCUciioSFFWUKDoARWLXJ2XJU5ZwKMZibOoYUQw9dUmX5KlLOBRjsW5MlCgClAsnOn5akOc0oVB0sVg3NkoUOa3rGoiiJA92wqEYi3XjokQRiBO0zYDsRVGTJz3hUIzFulnzHfHBKGkNS0EYLXm2Ew7GaLi0KMk0rmh99CAYTUmeBIWDMRb7hkVJ33CofTCRvjGcPPcJA2NznsmJYYySv+EAf8OJ/I2R5ClQOBhjsXBYlAQOBwgc6rAag23AXhJhjMbEiZLB4QCDQ50TZZDhQsGIMEZj4kRJ4QiAwhFECsdi26tzIozRmDhRcjjQKEvqhBqLNHEEjcNpNpk6MYxRkjjg4GYiiWORaYVCEmGMxsSJksURAIsjiCyOxZo4ighjLCYOj5LFgcbICiKLY+ljoHAwxmLi8ChZHGiwOnUilCvJE59wMEaTgxMliwMNgRJEFsdx8pAnFIw8FhOHR8niCIDFEUQWxynyPCccjLGYODxKFgcaMSOJLI4z5DFOOBijMXGiZHEEwOJQp6857CQgIovDozFxomRxJMDiUAfMsJKRJzrhcIzGxomSxpEAjUMd8sRKbHN+Io8jojFyouRxJMDjUAeasBIZq5JEIkdEY+VESeRIgMiRioqjIU9/wuEYi5kjomRyJMDkUId4sdKRp0LhcIzFzhFRUjlkecP26ZHUeqmG3uSnxGmr5PfQgC3ntxWllhvoNc7YIUaf0EdIbRX58shLub/59ihl+BpoE88oldyMSfKMKJwYykjEcPfWe3Zc4WtXfsAoAFA8ecgxYYyJQw2T2ioJ53F2ojnArAhUqSpmWlv/DYodS0SsrGpWf0cluk+ObOggq7z7QdKHmh21VRmeumwZ+ri8ftiw8/WEV3MuHllnIX2S5jSqpJksWJGi95RplumnLlLAVHtlqCKFJFjoE6mkLbNIwX0s+kQKmf+i6L1krMgi1VFavydSjipSSK5LGTpsPIsU3FSkr/snkt9SdFLEqixSHX0OdkVKE6PkjCNzjxS9a66VWaTgDi99IoUMfWs6T2EzT9HVdGJPpKgZCxxJL2l6B12rs0jB7Xb6RArJIWk6PWGzn4tootOHDZKD0HQOwmbqqKs7y566o1JHHElPaDo94TI90dWOZQ82Kj3BkfSEptMTLtMTiEZUfZoQSU9oOj3hMj3R1RpnT6So9ARH0hOaTk+4TE8guoL1iJRA0hOaTk+4TE90tSnaFSlDpScE1gWm0xMu0xOIFm19IoWkjgydnnCZnuhqGbUnUtQ0CoGkJwydnnCZnkC0y+sTKSQ9Yej0hMsucFf7rj2RorrAAslcGDpz4TKrhGhd2CdSSHrCkOmJrS55qYsUkD1hqGUNAukCG0WHLdMTiDaSfSKFpI6MpmOT/VxEb8gebCTSzzWGjk2mjrpaDu6pO2rarEBSR8bSYct+LqJPZ59IITkI4+jYZOqoq/3jrkhZKnUkkfSELemwZXqiq93jHmxUekIi6QnL6LBlegLR6rZPEyLpCcvp2GR6oqv15p5IUVs2SKQLbAUdtkxPINoO94kUkjqydHqCZT8X0Uu4Dxukn2vpHATL1FFXi9o9dUeljrCTaS2dnmCZnkD0de4TKaSfa+n0BMv0RFe74D2Roma2YGdvWzo9wbIL3NUeeBc2R3WBFZK5sHTmgmVWCdEavUcTYidvOzo9wTI90dWqeU+kqPQEdtS2o9MTLNMTiDb1fSKFpI4cnZ5gmZ7oapu9J1JUekIhXWBHpydYpicQIwP6RApJHTk6PcEzPYGYA9CHDZKecHR6gmd6oqu9/J66o9ITCklPODo9wTM9gZjJ0CdSSHrC0ekJnumJrlb/eyJFzZ7QSHrC0ekJnv1cxHyMHpHSSA7C0TkInqmjrrELez0vy5IqU0h+Yr0yFbjs6SKmlfQJlcSCQ6cheGaPuoZg7EsVtTeIFljg6BwFz84uZnhMn1gpLDp0KoJnBqlrJsm+WFELcLTGAkfnKUT2hbuGkOwDR3WGtcECRycxRCaYMEOY+vShxaJD5ypE5iowo5X60HFYdOhshchsRdfEnn2lR6UrTIkFjs5XiMxXYCZd9YiVYVh06IyFyIxF1wCl/Skd1GwXg2UsGJ2xENkp7ppQtg8c1Sk2WKeY0dkMkakmzMS4Pn2I5ZoYnbIQmbLAzInrQwdLWbABkzsatkQZBzrloUFBjnvrQwTLRTBJnFNkqHD8e44YQ4wp2r+T9sVkhBvOwqkTj/aebbAcB1PEA+HygcDP+RuB41lGuNki8ImATqPB8ipME0+EjeRExDwMVO2xmJ3IQ/EfZj1n2PFO5IljYJuTnLIugJT/CJwrM8INRQF1ATSwgxksi8cs8USUWRfAukBhdUHLGLYRPAGHNHSvWxkQh9E2Z1BlZQDd+yNwIs4IN84FVgbQfWKxzDAviSeCZ2UAKwODVwYWOkXMc1xgpzLgxPG2VmboYegdGvp9NT+CZ8yQxtp1Q8+J0Kt8D3TeAw6CUaDvAUu9B6CQosXGoLggnojMIXWeiP2LfwROuhnhJh/BJwKKhllscIsTWcXmSLF8PXScDc3w1wODTpHyHNHYfT0Q+UOb2SIE9BwPPcQ5cus5SrAbeiJRaDN13H0PCAhGNHWsBfUegKhji42VcyKB6DKB2H0iQOoHTSBqKoEI9UVlFhuf50QC0WUCEXE94AlEDtHQovQcvdh9PRAJRJcJxG5lABGILTOrRriBS7AygConLDYdRBAJRJcJRIQywBOIHCIQBfcc6NmpDASRQHSZRepWBhCLJNAskqaySAJkkbCZSILIK7pMKSOUAZ5SFhClLKTnKNJuZUAkEF0mEDuVgYCoH4HOQjNUAhFqdMcsNgtNEAlElwlE+GwYPIEoIBpaaM8hqt3KgEgguswidSsDiEVqmXA2wo3ngpWBgZQBNgFREHlFlyllhDIQeGUAUcrCeI5/7VYGNAJxa6xehr4LejxdJCDSUZaeY0q7obdE6DN33H0PgKwfmjs2VO4Y7AplscmnwhFPRCYQu08ERP1IdAaiMdQTAWUgOmwGoiyJJyITiIjrQeOvB4iGlsxz5G7n9SAZEfpMFyGgt2joJUQXSek5frQbek6EPnPH3fcAxB1LNHdsHPUegLhjh81AlIJ4IjKB2HkiJET9SHQGoqUSiGA/DofNQJSSeCIygQifDYsnECVEQ0vlOUq3+3pQROgzXYSAHk8XSYguksZzHG839JoIfeaOu+8BiDuWaO7YUrljCXHHDpuBKIkEIssEIkIZSLwygJgn6TwHCXcrAyKByDKB2K0MIB64ZTjjCDesE1YGDlIG2ORTSSQQWaaLEMoATxdJiC5S3HPMbqcyUESmkGXuuFsZQNyxQiefWip3rKDkU4dNPlVEApFlFqnzRCiIDGyZWDnCjVuETwTUD9xhMxAVkVdkmVJGXA/4DEQJcZFKeI6M7r4eiAQiy3QRDL3D00UKIh2V9hw73Q09kSlkmTvuvgcg1k+hk08dlTtWUPKpwyafKiKByDKL1H0iIDJQoVkkR2WRFMgiYTMQFZFXZJlSRlwPeEpZQVykMp4j1LuvByKByDOBiIAeTyAqkHlynqO+u6EnEog8E4jd9wDEA2s0geioBKICCURsBqIiEog8E4gIZYAnEBVEIGrmOQi7UxloIoHIM4HYrQwgAlGjk08dlUDUQPIpL7HJp5pIIPJMFyGUAT4DUUF0kZaeI7y7lQGRKeSZO+5UBhrijjU6A9FRMxC1hJQBNgNREwlEnlmk7hMBkYEanYG4N3wXPhIKOhLYFERNJBZ55pQRh6Ms0ReEhthIrTzn0XdfEEQKkWfCCIM9vg2ihnhHbT2npndjTyQLeaaPu68CiPjTBn8VUPsgagtdBdgsRE0kEUVmkrqPBEQImhJ/JKjFrNpBRwKbi6aJ5KLIvDLmhsCXtmuQkaQSyxqbmaqJNKLINCIGezyPqCECylB5RI1tfGeIPKLIPGL3VQDRwYbjrwIqkWhAIhGbiWiIRKLIRCJGHeCZRA0xiYbKJBosk2iITKLITGIn4gZiEo3AqwMqlWhAKhGbhmqIVKLIVGL3kcBfAIyacGZAphCbcGaITKHITCFmuBI+/dRATKGhMoUGyxQaIlMoMlOIwR7PFNLvdiwRaLTPtHth0512z5igjbs3kCq2nSAZOkgmOpDYNkjPngVHCT9Kug8nTRxK3i1blg6biw42firYVFDxYgbbusk4MmyNoeKxwCZOBZuhwWaJk347YbMlHTYRHWzyVLA5GmyOOJizGzZGh01FB5s6EWyck2CzJXF6ZjdsnA5bfCaJPhVsNNPRMuKwu27YBB22+EwScyrYNA02TpxI1w2bJMPm4jNJ7Klgo5kkVhBnh3XDpuiwxWeSuFPBRjNJLHXKUzdsdE7ExWeSsPJEuAlGw00RB/J040anSVyENMmpeBJBNEo0cXZKN250nsTFZ5SwUxElgkaUWEOcddCNG5koaQ7AiAa3UzElwtJws8SJBJ24uZKOW3xmCTsVVSKIdokjdhDvxo3RcYvQLjkVVyJpXIkriX2+u3HjdNwitEtORZZIml3iGLEvbzdugo5bhHbJqdgSSWNLHCe2UO3GjcyWNPvqRoPbqegSSbNLnCB2u+zGTdFxi9AuORVfokoabpLYk7IbN03HLT67hJ+KL1E0vsQpYg+5btwMHbf47BJ+Kr5E0fJKnCZ2euvGzdJxizCv5FR8iaLxJc4QOzN140bnS3h8dgk/FV+iiHaJJTbR6cJt/UEqbvHZJfxUfIkm2iWO2O+kGzc6X8IjtEtOxZdoEl/SIk5AU5Ju3Oh8CY/QLjkVX6IFDTdG7CDQjRudL+ER2iWn4ku0puHGiWX+3bjR+RIRoV1yKr5EGxpugliT240bnS8REdolp+JLTEnDjVo82Y0bnS8R8dkl4lR8iSHaJdQSyG7c6HyJiM8uEafiSwzRLkGL04YOWVxfTOqXm9QvNK+huZlNKqA2qtaHlFLd1nd6OTobL6vr+vmvJrfVzXxcb/PobHLxqqq38uz5/R6e323d08YOviyeX84ms/nT1d+9fPbs+aP1P+sf9/xNvfS7ar5Yfx9umTSOG117TW59wMbTq6r+jna1UZu3WVdYLi7n45t70L+6WFbTyw+PC/di+uXDAV48LnT9g+/ejl8vi/n4zdtl8epDsVj9czx9U0yq18vPi+er7/q03p3z9/Vhflk8e3b/ozXq9z98uvexzwpefF98Inhxvv/5T4tHBf9e8M/rLze+XKNQ7/zeaVzvMiCDmz1Y11Gv0RtXiyaUD4QMWZw36WJScD9xhmoYa7FsP+4PL72sflzeTGogz++O/ZvZ5KrtnfXmncv1aX9Xv9T9YzhreYQgP8L0PEK0PEGSn2D7vkTZ8oiNbfRxiwFoH6pa5arRIQrc1+PJshbF9sPapTrLuxLi2/uSyIfDOiKsMZ6+njWWOV/F5u8XkmutilRoECWNbDNNt2dWZHjHXutB9+JWmem9bJHvyqb8PXlynGvR9N6CqmPHDfV02xOc7nLg6WatEsJJa/DGGvxhDUFaQzTWEA0Bo6whG2vIhzUUaQ3VWEM9rKFJa+jGGhtlYUhrmMYaZtvUQK9hG2vYzfmgHRDXWMRtFqGdkC+ap6xxVGln5JfNVRrqnHZKvmyusjmujHZOftVcZXNgGe2k/Lq5yubIMtpZ+U1zlc2hZbbzemrVjkAfTbt7YSFboVuq+nRHUp+/bW6bHqg/f9dcxAxUoL9vLmIHatA/NBdxA1XoH5uqvByoQ79qLsIGKtE/NRfhA7Xo181FxEA1+k1zETlUj/65uYoaqkj/0lxFD1Wk3zZXMUMV6XfNVexQRfrX5ipuqCL9W9N8KIcq0r83V2GDFanp0ISOpgn1poDjwJpwx8URDTX2ktKkB9nerBzgwmx2QqfbBkn1R/OxgygGcDEu8P43KFIexoc8PwYArrNtWL9rybCN4bmXaMiEO4TREl/QQ2YZtn+78BIqGVao4uVlEPcGPL8RaM6Ind4ovYSNJyJsHQ0DaJhxrAIkdr9ssOFIQI7U6/Zf//hn+K6Xry8mi4pYQEmKA6KHVVAlR5dldJJzhKTo1rhmZ3vRNkQAXcfRTaTpiLHoEDtCu4bWsQLAfWNJiGKbQFs6Yjy92wklYSPs3dWGl0Xi5eh4yRR1IvKe2k0cojVl5kgbkJd01FSKerEdNWBOBidOzRHIGDhndNSy5T5MkgTQCl8gWSc+gNpoSFoZB2ZbTe6b6H3x9a+OhJ+g4Sex+Agvb7iMpUD1Hh5zIngYlLnMKcaiRLrNXPqk10UvXP/5zbdHMRxJxaoSPTwILYJU8sNRITwS+fHkyNQHwmmDCCqFdKS5H/VRxtKvcrey+BAKkgZLy6cF1or3YzdiubvKY9xaCIe5HxSFNdL9CIzkQSFV4GssKH4sRVLqC+XyQveKQA79FH5ERFLSgvJrQWCQvJ7w4xoyMJwY3pXINCLB6cCE9nm2TOA4s1iomLTd+MiwoBhAIWwuFxbnDK7vj3HZCwmQbJrCGmjsnSN9KLmk8UL7/oI4KFRjZU350HXJYIcKDu1ydJA0Sk3EFCuPA2r7bJbHVnncQRQICbcRDT3MH7LZizA+OYFJ46nR+tUSwyHIhi/C+vB8aetXAXQng6RROiKmyO4VwvkwUlke8Wlou4jLkqRfkU1i5ADORGQ82++7Ed4b75VFZGNdyXyIyLT16740jXpTNnalUXEipsimu5IT45cNZ1KfMn65FXjeimQ+DR/JXM5vaTncnJhSQAtb766mkSkHUhDB1pGAvRusfnZciBFp93sAk5L4JbL1q5Re3qZO9/aUQFK+JKX4C8B20sgguFRe3mbKeEq0NURkfgTQz14jg1DSK+skGWxRHv+etQT8XhG9UWEDybPx8lazPHfrZwsgTvJWBcAmK6w3a7282ZTxNmj9TWWWACZLYb1dr7SbxPU3IK0C+L2meruQ94z0hlXpkziS5bmHbQSsKsVI0XJAxg3SIVbMJx8lZbxb7tsO/U1lrjQgywaZma8G5BrZrL87pHHkxTBrHkhexeBWE0zmagswQ6wXQ2S1hfLjqGTkdU3HKWtSglbBCWSaI/sXKD86SsY5wOFYnaoVLeEPi4kfjSTjrvH87EjQQC1ZFC3fGa0L/fggmbB9CXmIntkJO/YHMn9d+fE9KeOJ5nuo3K0EuFuDLLNSfnyPTNpfsGGzb6ULI6/aj8/J8tp9Y0IRExKfo5CjhrUfX5MwnhrN11C5V4UcN6z9+Jik9atmYbNvFTLfRPtVhyXc0E6SHHSD9Ce0X/UXj1KGHh0pw12SKBNgKqZB1nxpv5ovHgsbdmjIEAVCHF2wB0CLLAXSejjZzHNqLJYm24sECh9qsxNMQwTTRgJmfKmvClCNiqZogeOAvhqtF3ed9NUoafoTcs6RpbPaeTHbKV+NLdWsI3ydXQ+0yNwo41fFlbSwKVKTKANlQyDDSMavditlYWtJBkVS1wC0SNLLeDXNSVzYSE1zDFBnZZCp/0Z4UV1JC1uJFjYaw4JkvIwfwxJLsz1+iqFQmmT4G2RXB+OXlBILIicBhGZqSJon1gmY9unsGgtgpyCNtaHV+VIFrN903Pu96wLYeFn/0TQkPcVgIlP6xAUgg6RTJK2XCRnNoICTIEazM5B8pNmQH4vri0n9XpP6XeY1KjezSdWvIldNZAnv36q2a6tqvKyu68e/mtxWN/NxvcGjs8nFq6rexLPn97t3frdpTxt797J4fjmbzOZPV3/38tmz54/W/6x/3PM39dLvqvli/XW4ZdI4bjRzzolVU5D7wcVutU2bt1lTqovL+fjmHu6vLpbV9PLD40K8mH75cHQXjwvGX0y/u5mMl0X1rpoWF9OrYnZ1VbwaLxej4qL+X6t3KG4uxvNRsXxbf2Kx3uxRsXg7fr1cf/66mr+pVr8slrOb9V8Ws9d3f1cvsAbi8+K7m+pyfDEp3tZ/MRlP3xSvZ/Ni9TVXf1B/xfHlGoq2Kc7rvQZk8KfGOPsanjWE42rRxPNhcBVVnKV4CCoJ4ynO0FW56lLb3sj64a2X1Y/Lm0mN5/nd4X8zm1y1vfSDZS303jDt+li/q9/x/qmirXcU+XkG/TzdVjFIfp5GP4+1PVDRhpNv7acOMZx8+1i/n82uWkeSs9aJ7tt/fDmrf7n5Y9WYZw7/8WI5m1aNv97MgReUaejIKm9N3XZzzG1XPtsuDr7t7R3akTmatCCeFHKz8bn8Bzzr/rPQLREflfGhCYU/RM7HdNCRZOExKZhWyqyya04w50PtumHA8FJSLixDhk9ZSUfSJI1ke2rlDliWNog2EJYDDHobHZbnD2Dqk4gl7UrDTuHmdGhc2tCEuM2w6IjhFuFJ07rY4dO6qBYhVEdFocEYdmK6HG4x8mzRg5dNAISUl8HI89XUpv12hQtIqWOSBC0yTYFpLwuSZ1+gxSDkgPHPw0Bn6NA1VGeZTKeGtj0G4txM+CDWnbDCkME6Zr00bpwJD8eJ1TEgXkqbFs2AADlz3Vgjw4CMGAZsIq1IYcD20xcoDPg/i49hQO8oIOODw4AqYBhwXi1uJ/92UUApjxYF/ObbQEFAiQ8CrgZE+kcBG5sERuVMbxgQFx6SIkflCH5pZ/8O6rarHJXrp2zI4VCUCy95DvoQjnqPecIPEjRtqqMclPPjmDk1bDrgIs8xubs4DtAhY9d2L/3iOKNBdDU9+CpVDtntZTQCowACh1+HQT0gPCt1Dul5XYjADAk05T3AsTI55Od5V4YCjw83R//dGz1QzVGoHOUgzLYYbq7miKBXRNCSY7ZDrJgcNsIEBGlhI14eLJgrZQ7m0hIlHC28xMIgq73MzSyUCORI1bTMHSySK+MLwhumLDfW8tMoU6BJCisPgtwA2kbkGHxHjH0EZFVQlGR3DJ6X5LjsEBsn4Rp2MGiuT4ssL71MoKSzK2TQ7ArITgLMLM4ImTYj4NEdZ4URszMaJ4WWndF+egNlZ/x/AbMzBDY7g+9kZ+hByRk7WRmT2fv24uzI8y7U8fIu/jNY4oUSu3kQzVQLHSLVQqm+R5QhaqyV7HlEa/4GNZFA5fwNCosYqqpa5fyN4FXVaH0mcvi5vySUFrhih8oTUCqHFGF15J/B4XxMghzYH5aUwQ4WiVc6h3PhcO5ONDCIIA2IvascXKLx2LRKTqi+SXS74cieqwNKrFUuMaRGFGnRC4auakKO/2rE9XFcSuOCVIZU6cIOyKV8H5BLkUO5FPFi+nX1pv5t8Xz1nZ6ugTl/X8vAy3v25C4ToSou3lyMp4vif1fzGYUiacm8GMSPoDI42CacpUqPDI7+VIze2Sch6JLG15BQ2YgMQZ4wi34g5wHqVNhG58rMcyAykMPUqTRhzjwHKh8YIpiwVkbzxMuEZxn2mgr2UCRT8+AH2f2tXbzfWTIizd0/P9IQC2Capz1Ic77mfZYTK58Dma8jlGrqN7odSC7hLOcGcoJkOR+oRHy9My+fBLSc7aEs5+sdy3kZt+nM2aFN52fHMJ0bXwOyZF0Iy5nz41rOvMyW8wks5ybM2XI+quXcPPHZcj625dw8+NlyPrrl3LzOcknZz8lybiAXkeX8LKDlPHjIinkx/WIyKe6euKht5YtlsbKTb+bVot6IYjYtqlqHVPNiZU2PiurHy+pmuW6OtHw7W1R3f3E1m/6vZbG4vS6Ws7hN60Y698/ZtG58DcjUNUGaJ2k8C+5CNE+S2bQOkHxHbp6ks2l9kuZJimrZHcm0+Nc//hldvXqY9CHjUy+SsvMDduTpRac8iGneKJ1MXX6ILTtQyR8B+x7p7MJi5pFAHi5WjhpJkuSLiOeLCHReRyh546FzKHFY6sxXePMV9iBI8uFSWcY03uRpBM1wgnZcWaW9hslzbGAmaB29+SFJp6fhSKe7Qr4hpJP7+O9q0TtfeOvNiyeomcTr0lL8ok+xg47jpLPEvwed1ZjfdJwkS+HHn/mMBB7En5FHAmf+LETzcfJI4MyfnWgkcCbQgrVbFYeqWhWZQEONmaXRmyPPylacfGWCbWiJa/vnxeGmAWeKrX0EsDcJOjoKbSMyBUfKyBjhJJKHmejMBw+mzdn2R4JSHmjGcKZTj02Mq4N1rhZkRvXfs6sj98FjvwdktwgrZDm5Gi6UmRknNmNlPmq1R11LJNaaOiRzMKUuD1oBheaQEZw6OzSnPiQHNS1OXZb/Hpy6O271VWPbjkKpS3ZkSt1lSv0E/SCbMGdK3SMldcBoeZf52vA9IEeesySpd1iOh3gmFIuDJUOyzNS2MrVkNj0UVVsOHjKXoyIB0o7FgRh1l5m7IzN38kCJkGWOjUTLwlInPOZy6mijXANGQZaZUKdzqvER6k2pzIT6IaebRUCoN4Q2JkL9WUhCnR+rG2/sPcUOnil+ZwMdvqvYkVsfcEJuug5BbPMj54rznCt+CmKb51xxao1ssEZaORF5p8gYnjYRLg2c5wTVvdEqPoEdN9gQyBzKcA6FVhhcwowzspWZGtjKzB3SYv8fIS129CxSszuLVL+Y/m26emB1hcqB+VBNJrP3Lz9DvfyoqI/SrLiZz65uL8fTN+vJpbc3tdoo3l5MXq9ml65+Mq8Wt5Nl3INLdYMRd/ywg0s/CzO2VItN23hXAlaxCmD3b+0R8MC7I+tp9+uGNw5+Q+lv9+tGTY+1IQzQLhVdthqD7XZo1xqsdQ1OWoN3GKWUNUTrGpK0hmxdQ5HWUK1raNIaunUNQ1rDtK5hSWvY9vNBOyCufRHaCfmifRHaEfll+yK0M/Jl+yK0Q/Kr9kVop+TX7YvQjslv2hexpHbiYRzv5k1yWL332wB673cB9N7vA+i9PwTQe38MoPe+CqD3/hRA730dQO/d+RWbdc43CzkEz7LD8MjSNUiekvQm34TQwH8OoYH/EkIDfxtCA38XQgP/NYQG/lsIDfz3Lg1MWWSllTfLaKWE3ulBjV7qarZsV20l5U5QQE0LzBni7oxGWPSId4YOcWmYELeGDXFtuAD3Bi8DXBw8xM3BeYCrg4tj3R04OWws43GFcBniDuEqxCXCdYhbhJsQ1wi3Ie4R7kJcJKIMcZOIQ10ltEARGJtAavnyBIxIGQkjwgMwIiIAIyIDMCIqACOiAzAiBtDuBzPom5SKDUGpuCCUShmEUwlDqvAgrIoIQqvIILyKwhAr7VN5ds3oQ9W86EbBvtVxhN5XhlwzYvHs2VEyRUtSEZI6VL+orTBAJIisJPz4iDigiIiRANPkWhY0YDY6wE6Sal3246X78THkChUsPk2uIB2BQlZ0jcA6od4KMUuuRUGjVqZ4MbXvMu9HzUIouUOVmehGxWUyug+JUT8mHDswRHmZdJFkU7JyRaw1Yfni61+dwIbozwrj2DtIexl1kWDCS2lOggmtRk5gQTFehlvyoJAK5STWmrZe1lpSoKCuFQ5dK1hgnJdBltS1grKkQWCQDA4vvWywLDFtpZC9wCCNYz6AGGhIDI8EmG1Uvj/G1cIB94VLCpEjsXjRiQLBMl5Xdyd9Z4dHeKXWJ2sSSRdwOl0geHrYoZz93aJ4SBoF0ZFFyyOdXGg0a8/y2KM/FfB7Uns1UeKaG/ABxITKeLbfdyO8Nd8ni4IhsdNepFLS+hWSNmb79a9QREw5ElM//iPLYzeiQFcgTmpAKgQST+tTRZg0ngatX4kNEQWy8Q/3Y1fS1q/AJHYOzBcWlogpsnGXKL3s1zJdeRSA/SoERX9y2Y+/QlYcCOZlv6aMZ4nVr1RfkgM3rUIGTQX3sm/LlPUvJK0cSCGRjIi5DiTPwsv+zfLcrZ8B+1iQ+AVugPvbIe9j6WUfp4y3QOtvoq/KAd9XIrklobzs57T1NyCt+5zSDkbEFEAO8M0SyUkJOiclRZbndv3bJc9E30hy4G5GtpUXxiuonXV1990LSDPTpLQeoKGyQlY9iAFpPzLrbxSiHCiLkIYo4zIQ5s7H/jY2XRmXgP0thR+/vIMnMhFJlj72dcp4Coe9j6m+soBkFTlXSTIf+zoZbNsxK8PmTwgVSF65j/2ctP5F+8NU30honO8jhY99nHVtz90JZDtJTbpbDRJP6WP/Jq5fofw0av6ERWI2gHMyWQbbZahLfxJ9E4WsZpADuCOdsWu9+3b0I5TtZCj8gkLWcskBfJHN+rOD44MQBWQQi5n1ybc3OkrMHh0p54U0qEwCjLtCZtlL55NlHwti5weHDJGSzdElEgC0SGNFlT7JK2kLmyBVuioGCBuy/EExn5SUpIWtpSJhhM+V7oEWGY1W3IsJTVrYJKnWXwHctUbmfymvdjNpC5vDCpuk6VFkGYOSXjRm2jcbKdirAOJZI4lnpbzIrqSFDT3dTJDGmylknYLSXpxX2jeb8mE+9oQN6WUrP2YkZWGTGn2z0UgtZJBH+REksbRc2YHuyZOjYEdTf8gUYuW8vOhYEDkFIIpm1wN5wRqZI6r9clJSb4anOA2GvQ6unBIs1UhmRHt13I0H1FO0SNakptUKII41kF6kkcSy5l7ut4yz2+txFCsNUQ34cAZZPKWFl9cdTdcxZ5hip9GtkiZbe7pVkXAHiuYMkijTXh1/o8H9JO3pNSktF23i+LEpMs7+5kfSnTREOM0l70TML/lEpjziQZNKRzWydYo2XrSWTHeGgwLuFa39rJMOvKxPP23D08VLk2IwBlkeoJ2Xm82TvoNIxIhBxlhM6eVRpSwh4iB4MJ++5knjQUrRMMgCY8O9bpAyYTysj3zs+Z2qCyDhdaWUKTuaBuh4pp2PEdBllBnppeISFilDM8p0FwAbJmBxfTGpX2RSP3xeg3Azm1T9Gk2r9bRc7Atjj4QmvlHjQBDfqDWB4eXobkDr47NXk9vqZj6uER6dTS5eVTWOZ8/vATy/w+1pA76XxfPL2WQ2f/qhmkxm719+9vzR+t/1z/v+6JPJbPpmVNxOVz+trj6tH/aumi/WX5BbJo3jRjPnnFhVHHwc+Lsegbp5wfoLXlWLy/n45v4MfnWxrKaXHx4X5sX0ywdxWjwurHgx/W79pCL4dxkVF5PFrLiZz65uL8fTN8XybVXc3tSiUby9mLwuZq/XP5lXi9vJalPHl2uEnoMzctt1w0+NGco1amtkx9WiCfPDJBKPi0Fyz1IPSF98dtbe3/PhnZfVj8ubSY3o+Z1EvJlNrnoDVpLr3UHWtVS9q9/w/pl3w293myuQH+jQD+SirTaA+sCNuwF/Q9kWiyeOBt8oO8nlsUaDs0hGg7MAo8FZgNHgLMBocBZgNDgLMBqcAaPBMZO9WYjJ3izIZO8gg72DzPUOMtY7yFTvIEO9MTO92/ysLq6NqvfskfTebwPovd8F0Hu/D6D3/hBA7/0xgN77KoDe+1MAvfd1AL13lzm5Wed8s5BrXWjbbnw/m101/lqWTm0OWUl6k29CaOA/h9DAfwmhgb8NoYG/C6GB/xpCA/8thAb+e5cGpiyy0sqbZbRSq3qJj0s50lJXs2W7aispd4JCTLRv9cOJd8bGDT/mnaFDXBomxK1hQ1wbLsC9sZpd4H1x8BA3xyq5zfvqWKWxHufuwMlhYxmPK2Q1YMD/DuEqxCXCdYhbhJsQ1wi3Ie4R7kJcJKIMcZOIQ10lLymFRLZDy1uqli9PwIiUkTAiPAAjIgIwIjIAI6ICMCI6ACNiAO1+MIO+SanYEJSKC0KplEE4lTCkCg/CqoggtIoMwqsoDLHSqkDNrhmNTHNyHjkDkvOU8zYZ0ASVMUqeIEPWlbDSo4dKNIjt1pUcBzFHAgRZjcx8SreiAeQUOQJA21LdDw/U9B9Zecd86rRSkqcOu31n14nD0DmS7WHCIxEnpXuqfRw60E6WUcfdICurmE9lVTqqsR0zqiRx6si6Dsw2SQhX1eX4qppj53tKjst3u182DFpbMNUvenMxX7/o47Phme6rhW4+/LA2yn94PZ9d/zCe1sucPX59MVlUFAuROLocO9qRaY+eDViYALna2vh7mSHvc1Ouzo9isyuazd6ftiiQmdnMeNnsZeItGxipnERgTQrr5frGko1drhr1nAAUUr61RM5PYs7Ll0odE5r2wja15qWX7Z0UKChTjkPTGpBmAGdermtS1wrKL4KA4ViJ8RlDlI591o4J0EOESwqJJ5GsKhdenmrWcUwSdRzSHeWS5o7K7I4SZiyAc4OwCo/esEVsbiKW8OwZaBI1tz7tXDrx0h5tONPGS2HnPHHinCdsX3duPCaWpIMdKtzAqXPhSyKmWHkcwEXILI+t8kibFC1IQXrsHD3u01Q3bTwtVr8KoiwKZENk4ZVgkbh+BaSNA10cJDHoJZHTa4RXjkaWR8rsQ/Qk6DZ3HdkgUvhMI0oaz5b7boT30HtlEdlAQ/jMJUpcvwpikJ/jJz23Y4psNimoLA3ZIUk3aYB7zn7GtqAXyoe0jkUuzzmTRlqhV8xvU0K/+fYo6pXETmM7k4sB3XUjdCc+ImN2+8scR3eaA8mN8WhWHQ044vCNQts9BiDcI/RBBMqPb9EJ24+AhydJfAqHZuIg80aEH9+SMp5ovoXKfXJHHQbRMaHbj4/RSfsLEB9j+n+viD6gKMPIs/Tja7I8d+tnwIOUpBEsAhoMjuRzpB+fkzDeEs3nULlVAYwGwQ4zln58T9L6G5JWAZSgKiLfIwD+SCH5ICm9uISU5RmdX0Dl8lSgwXZS+aTKJY2tpPpOo94Scb/R5tjxaFJ78Rtp628A8f0Yy6h3WCUo44FG4klDLAJsKG+Z+XwwBbmXd0RyWNKPw5KZr29JiN0LmHnNZuuEzo+ukmlTxqo8BCbKj2aSOcbSUl67J07uMLpQ+fFFMl2bVAEeplJ++TsjcNRlK55+fFDKeKL5IOWd3wOPxWzF1o8Pkin7E5C0UmM0UgSSVz++J2V5RfM9VC5PShxXp/z4nJSxA7x7BfA5iuRcSOQgYeXH16StXyGGjnpnaiRmxmN8etafhDaAexENUn0ldjSush7D19PG06DvQ6IviR38rejkjLRZf3ZIk1/+OVbedOlVz8yjxOzRkTIwNSWqpAEvEDusWrPhEQZ+ygjDFmG9FWt4Gj7WsJzfVl7cKMRncxJ32mW+aO5Vks5jCUUcWv4Q9csc3U8AgA5ZGanF4Hafp5XD3Ujfs+NKX5uDBpiakhS+1wCVapB0m5Zesaakr0ZBanKooYQLZPKrVl6RqJS1aUt/hhG+crwHWiSXprVX3CJpYVOchAhQd26Q2WzaeEUjUha2luRuZKgJgBZJmmnrFXRIWtikpCBiAK/CItPKtCOWiavs9GHMFGINJSfVUA41PE3pFYdIWbNKtFMoaeQNsn2VIZIzUmensMsiBZwCQfPqkT2sDPeKP6Rth5LcdANkUFgkH2qEV9QhaTvUoO1Qkj9vkAVuRnoFH2Jpw84Pns2LpCl7EEGmQBjlxXnFgshJAKE5BoDlaQwSMO0ziyUWwE4xQ1FDGXwklWeRFKUxXvnW0UyeOMUQUkPLOAHsRwt4a2hErRdzmfqIKgM00tBQYR5pNK3FuuDOi9ws45xtepyLkCamFkiLsEg62pZenGY0c0icYYqdRBK1pSnMXUm1pIa1FnL/kAn0lnklYceC+0nmsFtSPSDWJLXci74s45w4fBzdSUTE0SiUTsSEVxJ1mcyM6DbESH1LLTK5yEovGjJht84CjSEMKVhukUyWVT5ueGnTxcsYWtAMwAvZetZ6pZvEgtdp7ihDovkdMsJtvdJJUpYgWx4ED+szuzZpjUYiDh2yUYN1XjeMTlg+lI987N5HrssEcKXXlaKTdkQBI8B6GQGdiDEvFZeySNFMANEFwIYpWFxfTOoXmdQPn9cg3MwmFaDRaiQIL4w9EoL4Rs0DQXoj19rg9+XobLysruvHv5rcVjfzcY3w6Gxy8aqqcTx7fg/g+R1uTxvwvSyeX84ms/nTD9VkMnv/8rPnj9b/rn/e90efTGbTN6Ni9bPq6tP6Ue+q+WL99bhl0jhuNHPOidV1Pp5eVT+u6m5W+7Z5vXVO0uJyPr65P4FfXSyr6eWHx4V5Mf3yQZgWjwvNXky/ezt+vSzm4zdvl8WrD8Vi9c/x9E0xqV4vPy+er77803q3zt/XgvWyePbs/kfrpIT7Hz7d+9hnBS++Lz4RvDjf//ynxaOCfy/45y+mf307XhT1/10Uk9mb8eX9a6zfYVSMP68+L5Zvq/VmFK/Gy+JqVi2m/2tZvDhb1OL7Xy/O6v0ZX65xrbHck641cIBG2Wzjujx3fR7G1aJ5OD4eRbJyUvrBHhbW+CknSMvU10L7+MaHl15WPy5vJvVROL8TpDezyVXLOyu3eWe1lp939UvdP4aztokF1Edo1veIsq3LHPkRZc8jVoXN+7XSD4/4uMf92CqzeYJYPwFG9/V4sqzFuf20dt0F5V0G3+19HsXmtBICCYAFhUx5Jp//VZJSxw7pQZfzVkbJvUiQL+xTNPoz/f1tu4KexDPZFKyjncmycSZHhDVY67nmpDV4Yw3+sIYgrSEaa4iHNSRpDdlYQz6soUhrqMYa6mENTVpDN9bQD2sY0hqmsYZ5WMOS1rCNNezmfNAOiGss4jaL0E7IF81T1jiqtDPyy+YqDSVMOyVfNlfZHFdGOye/aq6yObCMdlJ+3Vxlc2QZ7az8prnK5tAy23k7tffGBOLYu41wsIwZVX3yI6nP3za3TQ/Un79rLmIGKtDfNxexAzXoH5qLuIEq9I9NVV4O1KFfNRdhA5Xon5qL8IFa9OvmImKgGv2muYgcqkf/3FxFDVWkf2muoocq0m+bq5ihivS75ip2qCL9a3MVN1SR/q1pPpRDFenfm6uwwYrUdLEoA0z3jS5k6fJqqtduZ8hQASvp1AEPvP+NZuc8jO90HoPrxJCt0BjzEQHj0hUBUvCMoXvAMmQ/NMZ9ZCcMcD8H2qENjO44dDskkja0pxMy4SVrJhFZa8eA0TDjWP1HG2vfJFCRgBypDvpf//jnkQfhtONEylrjWGWn6MpORyc5u1UOxwlZM6B8iJHGb3NksTOjs+LaRIfYaTJ1GdTwmNRUnCPLw5ihI2bTu53a8KJJELKyi5Hz2pQpU9R5yHuov2k4OOocWeXD6JSCYSnqvXbUgObSnDqgHmmZczoRYXi2zIdJEjKszgcwE437SEU+/PAQtZJoT6h3QDQyisS5lzer4p6mdzx4oInApMaKAsm8cuGTtBW9cP3ncUaLMumJzchTBKWXW6wS7+jASPn2AmtLKC/PNxa9WB5DIyKcqX5QJNIs59rLuU0eFFILQ4Vk9bjx8nCTUl8odwkixQWSvOPWy4lNSlpQPhEIDFaNOS8/NQPDiaE/ibTEREkLIzU9VZHbXnfCBfTe4czHAO/uIioYrgpLMCLsLhLY4+uiDEJNCiwKoDi2ZdIu0hfrPArcy6MW6c6DFEAjFEGaT6+QbpoYwICwjNfV3UlHyo6kUY8KaQYJ6ZX7JFKe38mBCnZIGqnzkdHyOIA2kVkeW+WxfzbI3u9JbTAl1jQawLiojGf7fTfCu4293gyySZgwXrxy2vrV0ib1+M5PlsgBrsJ6MaAJyyOHZi8B6VqC1PhZIlthCjoVpF3Gs/2+G+HZn15ZRA6vkKUX8Z22fgVaye5L26h3hC+IKXJUoWRe9itLVx4lYL9KUuNaaBqXRjK6knvZrynjic5zoPqSAmjYopCpZVJ42bcsZf0LSasAiqUUNR3NBJJn6WX/Znnu1s+A/StJ5QoC8J8Uko+Xyss+ThlvidbfRF9VALabQnJLUnvZz2nrb8hbBcYcKUW0n6FIHJKTksYr9SHLc3dRBWAxSxI/rKBpdcgcJDkgB0lkvNvv2y79TfSFFcCEaWTinxyQxiSz/u6QxpEXZ6VUGHlVpY99rV268qoA+1oJP/54B09kYwTFfOznpPEssfqX6gtLSFaR1T+K+9jPyWDbjhkLmx8hdSB5FT72ccryyjWNcdjTzyR+WiKHEyrpY/8mrX8FWv9SfVmLxE752Ldp61epB0sbysfpxEz7lDPrhNufCFISvka2o1HGJz83Fjx2ZOjRcWRIkGrGFcC4a2TDGmV9snJjQez84JAhUjg5OqUagBZrbDifYHfawiZJhSkaoMM1MgVelz4h7KSFTaLLwCRNjyItDe3HrCQtbIpmawBNwDSyNkH78SUpC1tLuB5JhgHQIkPFWni50WnfbKThiRoinrHjtKSX85z0zWbQNxupe7lG1hho5eVDq4TnKZC63mhkTrLWXj50LA1W+CmaxCvjw2pAZn0nYsbLEYsFsZMA5vxEqN803P29KbsQtF7WfTRNjU7R+FrTrHtDMzg6Zc55mYgq5XnomuQha2T8xJS04dZb1EZJGW7drpf9h1uv/u7ls2fo2dZvxpfIodYaO9Sa7wy1VsXr2byYTatRodf/89Vs+fbF9Jv1EXm8N6p6vCiux9P/p2Ws9eo3Fz/Wq19MLm9XI4cX62nUV+PXr6t5/eyquJheFQ+nvMbvQ3FxdbUoxstiOdtf8MU07LjqEbhGS6+exg7j513jhi5LtWG5pWsZ+NscwawCzKqWSuAfGGJy9dY3tAO+ofT5hsADRe9Qa+zzJH5Hde+M6AEPBL4g1/4jkrcQ1CFmfG5L3PvZ7Kp1njBGXC9n9S/bhgBzxB8vlrXKax2pLCijwt1BRqtuwXz4bVc+2y4Ovu2owU8s1CjHrSMv06UeDDT9DCj4Y/JQwx63tLzM08/wSS/oIYKMjomMDpPzHdfnsyOBUkLjuWkDOgeKFSe1oNzSejymFpRPTt6CkqEDw7TZn0BFFFPB5kVuaUyetMYsSRCh828Ysj0Pca7kllrluTNsaLFE3ZJ4wVQ0fqoplsJQ+Cnfg9nPZF2Pp4+uL378pI+dGvVyV0jSygwlrfSL6Vfj6/FyrT3qf//9ol5kUcymLbzU9e1iWbyqilezGoSL6aL4pCxm84J9+mL6mzuXaZfkGtULTT4Uk2q5HE/fFMu389ntm7fF3RdcFDfzalHvcOvTfq6UFcot1eVD9go3JoRb2qUpyoaLyMv6P8CmdK3DGuucS71KIt/sDSEPE9mGn7qd4gTbGWIrGWIbW7URMmVYkC7JrWOp/s1t197Ry203xW4dGs1jRKadknNzdMmomJ1ubNhxpoaRynmRHQUVHRceHS7i8HkDWGXVU7/XbzNiM0rpeIno8OqanXgk/gVoZMPDaDxDvKIa6i4PdsGK3F4TT4rzbrEuEjL7wBIR55EgHp/nTpqvCGTzuE5Ykal1juazN3HVluKzW7ojfuefFv/v2/ozk3Htxn5y78QW9+cH6Wfbwckhp/Szp7Nlyr62yr52SF/bpOZrK6qvjTY51c/HdTvWINRYvWz9s/EOjoQUycvGVrjTcTE/HxE6xND09hb+RCxGXsKkiea8yeY81pwf9TMjJGvf07qnuuk6u+l008LLTQdcftt5AjTVbUf6d3qgf2cG+3e/nFxc/pePf+fannNer/Vf2PqE2U1vPLde5qLegXfVDx8fWfa82E//P+a0W3M=