train loading question
Posted: Wed Dec 14, 2016 10:19 am
by vanatteveldt
I know the topic of balanced train loading has been discussed to death, but I'm not happy with what I thought was a "standard" design, i.e. one express belt per wagon, loaded with 6 stack inserters via chests, and a circuit network with [* / -24] and each inserter connected to the circuit output (via green) and to its own chest (via red) set to insert when [*<1], making sure the buffer chests are balanced.
However, I'm not happy with the throughput to the buffer chests. Since 4 stack inserters can empty an express belt, 6 inserters per belt should get close to 2400/min per belt, right?
If a train is at the station (i.e. the buffering is not actually used) this throughput is made, but when I remove the train (i.e. inserters are loading into the buffer chests) throughput drops to 1900-2000.
Am I doing something wrong? Is there a better (and hopefully somewhat compact) design for balanced buffering train loading that makes at least one express belt per wagon?
)
However, I'm not happy with the throughput to the buffer chests. Since 4 stack inserters can empty an express belt, 6 inserters per belt should get close to 2400/min per belt, right?
If a train is at the station (i.e. the buffering is not actually used) this throughput is made, but when I remove the train (i.e. inserters are loading into the buffer chests) throughput drops to 1900-2000.
Am I doing something wrong? Is there a better (and hopefully somewhat compact) design for balanced buffering train loading that makes at least one express belt per wagon?
throughput with train

throughput without train

blueprint of the whole setup
(note that none of the chests was full when the screenshot was made Code: Select all
H4sIAAAAAAAA/9VdW4/jNpb+K0E9zpRnJFJXzNY+TLAJ8g92MFgUVLaqWhvZcmS5O41G/feRZFsSj0jqHIrtLuYlSTdJk9+56lzIXfVTWW2z8qfnp2/5oSma
Ij89fft2yPb508Pp/HJqsqaoDg+Px+pUdP/19O3Pp40fPX592rD0/f3xOjSri+bTPm+K7WZb7V+KQ9ZUNZwV/C28znvcFXW+7f8meNxWh6auyueX/FP2uajq
p2/jas/tX+76JdptvRb1qXk+FW+HrHz61nw9tj/8uaibc1Y+PF633P/lJs+2nx7eH095Nx01I2yHV8e87o/79PDXh8fq3BzPlJ9r0Wh/7nA5V7vdfz/4D//3
9K3Ody2iPbhfn4vdU/i4LertuWi6//HbSW91nh+0Q94f//3AurXmQxl/7/650WGXb4tdXmuIwLFEuC5lSIHgoUej5Z9D8+S1/7k/ZnW3n6eHJxq2n/P6a/Op
OLz1Kx6/ths6H5rn17raPxeHdpmn16w85Uj0Azy0wlDWQqwhEFES2EiE78f9E/jvw9lcRGUKWCpiqYOdq2GP4CpE2P0PrICiuykgpiZTvKybNOQhLKzTaDGd
sN5d5an9vSmp/mKPVHM0EoqKouKWfmB5iH+UQZ6yre+TjbV2uo7tU4F8St8rmTA6gn8ize48MsNEd5Uz32v/mTLB37+npPlMRaxFHwJBtpBGtkSkFFsn52if
7wfIeXI3OY81osCX5ZwyXefehGTysXuTT5TA+4lgqoF4ZurUEBsoto/sGaZ3kxBorwQChIAAEhGh2DtOd/O8D0yk30QiWfQJZ9YHGgMZISK9gMxMHYkQ9/W2
7/X1OmNwpf33dS6f5iM48NVm/HZcJeiDhvpbKIP9tSibvO5id9hoVx9GefIfi8Mu//MpaneC/Uy9zvSuU2Pk1Hgy9TY3Qc5NpnNvk1Pk5FSYfJvdWwmsb6hx
+RYpx8woVzT5/nYQSVhvOFIa3g40g2O6hGybtzXYsAbTrnFqqkO+eamL7e/D3GCYy5d+f1vnTT5MjIaJgXZiUVeHTfbnODEeJoYLu83zUpiZDDPn7D6dWefH
rKg3x2xyTt8bJs8Zfjr5pTznx7o4NMPUNFByOyByR6P63LPj5lhmLWtOCR0o+V74/aoo8yltg5HhF+DK9pv88FYc8gl1h9l69jrts7LclNn+OCHwMHeBraoy
69A+5OWEyMNkPV9l2+15fy4Ffk7GyXreejnXLcSbfXEoDm+bXV2U4w7ScZGQoCkSmnLg65VDXrbbamVSfoyWbwOUgqheX0+fqjrfHM8TIqYcpRm6Of8viMsw
UU++i0p5bemQbUe2C4fZevpdRBzOjobZegUxAAcXSIcF9HoiO53y/UvZgb5vXY1WcDb+FHiOUhiSVdi4FYbSHZI1+IQWDKU5WsWxqfPXdnL9daI/GE5/bD/l
+2LbmttOcTUTDcJwGqTMXib0ZzjV8dK6eNVhQnmG0xqnY57vNvtqdy6nhoXh1MZ09oRWyTifojFi0YFMaQokWK9AhOPwiRQwlOLIX1+7U35uDwARbWWAKfXH
a3kudrdFvmTN1NZ5g/KgaF4hGeHRcAwteGlFfmrVUVm1v1G1gEwUSozz0bL6rdp8yd4mLO0Pc/WS0M6dyFyMUr4tIL9PZC5G6dyyeitO3edhXb1UzUT0YpTS
FXwccYl4WEKvdocdtCrn1Gyyjvlas1VXnzsneSKOMUr/guWOrS6Vrtcyc4xSxmDBOv/j3P57slIaofQxWKc1lXX2lk80c4TTzB3Kx6qe6uQIp5O31fHYfXZk
L+XUOEc45dx+N2++FPXUMEc49dxLtzg3Hufq+VMewBigD01UdCp+x+sSAKMfDCKM8VXBxHIFc1txCJpQYibZYVIiMcZuQdnF++P5lLc/UFatImtlMEfmi0Ht
QyANOUlGoWCJ7gwLswaLGNwJIzks4ijGZ5NQKIXOMk8oHjiRo6QpKmCzBVCIBRPEEMO5swCLHBXJA8Ismo1CociclU7Rq44USkvkTskkFEq+s8wD2EKuw0KN
dM4XQCHmkaQzdRVf7olVUN5yZlnEV7IABt/EWbEVPa1Yoc3EUdyfTcKA5KxDxkWVH8t1G2QdpDKLSJLprF8CeUbul/BgNgqDYeCq+HHRHiZyfQX4TzIJA5Kz
HhdgigRTCwG0+nwFDGKM5tI6i68YyEvkTomvKUSWrIDB13NWbEW/NVEoM3EUT2eTECDdGyNrXJWK5jBFVNEANkpFxbbPd8V5vxmSSMeqzOUlG4K8LnXo8H5K
0sE7FjlFEqix/TmKMPsNX1+A979s9+b0BEIWNsHyGAlJAmUZoH61hVo2Wv0THyVAT6LVtVC/0YrQ/lcsQqPVav6Gr5QK5Aqm/3N11RSMmkpWSDWFaehMmEI1
YTI4xeGU12IiaqwXWojVH942n7J25G4zX2UseNJHzF+zUyOZ7qU+Kp9zOaJkgTTFpdN7pS9qtNsafFhDn9+RqsUxAZCiMjwvxZtihWRYQZ/UmRTiD6H/BJW9
ORbHSQJzmKRP1XSTNk21eavbabtJoiXBpWguyAuVF+E4d856glI/5h2r5y3qb9lpgnWCTNNkRTnBN8GlaJp22qHLSU1qRca5ej7rfnFz+espkycGqRmYixEM
Nqdq9hBrfH9AhfFLeamvmSj4zfcsxmeiwxRwfSfarPR7BD7/81jnp9OmZZnDqUtEbl7ysgG+khBp1pd3334oP3R5yeddcer+fWkDHnZR59nuuVPIHYGadqMX
Z/Fx4qH2f3oZuK92+ZM3MTbtn/ZZ5e4vnjve3Zyqc72FHt5t1z3LjBbmysdCnVF16Bjv8ustGa9jmGYMEcFAgSBtFb60Chaa4D7QYLfDPxClQlsYh/c51HJS
O7zT52Bo63MwFEMwrfWRpz4kw0jARHcChn+vtDbHpLVDjoQlujO/xNb4RUx0+b6iGVgyjATMvfgl+F7VISGqOiREwhI6q19AB68vlyPZMBIw9+KX6DvVK4Sx
nF/mo0hVHyEuRB5MUCQUiTjHjREDbCZHXTYMBTt31tqJuatIrtUlo0jVM85Zuwi4Pb7cO5INIwHjnrUD9S4K72g+ilRH5J5+AW4Pk8uRbBgJGPesHagoU3hH
81GkKiqktfNI1i51lRljD3CZHHTZMAzqqbO2Tkz4RnKdLhlFqThzztTFwOdhctdINoyCi3OWDpaPKW6Dm4+ilN65p1uAx8PkQiQbRsHFOTsHy+nkfpFkFKUk
EWfmIpKVczbAEIPIAZdDLhuGwfze8QVrVg4Wx8rVuWQUpbDTOSuXAGeHy30i2TAKLu5ZOVDgK1fnklGUClfndEsCnB0uFyLZMAou7lk5UOms8InmoyjVvTgr
x2iRS2c5EUQMAjnksmGoL2hnrRyo+JWrc8koSh20e1YOODuB3CeSDaPg4p6VA/XwCp9oPopQEO6cagEF4X4glyHZMAIs7tk40Bag8IjmoyagLNW4s5Fj7NS4
426SZDwUQaJVu3/Ny7L6oqx0171CsVzpLPJYpLpHdcbEms55sAwzIFF0fxIFqUCi/yaRqMfZEoXgPatCZanyotsFcUrXXAG68JWFKXD/UlW7/HC5UGZa5I6q
ce9vYhSnDoXpC9c7lefu1sjpvWDM81A17Zcr3sCGh59duh6uvzFnI9xzxIcf1heygwq+Yd+p+srUWSm/Yo3QU9+dKtysJS8mHKvLfVRF+7kdU18q08UFIs1V
qrOzKFcJh20sFLnfjqPez7jSwm2Tx7Joph0OycjCiA6L2fR4/GE9N96OMFshHTeAunJy1qORjFuglL+Lcaw0oGmUhSgf7VLhW4G6eLGwjz9MSnvLKpGZKGbd
RP3P1D6tecnqZ5MmOQlKmus4/ED50NLMc4A+hsz31Vx0ncareugSrAu4utPiZ1qbxa/36aHTUjH0tH10CRVs38N6c/dG+5c1aP9MeVpixq7qXpZU89SHjm5p
skokrlS6h0z8k0alfz2seNxATaX5vfoz7xhLJJkAGTYgAfyJ7TNCZdsPb2NC9KjDECiVSrCzmtGRDxSYma2yjn7cyl64lb2EVldRnmi5iYXf67IHa7c9qPp5
6A08wf0uurDVeiB+E/ievFtfNozUqnIvrkitMYUPn+dTXd1D7dq5F5NYywiEIUBCftOTbBipPeVePGItK+D7IN6vaNyhd+rci0cSazwSo6RFNozUq8NpvToB
rVfHQdsFXwTwFdetkNtz3LNlEdTY8svAZMNIjSgO2jLYaapweMg9Oc7ZsoijxEU2jNR84p4tA13aPpPfFErvw3HOlkXAkWFyf0c2jNSJg7RlHsmWpe6aMobr
xSE33zhoyVKULMqGUfpM3DNkoPnNZwpvh9px45wdi6G2lvs6smGU3hIHzRhsG1W4OtQuG+esWMxRoiIbRumzwRmxiGTD7h0QsGjDQK+IzxVeFLW1xj0bFgNV
zeURAdkwSheJezaMw04IhZtD7adxz4alKFmRDaN0jrhnw0Apvh/IP0DIPTTO2bAEvpcu93JkwyhdNDgbxmgxRYdtGK6Phtw4454NS0KUIMqGUXpE3LNhoJTQ
DxRuDrVbxjkblkBVLfdyZMMIjSHumbAA1hoqnBxih4x7FixFCYpsGLkBI7h7AwZUtLQemRYrWw0y6BYLbU+FcJFufsjrt6/Sq3SvQkkpnYJO+vIDF5qenzRa
KGeTPYaheS0BXYKL4LDV5Ya/Tjls45vXEv5CqCXU1tAqEIUFz6Ri+oUQLK2Y/l9jv8rYpTFvitDhDd6vmPdFqB8RubYkLD3CvlRTLuo/2HWb6ganOnFAPBRj
pxb3HsIBNbA3FY+/ksTjn3jx8LQaNdFVeK6oreU/sioWDYx4XODmRSveNgDsZFjgamcVB0gBoQdvP5MqcdeBxh0CDSrLkA5a6NBxwXd6tOK4izwydP0B7uhn
+1b6BpgDkAMOA89kL4AVWgArcAcseEWyCX9yh44LrCe4+pgkjg4cF17fb3Lcm+R7NvSHn4J22Nkqs+ZruWjB3TxeO5m7L/kHI2mFW5sfcGFr3P7WOHZrGIaF
q0RmbK/kg+WIxPUL1E+m6QwS+6x7OyqQrzJnQoVtCIbdr3bV4B7MiLESjxuq65rJbqsstoHhRHu2m6v8XL4z5wKkpdXaPXGzPaFoZ6VtTk27ZXG8Fiv63Fgc
oQNO8kh9U382xM1GqYLFE6CEed0q4dIqYpT4c1XsNnX+xzk/da+pXq6ekaY/OzqpYs3Lq4Q2F/GFDHaTbX8frxgRJkSTCVIdjZnM1JPrrHj71Gz6R0Xn4ea+
h2gYO97sA4Jv0z1iHDHmyXMwzBO/VRisdNecNV0Gamn/DL9/eRUE8zzyfjW0UU++VfbPTms7MweeDL+l90HKCRnF7OGRwhYBsht8dTE5IgENT0iND46nPJje
i5cpfvAzzswCWAkYrFyFWzlRYGWV0MqJwqW9mJojz4JNS4kmTfnpi7FonrFF8wgWLUUbBKZ4WQq0dDFYl7RsIDQwLdkzD799xUNHntgPxGB3IsK+aSi1rI/h
4T+2Olb0dDLwHh0LzNWzMvKBsm6QFh8bTsWrZJ11e4SyZ2rt1kXx+AJRKAZm3SLcynkCK6uENg4ULm3F0EolFixdTLR0yvgaYm5iaugSgp2L0YZCUVzZ2TVB
JuGLwcuGQgPSwu4T/O4Vn52+WPvHeELdvYZMy3oZHv1jq2Uu72LrwBVZwCD9z6SARCQ0ISk+NpqKenYGXlRmgcFFbUwKiJllsZJpWLcIt3GcwMYioY3jhAs7
MTROIdE4haYGJiIYmBCtokOFdgGvXTD4GN2yilYeFJ0ZiLDQ3lQR/MmPrYpCxUcgaCRg4PU1iiqyctkjvHHVaBErl1euO05gYyehjZ2ECzsxVEWBBV+bE9UZ
X+FrB6aqMCCoQo5WhbHq9WngGqTkmJIGpIXdo5snmOIlRwYqABl8g3Z59xoyLatkePSPrZIVz/gy0LLPUvOIkjLLikETkuKDo6kI0obQtzBPP1nJwq9Lnwc2
dhLa2Em4sBNDk2AlAU/Nv68wK8bZd1LyHa2YU0UIB7ycxkESERPrNzYr+Mx7qgjhgGuWWEIO4axLxDulCBPFR1YaABaIjBXhqjS8W1n4VBHCiYGnk5qHcOyk
sK0U8VuJ6ttYxHYS3COaBNMUNOm9h4tuAltbUKbotC9XlTGBF1c5Pe27KuvrVJqSq2rZUjFswlekKQEgxIhHMPDQaum3kRi0kly0nBb017uUjKY+jLyNaNis
ieIhuJNof4wrkvQcpNQ4vBBqUYVoANLvHe0Jc0XRDgcFBhxe3L64d6Ovhav2c8r36aGRQQjSVzww7kJXmnkElk555VxRPsRBdSxnxi3tNjxAf5Ut4hbWCPV8
QVhDiYeZCeDrrUhAsyJGodBo2KyJFSHEutHBYq6oKeDgHjweUoPFGoD0e0eH6bkig8/BsyAcXpq5uHejVMZV8zkVmOWKa0c5qCriJpcjMBkeJCviVMqAKy7o
5KASmXPj8hwbQWEb0Wlr/WGX5cL12htdIBANww21t2nVBqFoA/3CJA8VfnQIWC5iRA2oAUi/d3S9CVcUPXQqSXRgqSEQDYUWNQ7ikewPpHEChd8KMr3c5C4N
JsODVA/oVA1O7+BI2RFE5ELjYJKNShEbJSvKfZip3oSmek3LqglV1eiy5F4wpO4PiKHE1JyW8pTYwDO60v0qbE7V3vb2SKq4QPAiMU7c2Ci9TVTKj/DRvm6N
0NoayopZM6FP17tsPjHtY9bPFg3bNVE6lJ5FfNMfTxQfrjGwNSn1o1uHkX736IbLXiZlm49A1iWmxp2N2lJv8Ua3Mlex4lMxARimxo6bun0LgaZTzZ+9cZYy
JPCCE+NIuLKhzlDzWUh6+cSsl9ltF9G4XyP1SUh84e8A4aniqzcVv3oDj/rVqwNpYff43Feq8DljEHFNqN+9ZjfV3BSoW9mvRPHlm4aABYzLc9VXPWDQdCv/
lSq+fRMQBU6Nv33V128Yqj9idwK80gqvwiZZF+y3my/kkjCXqPu3WQs8Y/0O9Q0Lpreo/510i/plMQWTSV5h6PXx7Sp12d/DPM2CzkVnigJFpRAHT48E3uwt
DZICXpM3mk3+0CojUFyA1KkIDaLGn/PqK+mW5FeIu+uHJuihzMMPZfihAX4o/lgMfyzePwVSbHvKgzcwiibf3zhKQbh35esb08n9T78Pb228v/+jzptzffjp
+R/5YfcfL3ai42j/AAA=
