Page 2 of 2
Re: [1.1.46] Electric pole ghost removal creates weird connections between other poles
Posted: Thu Dec 09, 2021 5:44 am
by lyvgbfh
FuryoftheStars wrote: Thu Dec 09, 2021 3:51 am
Screenshot 2021-12-08 224614.png
Would you mind sharing the blueprint string for that? It's a nice test case for cabling.
Re: [1.1.46] Electric pole ghost removal creates weird connections between other poles
Posted: Fri Dec 10, 2021 8:01 am
by FuryoftheStars
lyvgbfh wrote: Thu Dec 09, 2021 5:44 am
FuryoftheStars wrote: Thu Dec 09, 2021 3:51 am
Screenshot 2021-12-08 224614.png
Would you mind sharing the blueprint string for that? It's a nice test case for cabling.
Sorry for the delay! That's what I use for a bullet production center and the blueprint for it was over two years old (from back before I stopped playing the game until a couple months ago) and I only recently got it moved up from 0.17 to 1.1. I wanted to go through it and fix/update things, first.
0eNrtXdtu3FiS/JWFnkuDc7/4YYDd31g0DNmq6S5AlgxJHmzvoP99Sd2KLZ0kI4LztO0Hu9GWnUVmRiZPBePE+dfFl5sfx+/3p9vHi0//ujh9vbt9uPj03/+6eDj9ent1M//Z4+/fjxefLk6Px28Xh4vbq2/z//3jdH+8uv92+e3q16v/Pd0eL/44XJxur4//c/HJ/3HY/OdXDw/Hb19uTre/ThG+/jYFuAyLEAEI8f10vP86B7i/+3F7/TC6kgiE+XF/dXv68W0lSvrjl8PF8fbx9Hg6Pufm6X9+/3z749uX4/10w2/BHqdgD9/v7h8vvxxvHqcP+X73MP2zu9v546dQlz7/LR8ufp/+zd/yH/PVvQsViFBuEepwcT0V5Ovzz9MgcBQCuw+BDxcTPh7v724+fzn+dvXP0939/I++nu6//jg9fp5+dv0WaQbS49WMKjf/q2/fr+6vHue/f/H3Obc3d7+eHh5PX6l/9PpBx9urLzfHz9enh/m/F5/+cXXzcDz/eELm9effrm6v5+CPUyKmqj3e/1j8jdc/f/6r3+6upyBuVI90BvzVw+PlBJHj/a9PUDGzZ1bl8AbA2+8/Hi8Gn5bxIrl1HJU/X/d2zX+W/DV1FS5CZBqw0WF/1uJT52DMjUTvxOg/C/PJezJ3gapMEKP/rMwnH7nchURVJonRHRQ9k9ELde1FjI5dO/Hc4Jqh8YGxK+54YAokwfGBoSsO5NSJnbrsIEbHrh1fgaeNxV1IwheO+HSR/5+H4dPd3T7X4GG+HD//dn+8Xn5nO13PYyb+8csfw8xmIbPBqFIRvnLF91AKo8hViBwgkOKz5rJblzwMjM+ay2YFLqPvtfisuaxUYOJbfTED/+WWH5FgMDJVD4LBSFRgYppGKvB5mDx8vzk9Pk5/+DFkeAs4ClH4a4MaPRIjJFiBhzdNTBBvBR4Nvdh5csSYzMnR38WhuZw8HRcqVsJ7imqpRCxJmGGf8I4q1PXiT2dq1Ce8y6hnUzo32TZx2FeeIS+84d2PR4M4TI3lKe0VB8BTJpWXgeCenfjtHwJnVpkL7NoDUXKftmtuc8V483pqKmS8e/3Phc85bfhw8tR0yvh08tR4yvgawHfmOZjP0+jb8Xp+uXa8mf7+/enr5fe7qQr2dYfXL6nQ17ju569x02cdT7/+9uXux/38ds63dPA9/TK6LnwJEewvZH85ZBd8uRQ8g5PiiWEZwkpFtoZlCSJtCT1Sikq5Qo+UQr+DDGXHs72oHCx2M4Uped0uub0mKvh4C42CLf4VJ1BzsxCELEUYVeILD9XB1fPcNNRSFf/KEyMVOPJXDH0/rYm/YqhlaubZdOirei3sYIl9x2CpVaTXsSw1nl7/SYm/raWCTwYlXjufWIN3aU5g17MRSxFdJSMWo7pKi1ibLdbimuItjuK/Dp3yFH+Kfvq+LlP7+KHM66FI3Q7zeiRQkZl1waX3ZmxgYdAq/5IjQxIf4e1JggJ3FkZlN4q6YypStwtiPhi68KYFAlUX3kVggYV3EVhg4V2EMSB75hl+K5TwFgK7XeEtRPr50H4jQEo3Htq9ybrVbC/t7JHazwPq5m4aTfNdH68vT7cPx/vxay9nfVwYKvUc/1bJeNh75/kXSRCavQvr+vaPvNd4Sq8o2wcfis8i8m4IHpgLnBkOYM+T3rtCv+HKmHS00oETFriRGKr/Dgx1oiJlx6Pee0e/wkt/sXcL+Piv1nc2v5DnYvPYXOcOO9gH+oUpNho8Psw6F5gYZn59NeTfq1SJl63Sw9V74g0QN+MJ0arnhrxv4mtWbP76LobHpvBCwTqYwn7lFeu7MTzYJjf4NM+/4cs/l8Hv3gMOMxsACdaMpZX1YogkFoLfgwVVYI/1DSFwDRsMnA9FvFSwByt/qQn6NhGa/EZNG+CB/Xr09uYL+3pEiGBDpVJFqGBD4SKzX5be3qW9a6vT7dfjNLSu7n+H1rqEjjQ07o4S/14QjJxJ/ETP4YdhX6O5xABexPsobJPBRhuhPI2Ri9z5a8ZmHKNEjVzkc+OuwCRRy/7Etmws/5aWXehUAXjmbXiujGpCuxq5gUeoVyM3pJP+Ild7ni2EreA8ahzQiFbmZnQiWpmb0dnx70mtlVX2fCxr+ZqD8KK0WsEiqew7vy+tjLQvLGfa85atPtL65X6I0xIlxqHez2dlo1yx7j0DE/V8vwVDzbl1H75d3dxc3lx9+762jcusTIWuznFXJ7zQrNhG384CqSk4mnf6HUbvTD4AKR58CdOvF0AlNwQUIYW87Faqx3uTkef1WxIKNEYXqkcwyX9u1kGvjftsIYBcufjEXbzwKtRqjiK8CzVjCS9DrZFShPefZqwmWr5gDVvohnVKw/Y6GPyHEe09gOf0k6lz6yHmcfdWJ6YIa+H6bmcJ8PYTa4WFGHLtIbHVBRXp0kg9IBaiRwwVWZri3g2m+Ls/aUNUlBkV7TBvCoi5jFGR6Vd5WMtU/uUjCDTkWZ85iLFbNvrKk2Juw2k5HEsYJ7yjfdIpMBLyQu83eqV5cYcbBg1Ccej9xuBvUbxUDGyNbXEfpR6vH5b8w+0905J0xtf0QxNfLYvvhsDaFRS+PlI92Kp43WAhG/QUeducZrZGB6aPr9Std8e/AbOubyEnBAHbFcDm9h6vwQ+eSX/+k+CCvWXtMP10AnU5xDoGNqFn9G1janRkMeC5AdzZURGi/RSZG31u8jZey/WMdmHgljRdfauFTY8uvNUykd7ES8UGRu/8pRpwC86Ju8oqZjjlxfAFC89+kQ5Vegb29xMkTCvfwbyY+mL6ydwb06/hrAguwv1BjeqwkAWufhnZWGEFh9Bp0TO9Gwi5XwwcwCr/ogaMLNi7gajt/DVjkRcqPqwfosYCu/ChH0bf8ub+nH5yiH3cC7QaLlJUVfCqcRyGENbRMXaumOxTO0pUbG3QbJv+dFxD+HkfGzUzCHFd2iDhAyGnS27jiemb8O6iW8E69e6iQ5kLyna+ZlzhQgPH7pTr8h6nsNCHIW9NwLxE/iVBxwwqE/OSoEPDi7E87IsiAldb1F1reypamVcRYIoaT/lbncgYIYaNWIz3YdzoP8buMGzFCiLPjnVBjDTPjtU5JvG6sX6gVVxvl9+guROLuP2o61tHQqzESwVsfhJCrsQBpxO8OQYZQsCVKLAkL+4D2lPMFFhmHqvoQsDFbUdpWBGEzR3WTE1ZZNMxCBJWg95vjNlUxUsFEdhonhvsGXXvBpZi2T4QS0v26taQzm8HCDkwZDuWf8Y5sG20S04MjYxNC8ZJr230SC7q5g2pWpUmpcGUqEwv2DIC02shojjxUrH2K56/VAsctCtcobJK28IVLhOJZnix+VCyulsFW6eWou786Htk5KFUhnHGGnOhuiJ3ZoC5ErYeYOiswtYDMLJgCodBXnGFAyNHlSLGeqomZjsGtuxdCJfI7Rj7+qgWkY8GS6H6xIHobDSRjI2C2tVNEVi5m7DBwHpIN2GDgfUUbcoGA28dbdOiEs1Z0ZLMKvugk5BN4FQ9dkZRK0Jo7ICihf6I5Gt35UogV230COyqGawL9KqJxC7wq3YwlWAFQdajylR+/IDhrOwq0wpCuWeRCn2PZIo+67zgFy0IbzeEZkr1G9qXqS4Sgh/zNT4USpACW3MgOlULjBU3OkEMbI2G6FQ1MIaX6JJ68CeYDFW8i15/Uem794BHGKFI6IbeuCwbiE0IZgKlq8yYlAiv0kIgbrzAC5mJ9upxASAICZursLXGjfSRrIXMrHwoK5iMotJN2GIj+qryTe+Rzn1Rjl4mh9A7E9ghsOpBoIfQ0AI/BGIpCAQRGjoyDA64TglJpXB2QjNk9SRdMFsqR4RiSHagQCsjnCdgPk+C4KFvzvuoyO68dcBk9LKjg4+jXeLxMG/Fza7/Mvw4iSwK1sVHStbosYMmY6JT4rZSUsLsKTCn5ZB9G6cmU1pE9GYUvgg6SSUupD+r3hVtE4OCzYTHjjmFJD/nK8SOOE1O9VUY4+PJWGFt53qE3JwuE3kbQeC3rBoSZ4me+S0zmOD9YA6JJJg/2MGKSlxhPbXQ9JA2C0NozXYm89iZVqJ5euTnaMBL9Y4AuzB1WrEJYjjTO1E20jXvhJ9TFnOZUzZMV/aE5hGc0xnzeNh8nmf+TF8QmoSZUuLgATkrZRIYRTQ0GALjzdGgzD00/UpjYFRWP4miowkUoQkR9fReEChFIV+tgVtk8hXDHu2R5FcnyKvXyBNQ0iGnOgQKKw3ygSxBorWbYF8VmZ8F68H27Zv4cViPeQf5NArmMuf5QWisryBpkK9kqhS61mrahRBo1b2hbwWqgtWC2Z3VM/JPcNjVoNoImBB43ihtlr9GWreJ3otq5w02ehX8vG1oqNYHYG9XwfvAhl5TaWkws12NjyWjOdVTYIzyF/uQOqN8TDA0TwtGwUnX2I6NfuVeXu8j9qd7OeRSxvcTGT0n2LDE4YmRfCgTqqAYydCC8QGKU8H5AA2NORLFtDW4WlfVmyDAu1PpbCwT3avxMXz0oO7xHzaof3mc1vHjtEdaYgl2J3E+YnJbqCFOSExu63HEnJF4JrazFa1yxHbGsqdYCvhkXWPXtZVZ1gumhbQHosmh1CTmUMBuhk7D0IGioCGH9OQEjwGfsOtNsgx0T1kzxXCDWRK8eq2eTE4w67WDKarXZAVTVK9WMK+a5ILt4HmXXLDaXlbFYo3hdVUsdIRA8klVrWZdi5l8ZthsbJx6QQkLwofxvkWBwxsOoJDpqrp2T0WDo2lorKxBPVbSQ4cGpqAoYa0RG2QlLIbEILgOmFM3qLYDIBADb1oLNk9QXWvRNKsHSaKZ6bIgOPM62BQdxTRjNYjCAZJm38RAcbrY5IiC54DZLDHJ0mWpZLzVLJoVmXDFeicqhKuJC9WDAGzEKJgQmBBJqt8smNmkGs6CycCdeAI5K2gvnvMHYKvYlGS5dd6jaU2JcpQFWzQVWcMNpks4EBEFqXAiIhpaUZ5j0M+K8hwMLRvBgs0F2fXExK2Kc5RF4vsaKieVlQbLIYvQMZDmwvPQ2FTIuvwcrLkiP7ee3FmRn1tP1iLJz6sVzSvRihUt6JR007nLopCxkPdzYk5B68v0AKGzzPPuyZVCyZroUShZM5hCyZpIVChZK5h8bhkIsuplYrNC47LKzCwG5RpV4rTtoNmqIIgFC8IfSYZmqqiE5K5MVZU3rNDTsiryWGsOVFkeixVXOabMHA3yOWUgXlpQ2TcwGbIQFrz+JLN7TaCKmmBd6d+OUXi8v7v5/OX429U/T3f381/7err/+uP0+Hn62fXbv53+5+Hx6vbx4pOb/9W371f3V4/z37/4+3RNU4P9enp4PH2l/tHrBx1vr77cHD9fnx7m/158+sfVzcPx/OMpA9ef5+adgz9ON/9w8enx/sfib7z++fNf/XZ3PQVxY+QWIVVmG1SZEZTKLFNhYFcoVJg1z7rsvIC1WFecF6xCdtWSE8xsVz050WQkmV3DllK0s9GZXWu7yICuE2HgnSlEGFh1hQgDQytEGISl7BQiDAztKZ4KWoVlF2Seahc0s1MPSEKzJfNgFYufZTYJrIxwxpH1PMlOOOTImvfZSZLEbkXruplB/6hznc0R5p3Z2edDmZYYpQ/1rtlLlJjhp5m957SfkJFw9tj+0oVw0kqyj5wAE7w+heiCHF/zQuAEoqKtgOLFwuFpP/UzKMoYFIrxQsNuqFKKUsheNvsmmxoMW+fZ0OCpdaYVaHVxnKVOyT6xWwmKcacF96AYd5rBFMsFa1AExXLBDCY7cmJNGLJsbDCC17NXxhO8JmhNv8ZNGGS7BqwTQ+XFrCCGwb0xm4jrjLoTm9WR3bqWN0tZnrbnTmU8VD88xDMTGqfEQZPwJEocPCB/oswBg3Yn6mvJX+yNNhOfaTUpCCPhLCQT51E9DAkFiUIxW8M2yhQzhjvaoMjHNZCcXS8mkLRDDWOgsJooH7gS4JooH7meSjILDdYDOzP7LPu0UA5JnHwl715hYs0rZA2M/Op8Kk+b9l9hN/1qY+gpVgtWd6ZOCWCxYUcbFYWtlnza6j0vsfOUmzhe/2TPS1fB+5EtcrFmz4pFrgXKLLswYP2dFRcGC365qBQ1mNmqxgeT0WRjgxHSz9Ydc/dPSB9PgNx5wSw2HheCp9WV+OYSpXhKn4r1YQkC/4wBhZA1xUiGVlwWMPgVxWUBDM16E8VViuR5B72J6FJlsSoI7KbS2mC6uhofA1F1sqnBqByz28hU4ZrG5aieF5NiLUycapY22dkahWDWo4hQOJ2J7eCtaJkitoPHsqcYLwRnXWOVFaQv16uoIvNCwIRw6mhqOk9BB8h/OzfHUNAB8tzOTTBhCA673qCKXfeUFXIoukxklgRzXLMnm2COawcTtL1mJzZB22sHUw1u0XbgDW7BandV+ws2Rpe1vx8/YDiEehC1ue8bj1Gc5h4J2hscp53X+4Lw6YwBLgoc3oIBhUwVNcT7KtpYGhotq3oW2cd0jQpRlLPIrBFb5LPIMCQW5Swya+oW+SwyDIjF8S63WPMU+RQyNM1FjQ9mpqqy5/c9iuhhi2sMLY3WoPOcrtk33jGcLjY5ihdsF8xm8UGVMEsl87zlLZoVlWwFe8cLZKuNC9WBAWxELzgw2BBRLW/RzKqWt2AycF+iQM4K2pjo/AHQKraEoMqu33cnp20tgTK5BVs0JFXLjaYr8/wuCNJQeH4XDS0o0FHoCwp0NLRsfgs2F2RZFBO3Kl7IeUix+M6GikFkpcFyRFWMDoI0JpqHBqdClGXoaM0FGbr55I6CDN18skZFhh6iFa0r0cJfcRtgWUiVaMI9ycxsSQrVDHltF+ZYtf7n4m+GjjKLvSdXCuFs9YZyGpsdTCGcgxVMIZzNYDLhDIKsy7RthB4GWeadMShnr9LCSScRS+alvmBBhHPX0EwllW7dlamssqIRWgtkQfxrzoGsin/R4griX3M0yMevgXgpTuUWsWQUVeaLXn+QucskEGFFcCY1gUjoms7BLKCsGzStMoJSImQqDMSNQoWZiVYdGFAQCg4MZiGrakYKZraqZqRgMhYCJZZdwxYbtH/TmV1Lu8iAqhNh4J0pRBhYdYUIA0MrRBiIJYUIA0N3iqfC1inNyTzVPmg29UioQbb+erRCk1k+rENalLkyEHfCSVfm07IJJ12ZT7MmCS6zFa3Klg0hW7vz86FNi6dW/S/Dj5TIvmTdQOdUrZArdOmOTovbTEubzQpeUjM8wLp0z+lQwZtRGDHI4rcsdF6rthZtC4dd8J8ICbvGTGllIYPg0otq1zDEx9mm4WkTttU62Ll0ibwVwXjVrqNgvGoFq04wkrAGRXWCkYQdTHVUxfqqLqRbpF3DGF4vfinz+JnW3K0N4VWdakKBdWJ1mZfpQhiujt4atJauKVXzhuundE3rwNbKOF2VEblCs7o6zHcib7ZO5/lQDJqE21Li4AE5L2UOGD6Idg1DYCx24U+gOLSxIVXFxV2dQ4cXzrwyIeLVM69QoCgUszVwvUwxg9hrqmXDECjJPe0Nn+HXpinSx/ZLlVV8+cCVAFd8+cj1VZBZaKwege3bs7x1pR4vtZh+jSc6pPbylUyVQkpbTbtQdq1aWfTNQILrhNmdoVLyXmzYhaZaNowh8GbVsA6BzgtzsfuJqhEw2OxRMAI24RFVfwmwv6PgL2HCLyaVgAczm9X4YDKKatkwRPqLVUP3Q5KhxsrLgLFJF9mOjX71PtrrjnD7Xjolz8UaNTmBfseQROieYiRDC04UID6T4ESBhsasmWLaGlgpyzJcDNypqJQ2mImqxgfx0VS7hmFzPjtnHPrYjKymzstkse4kzqdLbgs12QvBrMcQoW5aENvVihY5Yrti2ZMsJYp1jVlXj1ZZEVkX4iWIJgdTUwUKGnIYr7lRFDTkKl6zYi8BOa7X4mSh646yQgZNl4nLUhEsf82eLILlrx1M0fVanVgUXa8ZTLXtBduh8La9aLVl3S/YGLrut0BDqDpVl1t1tWmtnmGysXFaBa0vBp/K2PqCwBEOkwMhU7OqH95V0UJT0GBZ1bPkPqZrXAhF62uNWPksORCJylly5tSVz5IDgdh4/16weeRT5NA0JzU+mJksS54rr/StrVAsM1iDKvC5Vt+0RvG52ORoiqGE1SzdyeJspWSdN/IFs9JlohXrna4QrRYuuuwtgTViV7wlTIioRr5oZlUjXzQZjedpsVlBWy6dPwBaxTbnZEF53aPabY7y+MVatLkgq9TBdEWBuoVA2lwSqFswtKKtL1hoRVsPhpZtfbHmapAZU0zUqrgt5DysDH5fQ3mnstJYObwss8dA6gPPQ2NTwesSdKzmXpGgG0/u5hUJerGCSRL0bkWrSrRmRWsyJR2dzF02r5CxkM92Y45T68v0AKG9yvPuyZVyCpuJHuUUNjuYQslaSAwKJWsGkylZEGRVJjY7NC6DzMyCUO4icfoeyQzN1qIghsUKIpy3BmYqBpGQ3JepqPKGHXpaRkUaa82BKEtjweIq0lhrNMhHr6F4aSr7BiZDFsFi15+cyu69BzxCFbWkuJL2v6L5VCMkS+dUWW2wbs60xghqZZapMKwrkkKFWfMsyd4SYIsp3hJmIWWbVTCzss0qloyFQIll17ClFO3d9MauvUc6SQZknQgD70whwrCqZ4UIA0MrRBiIJYUIA0NXiqfCVmG5qTzVXmiqh12B2SoyD4ZhqHiZTcIqU4RTrsznSRFOuTLnfVEkidFb0bJsaBD9R53rbJAw78z2Lg23cLWicGHRWVdfKdFnhOygW8E2lZ4Vk3Z2O6W8BK+vCgxXhOx620LZBMKhbaLhbRO1jYoqWC5Eh91RZLSkEbIGbjWpdgbDNL1YGRg2Bg07iS6RtyCYkZo4r4IZqR1MMFgwJ0QVDBbMYE11GQW7r3nVxmAEq4U7xtR50xPfuzLcfdCaas8A9mCLtIAVRHED98NsYa5lQtEJjunGblPLq8Usb9ujN4pZaSYUhWfjI4MA6YREFYQG7UnU19L/lvqxFVHDFU+dQ1EXjrgyYd7VI65AhHSBVTanbVdZZRB0tCeRj6sIaYd5G/6L0cXcn22MlCryt2gNGq1bRTtKZZ6xgnSHHV3+JvW0YN4hWZOv1N13J7Cv9hWyhkW+A9ibtzHPE2r+bQi+7gRzBatBu8uM7BWbd522JgqrXfmSle6fkzL91sM4M5WWrKJ3pJr/Yg3fnWD+awLTq64LYI97wXXBBKAPIjUNZtZHNT6YjKQaGQyxHsvzHuOphfqEe+/acK3SfaaVsuCMXCidVpfjfhOGlRGmgo3oG088o0jpPPEMhg6CvQKIvyDYK6ChWUOiuMaQvHhaTLCel+B9DOsQVakqiO6QRFJ7kLO/3NvrHrKaPbBPimrYMELc0wD1zkBapVWy4IgiDt5LW+xzD10IZj1rCenWgriPVjTPEfeQfX2PiqNEDNY1Rl0aG2W5Z18os6B3BmBqssCwQ+biPRaKYYcMxXsU3CViwK63ySrePWXtFImPZSkJjr9mTybB8dcOJoiWzU5MgmjZDqa69oLtkHjXXrTaqqgZbIwki5o/fsBwCKWmio6jLqXtqTPcPjZOMy9kBuGTGVdfEDjCOXIgZHJUxdF7KpoTTbaDZVWPkfuYrnEhBCGzOWLlY+RQJArWEubUlY+RA4FYeOtesHnkA+TANJegxgczE2U9d+SFvr0kinsHa5AF2trqm1Io2hqbHEXwkzCbpTRZmy2VjPfwBbNSZTYZ652qsMkWLqpqLQE2YhWsJUyIVNXDF82s6uGLJqPwHDQ2K2jHpfMHYKvY2mQ9edwj2u2Vcu8FW7Q5VaQOpqt5gb/GQNqCwF+DoQVpPQj9Jkjr0dCyqy/YXJAXU0zcqnihWGJV8PsaqjWVkgbLoarsQZB2x/PQ2FTosr4erHkX9PXmk7sL+nrzydolfX22omUlWrKiFZ2SLjp32RUyNmMQbkLohIXuMs+r58o75RQ2Cz5TNIWUtaMprGwyoym0rB1N5mUhpE0fkGV6MyNDc/oEmaBN4C1UlUAtOt02fawg/EWLwh+8hibLO5Wb3JUs71UOMSNPzukDFEWwORK8LAkGK6wcwmZPCfkUNhg1RaXj0HzI+l/0DppM+BWePZo+TzAqtfFIyJ3O0Uy4rDs2rTJpUi6CzCGB6AkKiWQnW3VlQLEYBFuGlWqqFqVwdlWPUjgfTSanwDUIbex0ZqfKni/T3kWdSQLvLSpUElj6qHBJaGyFTAIRFRU2CY2dKbYHXL/EItM9exGqnhkFJ0wmlFAkdZmXAauThPOi7AdMEg6Msud/kvR91QwXde+D+lEyOnspPO+1TeXgQxhu5p5+KPFLxbyJzCkpCzZqU6Fz41Zy85Rs73J4Ssz8W51+i85IUeUkkOg9KVxTxRpzITJa9Yxom6jMirtDwa4SEhedr7FgIyMH2Q1hDJXFFuctqGDHviX2jgRj05WKCs6mK9EU4wZzfGTFucGOprqWom22kBGxDgmjid38037dl8EUZ6ClMAZakb0fwN4snteNgnAu9GYcOGmutKfMGUmLjPQSHOMF83zYfv4TqqJE4pSwOUosTiojEEUR0lSzhBFCnowS5tn9uhd5ra86reUEcVKF06ZssFT1uCkUMlWhdc1JXGVaF4QhbYHkV4dKd0/HzL/Mk+mpPv3Wx4hhpUk+sJUovJYU7LMqk79oWdhGPksxB2WZSzJvJ34ui2vpqTZGWTol/AQT1hQ62GzihRZp1WGib0dS3CDMbm2RkqSCA7Al2UphhIWlhcLTLtyVHm2Zl5Sid6Wa86Lt3wR33hWgyO4PYMc3xf7BRGJ3KgMOZrd79QPAfPQgmyoMJ2B5HXzFWMH0yEtZwenX2Q6Ofu1eXkwhnjY2TzdUje/UPVM6U7BvexFIcBRUVSDB0diKawSKVcU2AovtQTelmLZGmHdeVpViOPcuqLw5moyofkAFPyDJ7gPDTi2vT9ixkdP0gZnXfmKd6onj5JLbRk8VohUzWlPY826G6xx73rEMesksoVlX6b0u++y6lNEvlEYQD49mJwoMd8f60CeK4e7YfPKKe0IDr7jIMtVdta0UcY4mSvHuNbvTK+a9ZrSgCHPNngyKMNeOJjvwgn0RBAtesOZBFu6CHRJ04W7DJlIoqq6275CK+lAZehycrkEQ66Igomx6QfgIZ8KhwIleVQDvKmsMNKUN1lY+Fe5jxoxiKGJdc+LK58KhgFQOhrOHsHwyHIxHwZoX7SLZmxdMdXLqB4DJSV6WLXdBqutToPhqsA6EVZFvmw2UEsULg1MkKW4KZtekIkustboJRr1oYmSuFm0ihas10ZFldwWwJbNir2ACJctuvWB2s2zXi+Yj8UwvODdo56HzJ4Br3FxkYXjfJbv1mTPzBZs1N1lujmasC8wviNXiBOYXja3I5MEWKIpMHo2tG/iCXQaZE8VELpoXOiJW0L6zs0pRaW20JLJiHsVq42lscEAUXSsPFr4qWnnzcV4Vrbz5tK2KVj55M1xUwjkzXJIZ7RR2sJ5VIHKTx6DMnKjWlxlCYleVJN6XLoHOXcGQQOfa0ZpA59qAbAKduxJNpXNRrLWoUqIfP2E8PZvK6qKQblnkXN8jmiPnGq/MhYvCn7wGJ6uJTObOZHWRb/yYsvETtAsaXXskdFWji1ZYOYzNnhLyaWwoanoSOTs4H6oUF76DopKC74GPkUtdsPFcwWMTotlw6SrRJuUiOJVeAtETnEAvmckOTrVeALEYnGC9YFYzONXAE86u6uAJ56OolBW4Bgm03dEbZfUe8eQX6+Bkcgm+N4FcQkvvBXIJji2QSyiivEAuwbEjQ/2A65fgk0r97EWoV49TghOmckswkqrKz8DVEU5Tsh8wXjhOyZ7/QZEIpmiG87KXQYrmfv15J3bs4z0eIUgMUzDvIFJSzBSwORuw3aJnFeNKjjMlh4SvUOGNItZjC4URCIu2joo/bZaeoHHwyVUDH4LdQgrgfXVG5pkCNi+iU40MkGyZicIOQ0vszQhenzb2o+D1uRJN8FewJ0cU/BVWoqkmnmhPxqp6GIxR9sEpY4KadwbUVIMGtDFjp3WmKKATuKFlE33JE7JLdIondttZBor6tHG+vGyINotKaI4SiVXCrCiRSIGMizKLkSL6GAyrMBd1SvtUhWS4OQVcjdRZQAnHL61gXj1/CUVKVphccwhnmckF0ZfVU5fgfETVH2E8EJZOGm+gTGNQZpn3RbOXaSEr2sEZO0L8TZhpQx6SHfnKXp/C6drXyPoZ+b6NkpfdyisAWaiPAF0pOrEI3ZFvmyOANi0K6w00mxbM+Z73Pc+pMb7VlkjLS+H8qG676Mwpgtuujc2iGi2gU6QIRgsreGkq341mt6sfAOajOtW5wED86xwI83MjxbFxS6ieVrWiw3IhQlpdsm+vX2pkNKRoR9YkkNkgXAipUYxsbMFLAUah4KUAx2bdieIqwfJqYzH91ubHXcwGwrsqLEWB3pxKloOZa179ABBSLagGBuOvTk8jJxnfmlqkVZ9oSxOnq6VtyrdlIZr5iCK0RwvGPJvhKseYZzCDisVCSuZVdl3qmXXtYuiOY+vB7HQvsNqYu3fogWK1MUfv0AW7hZTAK06yLnVXbTPFmKOJEpx17e7sgrPuSjRFiWv2ZFeUuFa06FRrXLAvouOtccGaRycrdRN47bpSN0ETKbqkCmnzDm1odJlh0TN4L4I6FwUR45sLw4c3W4CBw5gtfAw6vl75TLR9WPGeZslBwCwkQ6RCGc1YFHhta4xHn1ReG0Q54VTk/eZkpw9DcyTI5cPQ4Hzwlgto73vVcgFNTnCy+DkLgt8YPEWYg2kKgeKawb4Pgs+C3ZYhCdHMrglZFmprdSs8ZY2muaocMNifhEgo5O06dvVywZYkzIrC5lfjGFUvXDS7UbVcgPPBe9+ic2OhEWLl5eDCOWZZXp53iXfjQmOEsNlgs8Yqi9bRjAleuDBWBS9cNDZxqFlkn9LEEWcxsrGDTFyDXZY4WTy4aE66LH5nZyVZFo+WRJbFo1itPDcODojUZMU9WnhFI28+zrPgr2A/bQk3owWvXc1wkvy9mOGiTpM3nUqNzFFnfZkUAMpZcVsoYGzZNndfuqrAw9oYagIPa0frwrWZgCQcis7XZkfzKs8KYq0EmWet2PQsUb0FENJFJnLbHnJOOAYNLopA56LJqiqTuS9ZTeUbK/YELV0g8MyRUJ1K4IEVJkyLvN+cEjWolwuihj4WLbD5kKW36B1kmRRsCrlESI3O1JiNR8VfwYZLk4k2LRcyvQSipyn0kplsVjMU2BlMHIIWtlfATbXvhLMrWy6g+ZBNPNE1SJNNPN8jnv1i3XRyCb03hVxCS6+QS2DsrpBLIKK6Qi6hsQNF/YDrlx5l6mcnQlm3o8h+5ewyt4Qiqcj8DFod4TAm+wHTFX8Fc/73rlsY9JEENfiXPbHJjY/uS04yYbA8N5PznCAT8yFOLtCJcWuJWd22n1zkdJPoTYA+DG155eNICquE+d0mVygFJuYTm1yVfQXGwH7b5+2CvS84LcRJiEoSvRmFZTJbxjt5M/wwNbPRwvMOSTc3vh/veUlepqNAIPnASxbBAnh2Z2lcy9hcgXk7qZGnxIj8wFGw0CitjYK8OQl8YSRyaHoFF08UFE3dnT7E+sIZwIJ5p3V3YA2DTCyBuaINjXzcTJa1HzaFwKvEQDgFmXFCE5XUE9/HiZoB9bRPdi6BuU82QWZIvrLZKtwB7fZsCArTZD6mQqNEbGgTdXmL87B0L3u+7b2eKTpeKgbeTJTZJhDoupgJ/YAo778dluNln7m9MTFF/kAZtJMW4iby6HDjZp63ENub+hIpakJhVQV2BS14447ItqdN1HeYgvVM8g5TMBnJyxtAh4BZ25GbUuBFLgPA/HK4OD0ev01Rvtz8OH6/P93Ombi5mlIy/dl//bi5OT7+x38+01DH6boOF/+c/vP8j5tPtYeaWoiluT/++D9M9l6O
Copy blueprint
For anyone interested:
The right most set of assemblers (2 rows of assembler 2) are configured for modded ammo, but there's only 1 input ingredient difference from them and regular red ammo. Inputs from left (assembler 3 side) to right:
Uranium-238 (1 lane)
Copper plate (2 lanes)
Steel plate (1 lane)
Copper plate (2 lanes)
Iron plate (2 lanes)
Iron plate (2 lanes)
Copper plate (2 lanes)
Steel plate (1 lane)
Sulfur (1 lane)(due to aforementioned mod; simply remove and the assemblers here can produce normal red ammo)
Copper plate (2 lanes)
Outputs (again, left to right):
Uranium ammo (current BP max capacity: 225/min)
Piercing ammo (current BP max capacity: 225/min. It produces 450, but half is consumed for Uranium ammo)
Incendiary ammo (current BP max capacity: 450/min)
Regular ammo is not outputted, but rather fully consumed within the design (current BP max capacity: 900/min).
All circuit connections are just for reading belt contents and then feeding off to a counter of your choice.
It's 15 assemblers deep now. I believe there's still room to "grow", but most of the belts will need upgrading for that. (Yellow ammo belt is already saturated, and iron & steel plate (and sulfur for modded ammo) are being fully consumed.)
Bullet Assemblers.png (3.53 MiB) Viewed 2012 times
Re: [1.1.46] Electric pole ghost removal creates weird connections between other poles
Posted: Fri Dec 10, 2021 8:40 am
by lyvgbfh
FuryoftheStars wrote: Fri Dec 10, 2021 8:01 am
0eNrtXdtu3FiS/JWFnkuDc7/4YYDd31g0DNmq6S5AlgxJHmzvoP99Sd2KLZ0kI4LztO0Hu9GWnUVmRiZPBePE+dfFl5sfx+/3p9vHi0//ujh9vbt9uPj03/+6eDj9ent1M//Z4+/fjxefLk6Px28Xh4vbq2/z//3jdH+8uv92+e3q16v/Pd0eL/44XJxur4//c/HJ/3HY/OdXDw/Hb19uTre/ThG+/jYFuAyLEAEI8f10vP86B7i/+3F7/TC6kgiE+XF/dXv68W0lSvrjl8PF8fbx9Hg6Pufm6X9+/3z749uX4/10w2/BHqdgD9/v7h8vvxxvHqcP+X73MP2zu9v546dQlz7/LR8ufp/+zd/yH/PVvQsViFBuEepwcT0V5Ovzz9MgcBQCuw+BDxcTPh7v724+fzn+dvXP0939/I++nu6//jg9fp5+dv0WaQbS49WMKjf/q2/fr+6vHue/f/H3Obc3d7+eHh5PX6l/9PpBx9urLzfHz9enh/m/F5/+cXXzcDz/eELm9effrm6v5+CPUyKmqj3e/1j8jdc/f/6r3+6upyBuVI90BvzVw+PlBJHj/a9PUDGzZ1bl8AbA2+8/Hi8Gn5bxIrl1HJU/X/d2zX+W/DV1FS5CZBqw0WF/1uJT52DMjUTvxOg/C/PJezJ3gapMEKP/rMwnH7nchURVJonRHRQ9k9ELde1FjI5dO/Hc4Jqh8YGxK+54YAokwfGBoSsO5NSJnbrsIEbHrh1fgaeNxV1IwheO+HSR/5+H4dPd3T7X4GG+HD//dn+8Xn5nO13PYyb+8csfw8xmIbPBqFIRvnLF91AKo8hViBwgkOKz5rJblzwMjM+ay2YFLqPvtfisuaxUYOJbfTED/+WWH5FgMDJVD4LBSFRgYppGKvB5mDx8vzk9Pk5/+DFkeAs4ClH4a4MaPRIjJFiBhzdNTBBvBR4Nvdh5csSYzMnR38WhuZw8HRcqVsJ7imqpRCxJmGGf8I4q1PXiT2dq1Ce8y6hnUzo32TZx2FeeIS+84d2PR4M4TI3lKe0VB8BTJpWXgeCenfjtHwJnVpkL7NoDUXKftmtuc8V483pqKmS8e/3Phc85bfhw8tR0yvh08tR4yvgawHfmOZjP0+jb8Xp+uXa8mf7+/enr5fe7qQr2dYfXL6nQ17ju569x02cdT7/+9uXux/38ds63dPA9/TK6LnwJEewvZH85ZBd8uRQ8g5PiiWEZwkpFtoZlCSJtCT1Sikq5Qo+UQr+DDGXHs72oHCx2M4Uped0uub0mKvh4C42CLf4VJ1BzsxCELEUYVeILD9XB1fPcNNRSFf/KEyMVOPJXDH0/rYm/YqhlaubZdOirei3sYIl9x2CpVaTXsSw1nl7/SYm/raWCTwYlXjufWIN3aU5g17MRSxFdJSMWo7pKi1ibLdbimuItjuK/Dp3yFH+Kfvq+LlP7+KHM66FI3Q7zeiRQkZl1waX3ZmxgYdAq/5IjQxIf4e1JggJ3FkZlN4q6YypStwtiPhi68KYFAlUX3kVggYV3EVhg4V2EMSB75hl+K5TwFgK7XeEtRPr50H4jQEo3Htq9ybrVbC/t7JHazwPq5m4aTfNdH68vT7cPx/vxay9nfVwYKvUc/1bJeNh75/kXSRCavQvr+vaPvNd4Sq8o2wcfis8i8m4IHpgLnBkOYM+T3rtCv+HKmHS00oETFriRGKr/Dgx1oiJlx6Pee0e/wkt/sXcL+Piv1nc2v5DnYvPYXOcOO9gH+oUpNho8Psw6F5gYZn59NeTfq1SJl63Sw9V74g0QN+MJ0arnhrxv4mtWbP76LobHpvBCwTqYwn7lFeu7MTzYJjf4NM+/4cs/l8Hv3gMOMxsACdaMpZX1YogkFoLfgwVVYI/1DSFwDRsMnA9FvFSwByt/qQn6NhGa/EZNG+CB/Xr09uYL+3pEiGBDpVJFqGBD4SKzX5be3qW9a6vT7dfjNLSu7n+H1rqEjjQ07o4S/14QjJxJ/ETP4YdhX6O5xABexPsobJPBRhuhPI2Ri9z5a8ZmHKNEjVzkc+OuwCRRy/7Etmws/5aWXehUAXjmbXiujGpCuxq5gUeoVyM3pJP+Ild7ni2EreA8ahzQiFbmZnQiWpmb0dnx70mtlVX2fCxr+ZqD8KK0WsEiqew7vy+tjLQvLGfa85atPtL65X6I0xIlxqHez2dlo1yx7j0DE/V8vwVDzbl1H75d3dxc3lx9+762jcusTIWuznFXJ7zQrNhG384CqSk4mnf6HUbvTD4AKR58CdOvF0AlNwQUIYW87Faqx3uTkef1WxIKNEYXqkcwyX9u1kGvjftsIYBcufjEXbzwKtRqjiK8CzVjCS9DrZFShPefZqwmWr5gDVvohnVKw/Y6GPyHEe09gOf0k6lz6yHmcfdWJ6YIa+H6bmcJ8PYTa4WFGHLtIbHVBRXp0kg9IBaiRwwVWZri3g2m+Ls/aUNUlBkV7TBvCoi5jFGR6Vd5WMtU/uUjCDTkWZ85iLFbNvrKk2Juw2k5HEsYJ7yjfdIpMBLyQu83eqV5cYcbBg1Ccej9xuBvUbxUDGyNbXEfpR6vH5b8w+0905J0xtf0QxNfLYvvhsDaFRS+PlI92Kp43WAhG/QUeducZrZGB6aPr9Std8e/AbOubyEnBAHbFcDm9h6vwQ+eSX/+k+CCvWXtMP10AnU5xDoGNqFn9G1janRkMeC5AdzZURGi/RSZG31u8jZey/WMdmHgljRdfauFTY8uvNUykd7ES8UGRu/8pRpwC86Ju8oqZjjlxfAFC89+kQ5Vegb29xMkTCvfwbyY+mL6ydwb06/hrAguwv1BjeqwkAWufhnZWGEFh9Bp0TO9Gwi5XwwcwCr/ogaMLNi7gajt/DVjkRcqPqwfosYCu/ChH0bf8ub+nH5yiH3cC7QaLlJUVfCqcRyGENbRMXaumOxTO0pUbG3QbJv+dFxD+HkfGzUzCHFd2iDhAyGnS27jiemb8O6iW8E69e6iQ5kLyna+ZlzhQgPH7pTr8h6nsNCHIW9NwLxE/iVBxwwqE/OSoEPDi7E87IsiAldb1F1reypamVcRYIoaT/lbncgYIYaNWIz3YdzoP8buMGzFCiLPjnVBjDTPjtU5JvG6sX6gVVxvl9+guROLuP2o61tHQqzESwVsfhJCrsQBpxO8OQYZQsCVKLAkL+4D2lPMFFhmHqvoQsDFbUdpWBGEzR3WTE1ZZNMxCBJWg95vjNlUxUsFEdhonhvsGXXvBpZi2T4QS0v26taQzm8HCDkwZDuWf8Y5sG20S04MjYxNC8ZJr230SC7q5g2pWpUmpcGUqEwv2DIC02shojjxUrH2K56/VAsctCtcobJK28IVLhOJZnix+VCyulsFW6eWou786Htk5KFUhnHGGnOhuiJ3ZoC5ErYeYOiswtYDMLJgCodBXnGFAyNHlSLGeqomZjsGtuxdCJfI7Rj7+qgWkY8GS6H6xIHobDSRjI2C2tVNEVi5m7DBwHpIN2GDgfUUbcoGA28dbdOiEs1Z0ZLMKvugk5BN4FQ9dkZRK0Jo7ICihf6I5Gt35UogV230COyqGawL9KqJxC7wq3YwlWAFQdajylR+/IDhrOwq0wpCuWeRCn2PZIo+67zgFy0IbzeEZkr1G9qXqS4Sgh/zNT4USpACW3MgOlULjBU3OkEMbI2G6FQ1MIaX6JJ68CeYDFW8i15/Uem794BHGKFI6IbeuCwbiE0IZgKlq8yYlAiv0kIgbrzAC5mJ9upxASAICZursLXGjfSRrIXMrHwoK5iMotJN2GIj+qryTe+Rzn1Rjl4mh9A7E9ghsOpBoIfQ0AI/BGIpCAQRGjoyDA64TglJpXB2QjNk9SRdMFsqR4RiSHagQCsjnCdgPk+C4KFvzvuoyO68dcBk9LKjg4+jXeLxMG/Fza7/Mvw4iSwK1sVHStbosYMmY6JT4rZSUsLsKTCn5ZB9G6cmU1pE9GYUvgg6SSUupD+r3hVtE4OCzYTHjjmFJD/nK8SOOE1O9VUY4+PJWGFt53qE3JwuE3kbQeC3rBoSZ4me+S0zmOD9YA6JJJg/2MGKSlxhPbXQ9JA2C0NozXYm89iZVqJ5euTnaMBL9Y4AuzB1WrEJYjjTO1E20jXvhJ9TFnOZUzZMV/aE5hGc0xnzeNh8nmf+TF8QmoSZUuLgATkrZRIYRTQ0GALjzdGgzD00/UpjYFRWP4miowkUoQkR9fReEChFIV+tgVtk8hXDHu2R5FcnyKvXyBNQ0iGnOgQKKw3ygSxBorWbYF8VmZ8F68H27Zv4cViPeQf5NArmMuf5QWisryBpkK9kqhS61mrahRBo1b2hbwWqgtWC2Z3VM/JPcNjVoNoImBB43ihtlr9GWreJ3otq5w02ehX8vG1oqNYHYG9XwfvAhl5TaWkws12NjyWjOdVTYIzyF/uQOqN8TDA0TwtGwUnX2I6NfuVeXu8j9qd7OeRSxvcTGT0n2LDE4YmRfCgTqqAYydCC8QGKU8H5AA2NORLFtDW4WlfVmyDAu1PpbCwT3avxMXz0oO7xHzaof3mc1vHjtEdaYgl2J3E+YnJbqCFOSExu63HEnJF4JrazFa1yxHbGsqdYCvhkXWPXtZVZ1gumhbQHosmh1CTmUMBuhk7D0IGioCGH9OQEjwGfsOtNsgx0T1kzxXCDWRK8eq2eTE4w67WDKarXZAVTVK9WMK+a5ILt4HmXXLDaXlbFYo3hdVUsdIRA8klVrWZdi5l8ZthsbJx6QQkLwofxvkWBwxsOoJDpqrp2T0WDo2lorKxBPVbSQ4cGpqAoYa0RG2QlLIbEILgOmFM3qLYDIBADb1oLNk9QXWvRNKsHSaKZ6bIgOPM62BQdxTRjNYjCAZJm38RAcbrY5IiC54DZLDHJ0mWpZLzVLJoVmXDFeicqhKuJC9WDAGzEKJgQmBBJqt8smNmkGs6CycCdeAI5K2gvnvMHYKvYlGS5dd6jaU2JcpQFWzQVWcMNpks4EBEFqXAiIhpaUZ5j0M+K8hwMLRvBgs0F2fXExK2Kc5RF4vsaKieVlQbLIYvQMZDmwvPQ2FTIuvwcrLkiP7ee3FmRn1tP1iLJz6sVzSvRihUt6JR007nLopCxkPdzYk5B68v0AKGzzPPuyZVCyZroUShZM5hCyZpIVChZK5h8bhkIsuplYrNC47LKzCwG5RpV4rTtoNmqIIgFC8IfSYZmqqiE5K5MVZU3rNDTsiryWGsOVFkeixVXOabMHA3yOWUgXlpQ2TcwGbIQFrz+JLN7TaCKmmBd6d+OUXi8v7v5/OX429U/T3f381/7err/+uP0+Hn62fXbv53+5+Hx6vbx4pOb/9W371f3V4/z37/4+3RNU4P9enp4PH2l/tHrBx1vr77cHD9fnx7m/158+sfVzcPx/OMpA9ef5+adgz9ON/9w8enx/sfib7z++fNf/XZ3PQVxY+QWIVVmG1SZEZTKLFNhYFcoVJg1z7rsvIC1WFecF6xCdtWSE8xsVz050WQkmV3DllK0s9GZXWu7yICuE2HgnSlEGFh1hQgDQytEGISl7BQiDAztKZ4KWoVlF2Seahc0s1MPSEKzJfNgFYufZTYJrIxwxpH1PMlOOOTImvfZSZLEbkXruplB/6hznc0R5p3Z2edDmZYYpQ/1rtlLlJjhp5m957SfkJFw9tj+0oVw0kqyj5wAE7w+heiCHF/zQuAEoqKtgOLFwuFpP/UzKMoYFIrxQsNuqFKKUsheNvsmmxoMW+fZ0OCpdaYVaHVxnKVOyT6xWwmKcacF96AYd5rBFMsFa1AExXLBDCY7cmJNGLJsbDCC17NXxhO8JmhNv8ZNGGS7BqwTQ+XFrCCGwb0xm4jrjLoTm9WR3bqWN0tZnrbnTmU8VD88xDMTGqfEQZPwJEocPCB/oswBg3Yn6mvJX+yNNhOfaTUpCCPhLCQT51E9DAkFiUIxW8M2yhQzhjvaoMjHNZCcXS8mkLRDDWOgsJooH7gS4JooH7meSjILDdYDOzP7LPu0UA5JnHwl715hYs0rZA2M/Op8Kk+b9l9hN/1qY+gpVgtWd6ZOCWCxYUcbFYWtlnza6j0vsfOUmzhe/2TPS1fB+5EtcrFmz4pFrgXKLLswYP2dFRcGC365qBQ1mNmqxgeT0WRjgxHSz9Ydc/dPSB9PgNx5wSw2HheCp9WV+OYSpXhKn4r1YQkC/4wBhZA1xUiGVlwWMPgVxWUBDM16E8VViuR5B72J6FJlsSoI7KbS2mC6uhofA1F1sqnBqByz28hU4ZrG5aieF5NiLUycapY22dkahWDWo4hQOJ2J7eCtaJkitoPHsqcYLwRnXWOVFaQv16uoIvNCwIRw6mhqOk9BB8h/OzfHUNAB8tzOTTBhCA673qCKXfeUFXIoukxklgRzXLMnm2COawcTtL1mJzZB22sHUw1u0XbgDW7BandV+ws2Rpe1vx8/YDiEehC1ue8bj1Gc5h4J2hscp53X+4Lw6YwBLgoc3oIBhUwVNcT7KtpYGhotq3oW2cd0jQpRlLPIrBFb5LPIMCQW5Swya+oW+SwyDIjF8S63WPMU+RQyNM1FjQ9mpqqy5/c9iuhhi2sMLY3WoPOcrtk33jGcLjY5ihdsF8xm8UGVMEsl87zlLZoVlWwFe8cLZKuNC9WBAWxELzgw2BBRLW/RzKqWt2AycF+iQM4K2pjo/AHQKraEoMqu33cnp20tgTK5BVs0JFXLjaYr8/wuCNJQeH4XDS0o0FHoCwp0NLRsfgs2F2RZFBO3Kl7IeUix+M6GikFkpcFyRFWMDoI0JpqHBqdClGXoaM0FGbr55I6CDN18skZFhh6iFa0r0cJfcRtgWUiVaMI9ycxsSQrVDHltF+ZYtf7n4m+GjjKLvSdXCuFs9YZyGpsdTCGcgxVMIZzNYDLhDIKsy7RthB4GWeadMShnr9LCSScRS+alvmBBhHPX0EwllW7dlamssqIRWgtkQfxrzoGsin/R4griX3M0yMevgXgpTuUWsWQUVeaLXn+QucskEGFFcCY1gUjoms7BLKCsGzStMoJSImQqDMSNQoWZiVYdGFAQCg4MZiGrakYKZraqZqRgMhYCJZZdwxYbtH/TmV1Lu8iAqhNh4J0pRBhYdYUIA0MrRBiIJYUIA0N3iqfC1inNyTzVPmg29UioQbb+erRCk1k+rENalLkyEHfCSVfm07IJJ12ZT7MmCS6zFa3Klg0hW7vz86FNi6dW/S/Dj5TIvmTdQOdUrZArdOmOTovbTEubzQpeUjM8wLp0z+lQwZtRGDHI4rcsdF6rthZtC4dd8J8ICbvGTGllIYPg0otq1zDEx9mm4WkTttU62Ll0ibwVwXjVrqNgvGoFq04wkrAGRXWCkYQdTHVUxfqqLqRbpF3DGF4vfinz+JnW3K0N4VWdakKBdWJ1mZfpQhiujt4atJauKVXzhuundE3rwNbKOF2VEblCs7o6zHcib7ZO5/lQDJqE21Li4AE5L2UOGD6Idg1DYCx24U+gOLSxIVXFxV2dQ4cXzrwyIeLVM69QoCgUszVwvUwxg9hrqmXDECjJPe0Nn+HXpinSx/ZLlVV8+cCVAFd8+cj1VZBZaKwege3bs7x1pR4vtZh+jSc6pPbylUyVQkpbTbtQdq1aWfTNQILrhNmdoVLyXmzYhaZaNowh8GbVsA6BzgtzsfuJqhEw2OxRMAI24RFVfwmwv6PgL2HCLyaVgAczm9X4YDKKatkwRPqLVUP3Q5KhxsrLgLFJF9mOjX71PtrrjnD7Xjolz8UaNTmBfseQROieYiRDC04UID6T4ESBhsasmWLaGlgpyzJcDNypqJQ2mImqxgfx0VS7hmFzPjtnHPrYjKymzstkse4kzqdLbgs12QvBrMcQoW5aENvVihY5Yrti2ZMsJYp1jVlXj1ZZEVkX4iWIJgdTUwUKGnIYr7lRFDTkKl6zYi8BOa7X4mSh646yQgZNl4nLUhEsf82eLILlrx1M0fVanVgUXa8ZTLXtBduh8La9aLVl3S/YGLrut0BDqDpVl1t1tWmtnmGysXFaBa0vBp/K2PqCwBEOkwMhU7OqH95V0UJT0GBZ1bPkPqZrXAhF62uNWPksORCJylly5tSVz5IDgdh4/16weeRT5NA0JzU+mJksS54rr/StrVAsM1iDKvC5Vt+0RvG52ORoiqGE1SzdyeJspWSdN/IFs9JlohXrna4QrRYuuuwtgTViV7wlTIioRr5oZlUjXzQZjedpsVlBWy6dPwBaxTbnZEF53aPabY7y+MVatLkgq9TBdEWBuoVA2lwSqFswtKKtL1hoRVsPhpZtfbHmapAZU0zUqrgt5DysDH5fQ3mnstJYObwss8dA6gPPQ2NTwesSdKzmXpGgG0/u5hUJerGCSRL0bkWrSrRmRWsyJR2dzF02r5CxkM92Y45T68v0AKG9yvPuyZVyCpuJHuUUNjuYQslaSAwKJWsGkylZEGRVJjY7NC6DzMyCUO4icfoeyQzN1qIghsUKIpy3BmYqBpGQ3JepqPKGHXpaRkUaa82BKEtjweIq0lhrNMhHr6F4aSr7BiZDFsFi15+cyu69BzxCFbWkuJL2v6L5VCMkS+dUWW2wbs60xghqZZapMKwrkkKFWfMsyd4SYIsp3hJmIWWbVTCzss0qloyFQIll17ClFO3d9MauvUc6SQZknQgD70whwrCqZ4UIA0MrRBiIJYUIA0NXiqfCVmG5qTzVXmiqh12B2SoyD4ZhqHiZTcIqU4RTrsznSRFOuTLnfVEkidFb0bJsaBD9R53rbJAw78z2Lg23cLWicGHRWVdfKdFnhOygW8E2lZ4Vk3Z2O6W8BK+vCgxXhOx620LZBMKhbaLhbRO1jYoqWC5Eh91RZLSkEbIGbjWpdgbDNL1YGRg2Bg07iS6RtyCYkZo4r4IZqR1MMFgwJ0QVDBbMYE11GQW7r3nVxmAEq4U7xtR50xPfuzLcfdCaas8A9mCLtIAVRHED98NsYa5lQtEJjunGblPLq8Usb9ujN4pZaSYUhWfjI4MA6YREFYQG7UnU19L/lvqxFVHDFU+dQ1EXjrgyYd7VI65AhHSBVTanbVdZZRB0tCeRj6sIaYd5G/6L0cXcn22MlCryt2gNGq1bRTtKZZ6xgnSHHV3+JvW0YN4hWZOv1N13J7Cv9hWyhkW+A9ibtzHPE2r+bQi+7gRzBatBu8uM7BWbd522JgqrXfmSle6fkzL91sM4M5WWrKJ3pJr/Yg3fnWD+awLTq64LYI97wXXBBKAPIjUNZtZHNT6YjKQaGQyxHsvzHuOphfqEe+/acK3SfaaVsuCMXCidVpfjfhOGlRGmgo3oG088o0jpPPEMhg6CvQKIvyDYK6ChWUOiuMaQvHhaTLCel+B9DOsQVakqiO6QRFJ7kLO/3NvrHrKaPbBPimrYMELc0wD1zkBapVWy4IgiDt5LW+xzD10IZj1rCenWgriPVjTPEfeQfX2PiqNEDNY1Rl0aG2W5Z18os6B3BmBqssCwQ+biPRaKYYcMxXsU3CViwK63ySrePWXtFImPZSkJjr9mTybB8dcOJoiWzU5MgmjZDqa69oLtkHjXXrTaqqgZbIwki5o/fsBwCKWmio6jLqXtqTPcPjZOMy9kBuGTGVdfEDjCOXIgZHJUxdF7KpoTTbaDZVWPkfuYrnEhBCGzOWLlY+RQJArWEubUlY+RA4FYeOtesHnkA+TANJegxgczE2U9d+SFvr0kinsHa5AF2trqm1Io2hqbHEXwkzCbpTRZmy2VjPfwBbNSZTYZ652qsMkWLqpqLQE2YhWsJUyIVNXDF82s6uGLJqPwHDQ2K2jHpfMHYKvY2mQ9edwj2u2Vcu8FW7Q5VaQOpqt5gb/GQNqCwF+DoQVpPQj9Jkjr0dCyqy/YXJAXU0zcqnihWGJV8PsaqjWVkgbLoarsQZB2x/PQ2FTosr4erHkX9PXmk7sL+nrzydolfX22omUlWrKiFZ2SLjp32RUyNmMQbkLohIXuMs+r58o75RQ2Cz5TNIWUtaMprGwyoym0rB1N5mUhpE0fkGV6MyNDc/oEmaBN4C1UlUAtOt02fawg/EWLwh+8hibLO5Wb3JUs71UOMSNPzukDFEWwORK8LAkGK6wcwmZPCfkUNhg1RaXj0HzI+l/0DppM+BWePZo+TzAqtfFIyJ3O0Uy4rDs2rTJpUi6CzCGB6AkKiWQnW3VlQLEYBFuGlWqqFqVwdlWPUjgfTSanwDUIbex0ZqfKni/T3kWdSQLvLSpUElj6qHBJaGyFTAIRFRU2CY2dKbYHXL/EItM9exGqnhkFJ0wmlFAkdZmXAauThPOi7AdMEg6Msud/kvR91QwXde+D+lEyOnspPO+1TeXgQxhu5p5+KPFLxbyJzCkpCzZqU6Fz41Zy85Rs73J4Ssz8W51+i85IUeUkkOg9KVxTxRpzITJa9Yxom6jMirtDwa4SEhedr7FgIyMH2Q1hDJXFFuctqGDHviX2jgRj05WKCs6mK9EU4wZzfGTFucGOprqWom22kBGxDgmjid38037dl8EUZ6ClMAZakb0fwN4snteNgnAu9GYcOGmutKfMGUmLjPQSHOMF83zYfv4TqqJE4pSwOUosTiojEEUR0lSzhBFCnowS5tn9uhd5ra86reUEcVKF06ZssFT1uCkUMlWhdc1JXGVaF4QhbYHkV4dKd0/HzL/Mk+mpPv3Wx4hhpUk+sJUovJYU7LMqk79oWdhGPksxB2WZSzJvJ34ui2vpqTZGWTol/AQT1hQ62GzihRZp1WGib0dS3CDMbm2RkqSCA7Al2UphhIWlhcLTLtyVHm2Zl5Sid6Wa86Lt3wR33hWgyO4PYMc3xf7BRGJ3KgMOZrd79QPAfPQgmyoMJ2B5HXzFWMH0yEtZwenX2Q6Ofu1eXkwhnjY2TzdUje/UPVM6U7BvexFIcBRUVSDB0diKawSKVcU2AovtQTelmLZGmHdeVpViOPcuqLw5moyofkAFPyDJ7gPDTi2vT9ixkdP0gZnXfmKd6onj5JLbRk8VohUzWlPY826G6xx73rEMesksoVlX6b0u++y6lNEvlEYQD49mJwoMd8f60CeK4e7YfPKKe0IDr7jIMtVdta0UcY4mSvHuNbvTK+a9ZrSgCHPNngyKMNeOJjvwgn0RBAtesOZBFu6CHRJ04W7DJlIoqq6275CK+lAZehycrkEQ66Igomx6QfgIZ8KhwIleVQDvKmsMNKUN1lY+Fe5jxoxiKGJdc+LK58KhgFQOhrOHsHwyHIxHwZoX7SLZmxdMdXLqB4DJSV6WLXdBqutToPhqsA6EVZFvmw2UEsULg1MkKW4KZtekIkustboJRr1oYmSuFm0ihas10ZFldwWwJbNir2ACJctuvWB2s2zXi+Yj8UwvODdo56HzJ4Br3FxkYXjfJbv1mTPzBZs1N1lujmasC8wviNXiBOYXja3I5MEWKIpMHo2tG/iCXQaZE8VELpoXOiJW0L6zs0pRaW20JLJiHsVq42lscEAUXSsPFr4qWnnzcV4Vrbz5tK2KVj55M1xUwjkzXJIZ7RR2sJ5VIHKTx6DMnKjWlxlCYleVJN6XLoHOXcGQQOfa0ZpA59qAbAKduxJNpXNRrLWoUqIfP2E8PZvK6qKQblnkXN8jmiPnGq/MhYvCn7wGJ6uJTObOZHWRb/yYsvETtAsaXXskdFWji1ZYOYzNnhLyaWwoanoSOTs4H6oUF76DopKC74GPkUtdsPFcwWMTotlw6SrRJuUiOJVeAtETnEAvmckOTrVeALEYnGC9YFYzONXAE86u6uAJ56OolBW4Bgm03dEbZfUe8eQX6+Bkcgm+N4FcQkvvBXIJji2QSyiivEAuwbEjQ/2A65fgk0r97EWoV49TghOmckswkqrKz8DVEU5Tsh8wXjhOyZ7/QZEIpmiG87KXQYrmfv15J3bs4z0eIUgMUzDvIFJSzBSwORuw3aJnFeNKjjMlh4SvUOGNItZjC4URCIu2joo/bZaeoHHwyVUDH4LdQgrgfXVG5pkCNi+iU40MkGyZicIOQ0vszQhenzb2o+D1uRJN8FewJ0cU/BVWoqkmnmhPxqp6GIxR9sEpY4KadwbUVIMGtDFjp3WmKKATuKFlE33JE7JLdIondttZBor6tHG+vGyINotKaI4SiVXCrCiRSIGMizKLkSL6GAyrMBd1SvtUhWS4OQVcjdRZQAnHL61gXj1/CUVKVphccwhnmckF0ZfVU5fgfETVH2E8EJZOGm+gTGNQZpn3RbOXaSEr2sEZO0L8TZhpQx6SHfnKXp/C6drXyPoZ+b6NkpfdyisAWaiPAF0pOrEI3ZFvmyOANi0K6w00mxbM+Z73Pc+pMb7VlkjLS+H8qG676Mwpgtuujc2iGi2gU6QIRgsreGkq341mt6sfAOajOtW5wED86xwI83MjxbFxS6ieVrWiw3IhQlpdsm+vX2pkNKRoR9YkkNkgXAipUYxsbMFLAUah4KUAx2bdieIqwfJqYzH91ubHXcwGwrsqLEWB3pxKloOZa179ABBSLagGBuOvTk8jJxnfmlqkVZ9oSxOnq6VtyrdlIZr5iCK0RwvGPJvhKseYZzCDisVCSuZVdl3qmXXtYuiOY+vB7HQvsNqYu3fogWK1MUfv0AW7hZTAK06yLnVXbTPFmKOJEpx17e7sgrPuSjRFiWv2ZFeUuFa06FRrXLAvouOtccGaRycrdRN47bpSN0ETKbqkCmnzDm1odJlh0TN4L4I6FwUR45sLw4c3W4CBw5gtfAw6vl75TLR9WPGeZslBwCwkQ6RCGc1YFHhta4xHn1ReG0Q54VTk/eZkpw9DcyTI5cPQ4Hzwlgto73vVcgFNTnCy+DkLgt8YPEWYg2kKgeKawb4Pgs+C3ZYhCdHMrglZFmprdSs8ZY2muaocMNifhEgo5O06dvVywZYkzIrC5lfjGFUvXDS7UbVcgPPBe9+ic2OhEWLl5eDCOWZZXp53iXfjQmOEsNlgs8Yqi9bRjAleuDBWBS9cNDZxqFlkn9LEEWcxsrGDTFyDXZY4WTy4aE66LH5nZyVZFo+WRJbFo1itPDcODojUZMU9WnhFI28+zrPgr2A/bQk3owWvXc1wkvy9mOGiTpM3nUqNzFFnfZkUAMpZcVsoYGzZNndfuqrAw9oYagIPa0frwrWZgCQcis7XZkfzKs8KYq0EmWet2PQsUb0FENJFJnLbHnJOOAYNLopA56LJqiqTuS9ZTeUbK/YELV0g8MyRUJ1K4IEVJkyLvN+cEjWolwuihj4WLbD5kKW36B1kmRRsCrlESI3O1JiNR8VfwYZLk4k2LRcyvQSipyn0kplsVjMU2BlMHIIWtlfATbXvhLMrWy6g+ZBNPNE1SJNNPN8jnv1i3XRyCb03hVxCS6+QS2DsrpBLIKK6Qi6hsQNF/YDrlx5l6mcnQlm3o8h+5ewyt4Qiqcj8DFod4TAm+wHTFX8Fc/73rlsY9JEENfiXPbHJjY/uS04yYbA8N5PznCAT8yFOLtCJcWuJWd22n1zkdJPoTYA+DG155eNICquE+d0mVygFJuYTm1yVfQXGwH7b5+2CvS84LcRJiEoSvRmFZTJbxjt5M/wwNbPRwvMOSTc3vh/veUlepqNAIPnASxbBAnh2Z2lcy9hcgXk7qZGnxIj8wFGw0CitjYK8OQl8YSRyaHoFF08UFE3dnT7E+sIZwIJ5p3V3YA2DTCyBuaINjXzcTJa1HzaFwKvEQDgFmXFCE5XUE9/HiZoB9bRPdi6BuU82QWZIvrLZKtwB7fZsCArTZD6mQqNEbGgTdXmL87B0L3u+7b2eKTpeKgbeTJTZJhDoupgJ/YAo778dluNln7m9MTFF/kAZtJMW4iby6HDjZp63ENub+hIpakJhVQV2BS14447ItqdN1HeYgvVM8g5TMBnJyxtAh4BZ25GbUuBFLgPA/HK4OD0ev01Rvtz8OH6/P93Ombi5mlIy/dl//bi5OT7+x38+01DH6boOF/+c/vP8j5tPtYeaWoiluT/++D9M9l6O
Copy blueprint
Thank you! For reference, this is the same thing with "only right angles" connection logic applied. I personally find it preferable.
Re: [1.1.46] Electric pole ghost removal creates weird connections between other poles
Posted: Mon Dec 13, 2021 12:58 pm
by Lou
lyvgbfh wrote: Fri Dec 10, 2021 8:40 am
Thank you! For reference, this is the same thing with "only right angles" connection logic applied. I personally find it preferable.
What exactly do you mean by "only right angles". Not connecting any poles that have different both x and y coordinates?
Re: [1.1.46] Electric pole ghost removal creates weird connections between other poles
Posted: Mon Dec 13, 2021 3:45 pm
by lyvgbfh
Lou wrote: Mon Dec 13, 2021 12:58 pm
lyvgbfh wrote: Fri Dec 10, 2021 8:40 am
Thank you! For reference, this is the same thing with "only right angles" connection logic applied. I personally find it preferable.
What exactly do you mean by "only right angles". Not connecting any poles that have different both x and y coordinates?
Exactly, it's limited by script to connections where one axis is shared.