Page 24 of 24
Re: 3 and 4 way intersections
Posted: Sat Jan 18, 2025 11:48 am
by SavageVector
SavageVector wrote: Wed Jan 15, 2025 10:34 am
Hi! I have literally no idea what I'm doing, but I made a 4-lane 4-way RHT intersection. I run 2-8 trains which locks up a lot of elevated 4-lanes I've seen, and my city block size is only 256, which removes most of the rest. I really wanted an intersection with no crossings, so just did my best. Looks pretty messy, and I have no idea how to do rail signals on an intersection without crossings; but I think it works okay?
I call this one the Vector V2 (you don't want to see the first) because I'm uncreative and vain. I don't like that it's taller than wide, and it could use a little cleaning up on some curves; but since this is my first ever 4-lane 4-way in general, I'm just gonna call it good enough.
Edit: I just noticed that my 2-way symmetrical intersection has 225 rail signals. Okay, it is no longer good enough...
2-4-0: 197.37 TPM
2-8-0: 128.96 TPM
01-15-2025, 05-19-49.png
0eNqtXd2OnDeOfZVFXzuBKImimAeZm8VgYE96swYcO3CcwQ4Gefftbpe+6ukiq85RzVWQxD7FjyIp/utfDx8+/fH429ePn789/PSvh98/v//th29ffvjl68efn//9/x5+ktnfPfzz6Z8+/nz38PHvXz7//vDTfz/90Y+/fH7/6fkPfX7/6+PDTw9f33/89PD8Rz7//Pj89/7867uHx8/fPn77+Pj9b7z8yz//9vmPXz88fn36A+9e/80fTnjvHn778vvT3/ny+fT7U37UFwLKj/rnn+8uYOoB8/u3J6Bf/vfbDy+UXAK1798RgTSQFrtOS4dp8ZwWRUFcc5CBfZCPVx/07uHnj18f//79f88A1FDKpEhO2sRIk1IZ2pwUgxaRJoU8wBhFWD7FMKxkhyIprGjrW25LhMpKekzbWdT//sfXfzz+/ILxw/sUpb+hrESgAwU96Q8EaveBRhIrk9TRi5OxCNVZ4YutaiGFz0IUIcUkRqnsJ8UwZ0343/ef/ueHnz++/+XLE8cziuwFyv+d5TUCZpXBQ/KU/coYZpDXqgii8BVWgHXNFkCt6iSNk2ROgLM3b+wGFFjN46+MxKMJDGoLNIKhtSD5xsayKrydGiz0i1UxjIJGsC8JaIg30AZMnV2jjvd4YpzJmZ4TlgLC5aAGtcU/TVxXWPTnCajfpq6z9l9i2ip7mjFMo08zxqHd/PA+6sp+VQwz6K+KcYz9qvD+6ZP9qhiGdmNiHC1stCETMTAKG3X7zq0K3BRaySOocQDZyCNIYDpomueJc1UgztF+TkIe7OcfOAWgzlh5ufzqyC1X0NOx5enUGttphRVjCV54I403evH1/a+/pVd3rbcZN4QVupgu2stJcBrLppDbo7NqDgR+QxHen65ZCHCQcTQEauyBxhyc9IHGOE65UFLaFTArrDZarI0mrJiFd69V0Is7TO24CNo0wqVvgpi8zn5leBeb7njBCRbr4CcwRn5ZC+8iQ+PYcjq/VrDzczh0PCUSw9BxnsX98dPjP95/ewLCgrb4c6eQQdvl5z4x7Pmv/u3T+38+Ix50PUQ/x7r/CdUNdxj0GjdZbWjhDTWVjNxafWEizrb4VviQp8Tb7VthGi1Kp4ss4QIeLsg1GN+W8BDPCytyMQxRCbjGJa+syIW3lTdW5C6LAYQAet+WlZh8vcTDchUNyfH7YEUxptK2RTHGYwPqBMbJaK51JJqTAgUSR6ELqYsUXmvi8lKh1cZinAZbUruK01kJS3DYzFGGM2hGJ0C0G+UxztzW8IkIlrP8j8mUQpO5VBwhU9hQOiOz0sebADU0KbJKlQ1Kool0Mg7rEsdhIkpKYJcYZ/AS+P1oO5DgEwHTS3N5zj0IFIgrWC6KzH/89tuXr9+CXxyLLbdLzIIWHfz1V4QtDoXUyOTYKhqR6GtB+vcvZdhaK8hW7zhbKxutZ8zorN5nQLRSJY0sgyzz9pbJi7EdIzXGYcOO7MucPbIYp/ER+nKpMkRhE9m93hOkS6Nvm4xyNnXbk8anzpvy0yH1GFDJ8kxGGBtoZDjGuyF69QPnvhQmJDpN4oEI9WX1QktdTGlnM7k9doVf1arhoNeuArL9GhkOG3xkOEq2s/QBeIJ97IteQiddyet2lwHskxbFhHK2xNdjt13LtigmgGw7R4ZTWVFMcNq2AZyIcdHgBkEqF358/e2IQHVf8BOu0FF9BsRG9Rq7kW9r30m989TEXGIM35XlhKi3BfBbHrwK0BU90DBkBUZ6Ed45Y3JG3RaejC0NZMuBE5/XoGOQjCA2BtHYqxxjW4ASQDYUUaCLQl6Vy7GKH4bqm4asLQ7cNmRoTf0oCmq9S/Zfld65bzLimyp8GscZhziN1oZY6IxNmGnS7ilG61WCM9AE04nvcehhhprjsai5bY4Nj/Kvf+N+FKPQIAjcpLj6BxQrzkxhE7coMFtZ0djVnW03RteBeHBz14OTRfVtIzG5tpYzdAg2OLB2Fcw2v16Jr6d1LKHVWVOLhJXOa5ZhU1bCNpNg9NJ6FbvucKX/uIz9nkq/eGelIKFb9yR2tftlsINk64idUTeyHXQU5NAnOVuFoW76fKeC6hBg8K2Uzd9w4jfQmGo1rQyst66WepdTjBHfSL2IBa++6hzA1EGuoilqFVe5bNxVLqtlwFFlD5lrISqbnxgtZgfavbkShaOCEuaobzwXfbcHMQWNs9aA50iKaVWEnHYcNcap5HB0hkM0aNpVoL7TaDwSLm1eSctWA0N8VTivb5nohOBNr+/kWGMET7JhffR7gv0qfpcfD30T0YvQrvEfH3r3q+f4qseAcYEytLYRw66zixGJFJ9dJU1ZrwqJ/WpFL53nIOEZ1QDrW40VkmSlwWSFJMHxjQzwVcRW6GNNgEDHzVbuYTi0iaBt+m3LzCMbHRq5K6It6BCs3+eJQwTrznKLjOAbTXAfco/eEc1sYGnWV1A+5l23R5us0iZ8cVZpY5xe9pU2QRRaaROgirY623ccE+TEO5iPsOUvmNyTj6i9o553ib8iBFVSjCwOv/CJfderOAbN8J426wA5g9onm9WyEpPmrDwm36iFNkUnJ8EaIpgqvKlrDP5GO9D3CodVwOzrvlf3Fj+hv6OpgkNzK1JBqPgaAPueErCO8AOuRp0WRSGBgdq2jEDwk5zKsqSmV9XJHS4We/ajkP26KUVDyCJ5RlElUxUG1N3qaGTiAkPtbHbN7guOh9JWG/qOwRYPDdpQV/HOieNygOgF9WgcUntR6mkhrsMu0cmovAkke7hPDe0/Mg1BQ1MS9UTcsq6n22Yg8JUcc7/k8HP2Epdsa/ztWYjv6fdVm7Az4SKzcZJ4R2SI72lal+lEKOcnWW0S8JO/ViVkTuy6mJMNSeZYWn8W1CCsa8MB8zUFRjUCtbIFcJv3dEHXiTcQ1vgwQ9SOMue4MiDuKA7rBCx4c+qSvHkR7Yb6/qqfAzIl7QSOQPOjH/b9/CYw91g39jOcLiYI3uHL1EOWxKDCd5d7SHNsn7zu3j5CfAQ6uiuruDkvyucjBEa93OUczgbJuIO16dZJXFAnm5O4sDOrJ315mzeIzw1OWaqGsDGxcICoI0Qd4dJceHWoTpjWhvZ9jJIemIa4lQwT5kVCoxEXYiuNdnOGE2zqfIKshfDhelm0VcQ85Rbl8rcydp3OWZHvwet3MWqsAcToVyFg8SyqELAC+68vmx8imxWKoqDdxtJTYQlVVlAntk7KeDd4sUVvJDB6O6qTwHiu53ukNxW4bprgM2MWwsbE4uuznUCFla0KgQrrWm04Kt5TUpVAhat9lTgt/JmFSpwWvtSiEaeF95405rTgmkRjTgvWrcacFux3thGihlcD3pbSGBmAdasTMoA3qnRCBtCulX64hxdJ7874Ow2ubPRBfAVfF9RB3BeNX+2nhMA0fih6MJLDtVsm0KECbezkGJ2gHF3ndEojz367wNHQNyTscILuqle1DmdraiySIeh26WMCheXWK7GzewLlqva2JSZBdAKx3zURO5HnRrrSkU4H1KYPPBEbG/M4JOlGhzoYLvqI3Tn9pVCo0+EMzctqN5hgxbs6Ga8Z3wgijNuMLwgRxm/GH8YQxnFWvBGa8ZyJhzIY15lYD8L4zviyEGGcZ8UzK4z3jL+iIYyjO3AtYzxd/G0NYVxd4q2NThwZ/vTGy44mGBbXss4cGa5lyhwZrmXKHBmuZcocGa5lyhwZrmVMdGC4ljFRAf6WhwziyAzXskEcGbFSZBBHZvCDNy8LX9CwyMAywlHLMSgbauS2hBM2goxuj3OSYtBxbCPHZWIt457NWbeSAWeKbi3pR2V5QC7w5OvuKzViSO5iort7+8TlZWORiRYCHlbLkbAihsUn7wohGPz4kMVyFzZOtI03SE5tbxPoCmxzcquIJjA32KZvN5MgNPN7TuZdyy6b0+uFL39QwmyUVzoVAMm6E9Plk8HFb0ypuBK50okAjNxBJwIQA+VGJwIg2EknAiBYpxMBAGwvhU4EQLBCJwIgWLjy8LJKGxTcXtCautp/xMXp7G4UU+Jj0E0px+Di5cdoCIwOVxxTP5iD2fEGl5OoOAIKzwV2AhRPdc4QVeInp6EHierECRW+tLByURA8PyK4clIQPO+Z9kLA85XATkieKBtkOKQmwreZrdQaRDbvoq4UGwTPvSefQIcWT/hO7U4Ie+VH3zsh7G/fgYmVXxl7grfFDIYPjY28kMOrna3kzru6NXvV7bEBYESoVy6/Y4ScVyM3ElwalvBir/wghR8CHgI6Hbc4EAj0Vui4BeEr/O6MXJHBFiLjgaEYQTC36kWSuzfGRttAu6TMYJrNe+OfyHx5GAS2hm3jnQ7mfmjoHmhZOT8IdeNhG+baaRtbmJTwgnYWxijhrmw0zxz1JQh/450CJaSmb6zB0EGI/dt9Mskrp4PCxCuPxvCaaOVmWIzHlUZoDvFozmQUhogtC3FpEm00k9C/V2002B30Au2CQMNZnjZD1Fh48VaaU7SHEQvnUk+X1lvU8BZWbgL/ZPgxaL7UcYoSMH5sVDq+i7MDY7NdJ7zZQgmeoO2ka/2JF8izftVcAwUDxDEO2X1ICuLzAOeXfBV9HZoH76PtxhoebtvqA12btmBKDKNsDHApAnEMAO+kkSusZBzqYWzQgQkc2j9acyWhAoOx8YRJZS4E23BRG3E1mKCBQSsE6oZj2ojbd2OBzWqPxPA7zJVBoG5EkYn3EONzaZ3V1AhpFty403MLEV4/aOeOaPnPqOytV4c+5EElprLws0Mq3L00YV09Balvb9HQ9sOrbEYlyW1cc5o3DBZM/mgKG7NBN3revCEEwwvfSEaAKtkOMasYJ7gqyLLbECt8K2QAtmV059xYbQT05pN4g+CMo+szeiokwqzy7d64kTcH1lp056uW43TBVQReyZWeJ4knuDLgxZo9ZEuc33A+4JzrmMNQwCe5SpTnBNzLMw0Wc8VbeaYTqHye9QwfArIvKWNkNnLRNYbaybXXGCpfgXS9ytLBBuv1nk5KJTbSMPK7XYbM2OLkS1YQmVizzipsYpBwAdLyGypG3ggWhTgz2QgWhWE2MadYwstuhLAb0WKtBNmDzpW0e3I+KnAIybnuKvh6/T7xW1sFr3achg4cWUKn+PaaI/BEDhRfXyNK3C94o86qXWKwjZ2Nw2A7OxuHwSo7G4fBDnY2DoM1djYOg53sbBwG6+xsHBK1aUPTMJaHVBoCC9tjjAX02irXY+wQKL4oigCFtUwJUOW6oTFQ/IlaAhT3LQlQXLuY4ycm8nHUTtxgBKqQ2/Iw1Epuy8NQG7ktD0Pt5LY8DFXJbXkYKpwqWQUvCNV22+od2bClfe42qGPk+26DOgSvZbeLHINHCwynJkEMtO62pmPwfHSnhEbqxkY2Ql7IHpoEOvR/lG8pVUYU4Qq+GkH05Oe9CeuC9tAc62Ndka3tOtDVays4APbH6UA3dWtKLFUS0FH5ritCYpJnofKn5hxKH42+nVsPH9dStM1mjpTvMaFjO0udEGrbOdoEcD+7mQCib8U4x0ordL/SXetElVhis3J8wH4+JZbYrNQeBLvRt1074UUZ1rfdKExiBTcRANrOZMUMeR2TjWY1rZIyjmc1bRD20pztOIf4PAvbGo6JxRS2kx0jt7Id5xhs22sVWM1phvxGJ2d3/WJB0HPJBTd+k69ELA016IjHdlQD8cu2AxAIfm4HIBC8g67lKkEgoF62oxoIXrZDDwiejyiVkBdvbGQDrLxQ7/wGa+ZElW1cQdbaqI9t59pCjxBfaDOZI5tsWwmE6tsOe/jxA+9+cdxCDHyPjTcCtW4HF8nHN7ZPBSKzs20eEKpuB0LJxw+2zQMi06g2DwiST8CsRVkYvtMRz7htXYcQK6I6AYuW+trR9HLX0qUhfApmLRGG2A+/zHTuTR/3dNsP6RsjxITzON5usslGiCnMgYdenWA+8UD3d1SHqJ3QZqYYMiaUn2pqBHwFszftCGD8rsTmqGhdY/Wyz9vp2VF5VT3tuMCOtaIN2msSGCIajR2PvNm8K3YceOPM8nYnYJfr4J3pwfAeuliNgsRdVCVUybf983AtzsBff1r+OUJmE9Y/h1Drtn+efHxj/XOIzM765xDqfoN28vGD9c8hMuk2bAh1v1CRfDyxDSq+6UI7FS2YQRPxkFUhWmYWLmJfdxbLVOL8OpxiyWAlxu0bdBMWp+v+NDaEP/bnpiF825+bhvAnPDfdCdSNNVCNkEYt7DqxS4eUivJUNtaJEQ62VnjbF+Hw6mZtY638wkiHJ++VcHuJN59eQKUIQuvgWmtBVON6a0FUctUwiApfmzNGDW+fAVf3f1wsuNxzEl6Xr1pqsKbCC4ITXOgZQy0Ea/HnnsaCLQhvt8sQINl4vFcZssFhpWHXRIKx0WN7ZPeZUSEiOrPbabHeLlRktG6snfHrX29gKtWN/fqNZTN+4+tx97QoYdgM3VsqM2cClX69tXLmQz77CJo+g8cIr4l1aEvMNqKnQRE/2TjkEjgm3bcDEczOzv29UOAPsLsThVCEub8fCqR+f0EU+AN9OyYBf2An1KQkaMCx2mRgN0LMTgnm3N7FDP4AMfZLWRsv7GwqRrALO5wK4lZ2OhXEbex4Kojb2flUEJcY/qXOjVgpTJ0bsVOYOrfJblYGcZ1drQzhGvFulDmDS7ekgriVbaHFDI/hrTer2RUkuHMb3l5erYMIBkcw/ApwC4Hxyv66MpBVEUY8D2Uxbgw7ydlVENbJ4VUMFm/CqY2BFXJ8FYSFb7fKHJngg8HMkeFLZhp1ZPDV1qgjg9WsdQaW9y3b8tCA/XKGL5I5YIFNFCbgFFSbV8xZ9PypoZ00eg2ZSYtZ5UsXR6IPWY5jxLtQNT7a8AwqHxAOxprge2dGZ8jmo8DBWKuK5lVHLkAx4UwHDSoacz8lG25fs+pkUw7GVXT1zDznOhu3ntGIjhpGHvZbajIW4z01k7kPiaYa5j5sSvbqgLBjP52esNXIbh2Q0EluaVySu7mm0fD9NM7I8cbLTn5djruwT4Hfy5pe2Z4kzB3paGOpZLFKaJ07XNy4ErU1ikG62ZBARTUdzpMeUU293ZJgr1pxuPw6dMSTBFcGnFvivRo1MG7DvThaczWLnWVFNfh4xhPOV7xquGHeygZZ0tjHsuH4QTu7yg5nCZjCqecmjg4igz5rO9N832IUU+Nb/ZctUOSEJzkQgfMKDT3tCnJov8hno44SDxI8bLwb1UeMH7NlbO+kwg50wLMbk0Htu5PmIL7uToWD+OhNqp1B5bsEdDD4k86x3GluhtO5BGArjKFLc8Y1W0Ali0zQ9oojaYE0hpiBj2VYyY9EQ+C2n2EINyAZ2vIzjTXtxq2OO3cqIRbYBt4B5dTRoetyyjV1Cm8kmxu9TsZcGztdPTJiFQ1/YJZNvx050yl47aswZ0rs0unMfTEbTjBj0V/17mDeOnOJTrrV3BBUutUcQqVbzSFUutXcEOl1bpEzRivekuMMqkAz6ZOB5D3WSjGCv/kqxRK+77xS/FF0xHup3QCSNBvrbxqj1hvvQjVGwZ2vmDRG1Tc25DRCKmdB96q2yaDK7o5pEL+SC9qeYO+KGOarBh8oGFfc8M7SaSceWS010R6fV068IU78xHt8rFIEw+s7jrImxN87qprhsqFZ0JVxB84IcYSfXj5qeG+sq5TwB+Caih4yMKBgYAqZkS1OHBm8RUeuyC4TSU/ZaDc/OtjG7chjCr59VTqjNYI3uQpzNQi2+6oOBnPeMTUA/YDfMTWA/EAtd0wNQD/AjoUwelUrO4gd2YNQvjf6f85jCRBjNjS0N+YHNgZCOiOcG0t1zoMVBh3CzmwIJf7QKqzz2AZGNT4PMhhr0wrf7g0R3IRv94YIrmy798SUszXuSe8IOPQCWt941PvJFwBsVUPrm+MaNxgfoMF+7TFojixNmXgr0VHtcURa4N51VQYWzgOpEbD4i1bqDCysisdkFgSLN8kyR9bhhOth6BBV6Z0OyCDB7UoHZBC5YH/BlFyzw8C0w0/mTGHoneSr6Ite3PR0OKKcyQFGqFo2CjaJPIf3ispG1LREcCI/UPmoCRJtxUsfMglZ0Y11rC2jPGaJwmPFgzBNuuGctsn8gPGxh2NeiJLdeL0xJ+oo3fafckTg/Tyjs57gkM1GOuSIR+W73VC6GztXKMgeiTk6O1cognBC2blCDHawc4UYrLFzhRjsZOcKMVhn5wohWCvsXCEGK+xcIQZb2blCDBZ/zJg5MsOHK6kjw4crqSODtaxTRwZrWaeODNayTh0ZrGWdObIJa1lnjgx/xEqZI8Mbb5Q5stnYyB2D7WzkjsEqG7ljsION3DFYYyN3DHayvZ1SMOcV34azcgICbICaXuDHQIWBFTbExmArXwk9+IxUQn1zt+pMNCV0Un2niFjiz4h/QOm66PMOzzcMYkIRh4ezVlx/4XeHsDub50ryAzGrNkqNlHfr5JRWBh7pg5eNMiPjRPtGi46sfjHsB9BYsI0rFpMJm73gMWKbhCw5/gaWMB6hF6X7ejFcvCWgU0KDL+FhnEIv+EusfRLRvROPYTHuphOvYTH+puObeIRxOB1fxSOMx+n4Lh5hXE7Hl/GIUuem9CI/DHfQi/wwXKMX+WG4k17kh+HilXwrBC66hue8AlewKVqvYIdcLzQyeAGq0shgNX8cewCkQbGI104HDcBAu+NvVM2VvK0I7ECaUfzg7p8hCNTmtnZXZCAT7bPs+ZFQvs7Gu1TrmcoL5oZC1nZqh4lQhCGZN9n4BU1+If4G1AeVcUVTmHjJG737Q4BlFt7QPQK1XbEmMTTemLp6PUHu45fikVEH1jV4w195PCIWZMekN9wNbZUhGK4g0tdXh1/WcRoa7R1/lfJCodHx4qMSLApttPcOO6S2bhpgstujZ6+g7NFy9hSwuJ2/JSHaYTWcg4E11NAVZZiwkbYpCd3xD7BpG4mpD8UPXq5Tz+qITaO7wonXVbKXcHjFk5aaCMiuAzW2LUqMa4ty+LGqWQ9SbyYfXXU/2QyMerjCs/3zBofxfja/DrQxuV9azNL4k+9xRxGejrLfaYb9ANkYIxazJ7QL0Toc6P5YxseRLwD10c+36kV/lYXAqPNZzpo+74puNhblnG+BifAKLmusuTXsCOyOAhBEN/6ezmrkFKSr0IfzodKEdqA5uhbHDj+yXhYCNEQGXdTz3rZ6VzXM0b045+2dl58yQ+BGL79EkfuG6ZfFLSSON7ghdV0pFSimum081Vr64g3yA7Z/Z2E/AGaF7MgAPkfv4QVucGJ1OW01zlRNeCZqvdiRAcHLbuYNILjFey0azoDg8t9KCdYKKNCEhyvcGVi9Qy+BdbE+x8YPKPMDeHFi3XEVyTxOuDhxyHqsNNNpP/8QeiSUxHfbHCoQE4q/L3WoQAK08VLjZL640fsE6kV868yN6/BzxYftVyAEdMXXr1mMGzNo0LIbR2wbi2sO2U0QJ235B2DH3JH6yYqfa7gI48mr4VXJEiRelzIk1Nk7op5q93iXT7/YaJN9XGVAlP70A+S4rt3g0OZ+cHeK6EFuGrl1rra51fxwXzGy4ZrgOe652LXgMbTTVsZjXkjZNzMZpNCqnCFVWpUzJLQq5/0AunmJPMF29hyaJARyu0ZXXiiFG+wZpEjGnkGKNDeNRTtwAa1Dn4Lyw0Fpcp/RjjbCMMYV+y5yLYzfONZad22gUFQ30nS3G2R3/MWOdbwFIlS3Q4UGRHtPPwDOvPuxsq5VJL/zhIwW4vyUIG0NsW14S8uRTm4NSSc/QeNdmccptlgg8BUvhwXuCFMbnVlsl3U8pezIRbNKWus6BdMNYnbjVHBVrJsmDO/sg14pkrIJJPDoUE07MqlNMbnFG0+OuxCjePdmlFgQYhPXfPNXlPmVXu4LCcBfEd6CJGLY7yzNtSTKwDtRDkXJkMDymx89BW3ck3N5+kW8JezwB5LAHu8+OZ9UxgfjL/+MKnqjS5tQSeoJmn7xsCVBi26q0mEuHVElJR1LuUF0vdPLx4jmLrVX4DFc54U0g1K22Pm87iTBGmzGrpcEyVh5v0IVnEdcAp5SRatKT+KCUcj1SV0QH3jjmaQV1XUo7BiVFryUBXBq/qhN94JFGPiOlEMOE3d9bHRenXS31wRy3DfY2xt0UKgCHXdwb/elFcadTiH4XXzfltv1MzZUFw+g5GSNd/JSmiotwYn123nAqN2ARF8wOrrDu94nW6a0CYcCGUO7qrwcLAHMsOFxVzvIjZEm2yKQIt2hOIkc4KtRzvKeQQkt74nTPeu+vGeQaDL+AEq8+Lnbla8HgYCJnPSL1emHD/ZJ6RTJ9qUvg8Q2O694rw/EIEw+05fRhzdbHCKduOgu7PrRTq7zfPqNO9QmI7ttPxbRJyLo3mlBz0hVWtAzpLEv6Bmk8TKZQU1WJjXx3jfe+VnykkBKgVPjyxXWkiAJKxgpTZUVjBSp0aeYQtHhjbYESVnLoo20LFLGdgilQPedSLF9Ucz4AuvJIYoZkm8bQUXqdIJv9vAbHy37yQOQVLoZXbGSosiGcmVc4JVLEySlhShDQvePH8U9vbO4J2JkZKRIRUrwPR6HtGY8QfsmjiBUFROmWtiYSzuEKyhLJ8PSyqfkMp5WPiV3KWjJx3c2zaz2Y0am0ipqCdKgVTRDMlqwM6TJLzpbQY4ij6yJbPQzZNQ2OspRT5CEPosMid/NuJKQOhPIRh9vRhy8scbPnwkoWOMz1auEnX40XwpNv9pYMRmJ89vQSujRLzeyypDgL8cskcuo6nxb6hK5FJIOYlKkjSGLG6fQ+fG/Ue6q8Uvna54p9fQFMhJvsUMbnVa4MWqCYrQcZvTMfTnMIJ2WwwRJy7aJGlAkuPG6i984YK28oF8U0iYl6MlLL9fm61LqN3Qmg6KjmZFYXR1saXIom3RQ29eDjOxJLxUYWJ+eKO+PZVQOelx2IIlxGbR3NhKPcVS2OAZSuNm6ndK5oTsZFK87iR81BjstMByTwcFnmVMiJx1GjomFkcO3xk4scQTwJ1TWFZ4i0fqRIvHxfArV6M9LrD/+HsrxeRmSstkVS7wmG8wizBSFb9JMoSZ/chmXnFYha5gKzcLm/K1jraSCV/EPeUuusVnZKO+FyBir0bKbIXVI4pbR6QkKXWxM6aHfpbQ0qTZhPTjObiRIk5aC5N6cdHyeIeHF+IPnGZLw9gLLynml+ZZcwM5LfIbUab5lSMp+3UxuNaeTtimSsV+XIk06TJxYM6uwz3aUM/tuh8y10B7QjK+sWmgPKEWqbIA4a2LWKl52X2Y7pYpWhRRJ2QU9syIWpOLPaByHmbGN14wMabJF34nV6WqBfaRjRHV2aF9BFV4r4uuiirBNLROJdqvQS6gmdAtVvJR+nHz26Xu7OybS5FiFn/iaAwLmdciT7+d1KEMiAgu5AeXs53l85VX0iYt5VHQd25L4BC0s51Ii6ZaTSyJjE1EbfSYpkZ0+k+RmqfSIstcEaWwgAepVaaVIv5VujQcpdP5gExIbHWo/5+0SLDq29gyp0oqbU9XYvS0pVbR7lSIprfOgx8EUxOUGkUY7LxGVf3338PHb469PKB8+/fH429ePn5/7iT69//D46em//eXpD375+l9/qU//7R+PX39/+Us6qnd31aqj1SeT9P/E79Ye
Copy blueprint
Made the Vector version 3. Squared it up by getting the height 12 tiles shorter, while also giving the overall intersection an ever so slightly thinner footprint. Added some (atrociously spaced) roboports and electric poles. Put slightly more care into signals, cutting back by like 10% with negligible impact on TPM, although I still have no real idea what I'm doing.
01-18-2025, 06-33-47.png (933.62 KiB) Viewed 754 times
0eNqtXdGSJLeN/JWLeZ51FEECJPUhfnEoHLvSWDcRq9290cp3Dof+/bpritXjaaA7k6Unqzy9WSgQAAEQAP/98Onz70/fXp6/fH/44d8Pv335+O3D968ffnl5/vn8/H8PP6RWHh/+tf7vH48Pzz99/fLbww9/O/30+ZcvHz+ff/Tl469PDz88vHx8/vxw/smXn5/O/+6PHx8fnr58f/7+/PT6L9aHf/39y++/fnp6Of3g8e2//LDhPT58+/rb6d98/bK9v6W/6ErA8hf944/HKxjZYX77fgL65b+/f1gpuQbKr9/hgWSQlnqblgLT0mNadAf59PzLh6fPTz99f3n+6cO3r5+froG6xECGUtM1BqkYZ7q94czjw8/PLyey1z83B7ShlKUlxaR1jLS0CENbWkiByh5tKZGi4KMIuYQ+SmbZ7cMUkjGuiiQlVU3fL1ryUI1kt0/bRdh/+v3ln08/rxgfPoYo5R1liwd6EfaXr5++fvv68j1U4zPey9P//P702/e//+P58/enl99Wq/z6glcrejGv7id0UmJ8m7qgjNhQEEZIYsXQp401+NVFyaTA+CiF5LaPoqSNrYgdE2PZ7RN30Yn//vj5Hx9+fv74y9cTeRG36grV/5M+8YAbuQLdJa+zX+nC5IV0RlJCzFJOsEHZnJMFUKQssHb6qN5yZNAF6iXkgCeFuZCW5D2tLqjS/oPv9Rkn2xuFGeBmhQ1DHqAeDO8o+Ti0q5QEWd2ycAzcaNT7DCyJZaDvkAvNQB8no2K84xSAfYVelitvqHq4yi3LxsEKLIuxy+JuKgV2tPrrfpLMheHVwycHVI+2jGXoiPXXd5vKy8dfv8WhYLsvL4orxcY2d7NTXil8nEyJWVryLTB4o6ivDBNgU1MlGSZ+RA5L/aDNtcKKhxevbBcBPrGxn+jTBqpAHWGZFD8FYgvLKx8mMVmQbWcOoITlkA9DbAGDRS5OYRnk2ixTVl/svoExYyUUAa1kxC+2Wtfzj//++eO/zhgPJwH458fvTz8/eC+4qMD42QcspAhY2xG7vW1wCAfqwkqgS1clAmi9hSOsrndf12tmRdk1/bUAGZKh4u1wiqTqtLj45Ns1HpY+kgZEe7Ui0jh2agHciNpoOfI/vJPLn93dtfnJpk+h0TnB3M8wJ9Kly9cBvXq4AhObcWLfx96/fwuUYOPj4vKxkE51BkLthuamWshHL0JpxopgIDuVFUHX+2nODkJkuzKQEWh91kpkAaxEX2iGupzoiWWouzN0PEn7erqY34XL5oHiOVvDQQvNOP+LlWWcuzd3A+1WHvp2lQxOhOvU66Tgj5ffF/ze2FUzYNXgrees2iBoWhZaRzcvMBtysAhng3sfqC6O0A7MfrBXfcTMJqKyXeUHCbFLC691AeW02nUfx9AtuAyY+4eSCxr56OBq5yKftDR+V9n2rHZfddPSYW/nJncT7OL1dBMngavU/VWqLiieH7j9kZlei10tkUAgvTmAp/U+IFlpNQyADDUg4wwzN6gYI1UyVi3Jj1VTaqSlKMnH6aS4BDiyTK9mhJhYK17SISsuwopPRDmbSChBuUzhzeHrBl6AVGtCD+pbH/wVKKhMAqpPTyxw5T2a8Qafw5ORUt/XDWAzrWFB2dMBDQsQ6QxcBCSswPtGLWc+l5VvAuJJhI1TxcdRskYhwjGyNqaUQyYto/WOPXxfp97XWFkP1q3Py7qPWOiMQgTEphSK7+oXmZb1ABDedYasBziFPBSPcHTaWBviPxabtN11UH3fdpfKynPAizYvzwFip+XZB1L2hLP4PvOb03xWngNAQWPYDab5MBkqW6g3MQoaqNn4ovvhNHGaf5vxdPI5AmKzz+q7v9pmJSEC7OQursBRQLJl0n7stN63H5ZIvwGjXCYpV4LyTEpnsHZWptMIGC8UjRLH0ZhifRNGq1XEgcomE1AKG5lMUAmSCcYefaofB9RlWvMDQKpu5nxqdAOLTYxFOJnMe6sAi1nh4slxVKL56miScdWrgnvamqB/Zcf97GPltSbgMr0ZBT0wjSws0oKsVp8WdJ/MNrsZpYF636SjRQR7WkYLlpZpYAVOzyxwPrZFQ1wprFkIVhDeiHb2QtXPqRlr5mtg5unyAvVDhjbv4AWAnTxZUgs+ES8c2Dz+gKIOH80sA+a+x9/ZThf1T0x7JrtQIhxa9ANmKVk5nW6i2YTHeJtfla11VeQAvLNHMOrHXb2T3VrauHNVWaYaW3xyZUmsigU4cnud42NZ7Uh/5pKPbalI09/C5soiXijb5xrg2ESe6TZllaw8tAXa22XmrD9vb4CWH9WqUepn1yWTC6NkaeG2DEv3twxJbOOYuUGo0K33EU6eFrAIsUy13URobB+BCdTrbTMtaJZ9GivvPplLrGuTEhzxbPbZgPhUUp+11pYRDgvYstx3OyNHTqpEaMXyF1NoxQpwDihWgAhnFIZXbRkJSEQUd6d2CXOB4DKbFlLoCqvM1oG+bv0GxI0ijVeITMB3Mlg3DQYK5YWV9AAnsZIe4Mi8pAeIxESYehOooIV9dcOpiG3LaKqtLT6qC2rTu4gB8ke3/FswmKSxUhPgYF1s3f1C10iUZV4Og/EpiY0zzXwgPjQa7gwUGpV8zD4ioVEp0/YRgleys8CCrj8peJfohtR8HLYxNKaokYObIor6vIT70aAu9NYPdPCJgpnpOja7ehVkukKiaGvomAJTr2JAYZxKxQs/y/YdyFcUbvuoSGCpbEVbXZCFNDIziaHWaTmufpiojbXUGKFwg0HdZlS9i42KO/kKTSxUdUFdoTK+XKe+ug8VCUJtegerULhox3YwjEVlXuz8kMzwM9c8eO3iGCpna8+L88H+iDVwB9PdXF6dYPkCDBYqaCdxO5WVsbqBA9B14eU3E/DohtdCjnDJSXRIwn7GUA8VAkvN5J4FDCCSCodnY3dBkgVVYdRKoBpbl1QPlXpLhcuMyp/0woYbIYZxYOIj759RIWPRwARj7iQuHPSpbLjvRN0fJwnnFVVdWJ9Y+ORYzUU1FxU+BdNK0AqfiWknUEG9NInFgNGSBp89mxBfMdm3ZAyn+rSHiCSY+jLtIUJJt7cVHPGg4nxBPDaGRzpaBKWhYCV3HTrfiLulwapBjCrT9RbgC+ANdm069lbYZwy6xYpwJr2jW2mpJDAcdsqWH+jIXoGPj5DqwhZ3hjB8biCdQIVPEXIiUOHdMmcCFU7nZCVQ4Z7EbC6quajwbpkZGYDLeTMjA/DZQmFkAD5pKIwMgO7oxRT0I/5CTnCGtRj+FSnRNl4Nt0A58Wd6SghM4kazWsL1ZmIKhRFCid4PcXE3rwZJqIvLF0laIciuYPg+cirvsvzZBW1oHtPXT1/yJrzU4tLswgs29FhdRHfY+/uxFjfHKGOIeAlKc1FdxZCMh/e+QrheW5aCe4MULlp/n0poqV1VE/hMYx3KghMM74LrKBRUdfGLKNY5JTAs3m8shDOEF6ckxnclJlswzis+5yIx3itRv8K4rxmfSsb4r8R1FYyrmfHOMcbXxOtYEuNsEldZMN5mxrWsEEtGDL8oxJLhozDWcQUwLK5lSiwZPh9jnRkAw+JapsyS4VqmzJLhWsY46PicjMR4z8SNGMYsGa5lRiwZPkkjGbFkileV1QUPfNDamHE81RKS4sqKzt4c8XK7KuVxgwcl2wT6RjRCMug5SiJZAeYnc4txmdSBcnebbdvdexb5wgKe4BcJV9X1rZUfI72lPd6T7ecl4NKZ0nB5sYlkykLAw12iFrDCh4WP/uqCC8ZEjUyVTUKA8Nt09gwKgzdqvEQeyC5WPTSOqiWE3sljvxGhYy/pbOCPCWAlakcZwWbuESF2hSp42C+4wuDTQ9YptDgXcDeU2RurskkKDNbYJAUGW9kkBQbb2CQFBtvZJAUE2xY2SYHB4m5oLrg+oLNDksqf4yU11EHV+ie9kPRcqxLcQ5OeNfYxXccMLZNJe38F6BTjM0g22cwIKKygmQCF1VNxUHw+SSVA8c48AhTPwhArhY8uSYVAhY/Utwz9e1Q/esAvQRGGBYYcAOWFQOT7IzIjCfy4n8LwYyIGxJlTFr7Nr2QCPrGRcUbsZJm4FaUoQTZ3oh5AmwvNh4SlEpTzIWHpBDyknUqYkbLgJaCNYDOvlSOwBxp4Clr3Uvf8oCCORUnL7Hk9RPabQhdErish10m4IcBXwuGCZrgjaCFQCx1qZyDILMwFK4TOJaNDbWjB0DLOlEMZTtlFxlsfUiUI5vqZUrCJu9jCXwa2ToKHrZzwDYWJsfuCql8qRqBOjF1hthOZ6CHURODrBD7h3sjEQDEl/JCJG12SGiOWE5P3lRFLaC5FMoZmoiimErwmimIqwQGiKKYSmpPxSLEtxB5GVMU0QhGJqphG6F82ckt4hUYijAy7pbm5qIHwNrK4GyMWvgJgbFoKbIqFm4s5DD8EDcaFtmcZrzt8matPy8TMmK0KAVqAkvl2LWJ9C5ckrZlYCTBHWkdjVitQJFM41ayM8KCjZCQUHp/kRl4H1aBG/FI67WkXzNPWhfa0EQajA2eSxEKRGe1U4f0cYcyuTjiymVBQeAhNGplLCHXCfc3EHqcT7mtWAr/CXDEClR+Nm4I92scn48xCWFtb0N5J42yXoSqry5+jsgafTCbOWhq/le4xIWQLDNbVEQqW+xV4Bb1pZ2d/xbgBnjRqCOtTyxXDbZtzRQhu6KANkhEdaFiXzbja4Yb1UkFNlcx9B3dnzyjvMJ9GoVZxbA3IMr4pxAHILDKQXawyFUcAszVK5e5W0ExAT16gaAyXJ6viRmgCvaNxjnglWASHna24qH4Ook3ck6W3BLCxdzJAjMVn0DTCfraJS377zY8v5MWnGJlKDsDFUI0ch4uhTt+L3YBRLQUvr+mMdLH3YkOofZmdlgKxokPdu2lpBMUT87ATwec+ERkmhuN4QvWt93LP9HadiJiFINvoFMChSVAFnypDurr4VJlUGrFLdXjzS6O/ARltpvhgmT3sARZU8ckySTMBK2x/Hwab2f4+DLaw/X0YrLL9fRissf19GGxl+/sw2Mb292Gwne3vQ1xXTWgiZh9+fW1u1AVOdGkwFDgqfkfRJmIdAc1kaTAECtfXFAJUyXpjCNTIemMItJL1xhBoY+uNIVS8x4JYfyF2MAKVOJ8nUHGtIlZLMlsaDaHCu5cwq4WXcTOrBRetjXMcCLVOF0Mjg7p0ohymMKzu01XLCHxepkuLIXj00tdRYQaBynS9MgTPR3dKaGQuU+lHYACBZv7sTwlRnLgfSRlRrOjBtFaCJ/zJnxLWJXdyEH+7GpHlkl3QNvsRHADj4rSkY+lphCEFLSodcQJEONhhaPsJaDtU+qNvimfik6P6Zps4dnKkbypqgKOTuq+Hi2UzVxNDysRX0UCzF7W06ex9wIM+nRH3AZXfJ/tNCtF6mR4bDlf/lN8c++0vz3QyEhiGqErkOIWAnclxFsLdU6ibaW/YxjDx29QLEf7qRKH2SGcCkzxV0Ro11ViGGasMV8JU4ZTGiIFQvqOafFy+kBtZWOMLuSE5NL6QGyKXL+SGYCcP27dqtJ6Qd1SyF7Vf39UulIjz7upmEnqClrjPxnsQv+oyG5ph8Gk2NMPgUd91O5zBQPNsUIbBl9mgDINXMijrwJANrTYblGFEV/Im001rcTWt0w5rd69PVKIsxnx1dzmBXtG036BKc4KokyEUvcms/x7wt2WyogUjs5AVLRiqkhUtGKrNRjARSytZw4KR2cgaFgy1z0ZFwcf3halagWjs/BDEMR4dwxc24uoLYMs7ER8WAraAvv4+67MfGiql96pjPsUTozH220RfLuPava+GifpmKUy8EKYWghedSXdtBtm9uNXelL7EmboyEI4m6mwhLqR/fSnSn2yLIGsnPmRxEfk7zjIDjzZEbAXkXe6neW3hVXAb2ABy2dDTqEQQjYaIIwnS5VCIaHjRjC3uZ5iLys+M2jrwMd4naMOsFGSadsLdy6QNL5e54NxXFbxeZqskx1DLtIccfLyyjjxEprF+N4RaWb8bQm3THnLA0s468giZAsZ0fRyG9XzkVmKbGEPTb0qawHOAt9uVOjCOxySz10Mf5UuhHV/EEMvMCQZjNgW/6l58g5R8ueRnJo4pvJjct+l+bAy/T3dOQ/h5gTubC4GapvuxMfyJXopM7GMZVduSQrVl4jzLE5fzFsIzzgpP1SJc4zx52DFGa2Gkw733SjjIbypw4ghtHFT9GTFa5qLLlm/Fl8RFT68wwHmj4dc8ZQJUuBJqDDRzJdQYKFzs3VxQd98s8G2Fw45cD0xx98sCtjVJuwHMWKgClwMMu4R9R4PmsC7EOk7EjAQ8fvvTQC2AnCiseyYEqkzHouraHfTWp1ZIcdb5wDGgVKfDpgDQpgOOABDtE1x226DQMCVTrlE+LRk3aMptYyndYoEhadKU3uwMBzdheLjMfm3ZNc+Z4TJmMukhCbFxG+qtyg219JHLfNgH6b0pHfZhhNt82AexvM6HfRA+qcIBtqvCdiCkRGifKLfZgz8IP80HfxD+THBJyE6FZ4HnRqBOTCAuhERWnR4sjeHjw8GVsTDEXVHKLGJjO6Ux2M52SkOwxF1RRmgiXmYzOqUxWLwmwIglw6ttUiWWDC+3SZVZMmWHQ2Owxg6HxmArW1OMwTa2phgzCvhMmlFTDJGL3/q053cg2MRN5DufsSBc6ODkwx7juvEHfflTR+aUGDGAprqwPqqSfdMYqpF90xhqJfumMdRG9k1jqLCKCb5aFZ8pI51AxTOfiUCFt7GcCVRYuXIhUOHk5zbgtgOzSerEHU4DHhjSVRf24m3HgCUXGEzN6A1gJrlaF77BYuQBkVFMdelsehEY3VUTngotBCof3hlul2riozsjDNT7i55uVxRBi5cKWwAEEapsARCEamy9DoRa2XodCLWx9ToQap9OPLtjLys+hKYTy48PoenE8st0n2/08bgruV2cBm1MQt7Vu1QCWydTvolhNFo0OkY8vje92UWtB7PVEOkNJX04sRDpfS5hiqxoXkhsJbCpKdqpyC1tydwY7b1gAlk2uCTGyDC0ZrSpomYWWaeu5Mb4YeyV3Kj3mSs7eA/mBzjSPu/A/dDEkpo7Xzu/KT3QbF0LWHSa90bohjEKvdUp1xjYNVOF09CRoAfGoNTC91Zs8616h3hSpruoobVEK9S2YRAYqE23ZkPwdbqLGoJHd8rRkQWB8uUxaji8LmzofNDEEJUzG5eAiS1VBT2XHsEhMnqjovUz+23L19xRF5c/px+x4jtupMXFV7buBzS0yvcfjsARI5wvsgEtOV1ko7gph2fYLDe0yKXaSFc2ERuQJb5XNWViB4JvakoWLiZTvVNnbnBKlfmiMhdZQMuh+CnMQtgww08QC7HZGTFuitiP3hTSIPHVOKtvbnwFXd2U3u4zx+rVaiXVtRLOS01cDfnJRCKowhWRg6iZqyK/QnU1pBaujBykVblR3CCqcbO4QVSsO78xkHxDlFCM4POrwrCk8RfLCMOfxh9vZEYBGzouakddgPTaxGVOmVHwxgeXmVHKNnESyUhlQ/OxmZKV6SnhID7nwxYljGvrZAR1Beu7H30hQ6jVtQdiqA4P0ahCEQzviJWRaLzIpjZi2To6QqMFO62b0uxocqc1BtXIEKwzjKjsXdeOoPlBGDG/Jhklah3azsVwOWvLfDU3+IL5cm7wBeSpSCbEpC15ulgcpL6wrcjrLAEg+mwT5TmjZBykfaILo2TmBXW6KP1apXwezYwrpsQf01mlqE4LW0aOEZvwQVPGGJkk7N1YKCMyW5wNElzY6mwQV9nybBDX2PpsELeyhdQgbmMrqUHczpVSp0UwW4rOv9EbwNkFThMXnKcFGE7TBMynit3iBpFQbeg4nJz+tDfCha26+KxzXa2GXzal2cf1YWE9VWVgYTXVysDCWqqdgcWrVRMBm/FyVWbJMn4AySxZhrdEa4TO50xHuZA+5EJHuRAXlI5yIS7A06ZaZmAn6+eil7g7jXd3FPSSyrxkokc4DQMqwAvKRFiZCvMC3FXdcSFJxyfapMTI5ET9zpjJdU25z5ICNx4boaNlojM4N+YFxofAGfOu3lTwYIOrGHNQGnsT+GF3p6CVAyash6vkWSS126EXTyWzG0ucXGhhyylxlrCNjmlBplc0ZTsdr3B9WLbVEYRlex1BWLbZEYRlux1BWLbdEYM1tt8RhGUbHkFYtuMRhMXv9maWDL9YKlNLBmtZppYM1rJCLRmsZYVaMljLCrVksJYVZskqrGWFWTK8wkaZJcNLbJRZsprp1AMEW+jUAwSrdOoBgjU69QDBVjr1AMHCB4l7Nh4YENUq6ERa3x2mgrnbb4pr7sTdNRMEt0SH8xCsMLWDfQhE+cMFmzgoXNoOeT/gbXB0lwLR9WEnDgmTMHRPXEEjS+BO+29Aj/LlEj8qKNATx4OUu9rIvkZhBLxPJGEor3jm9qi9mg56ARrcZbthq6gQm5hukxsjpsR8G8rFIybcUD5eJwrBKaHBzxQpL48ouymNCdfxUTeJ8R87PuwmMQ5kx8fdJMaD7PjAm8S4kH3BD/EZH7LjQ2+SLQwu2C31xiZhDbwdnXhjiUausGc2RA1ob+/4tVBteKiGwIIeamsxH1zghEwk7m85cKzDo6eElP/0/St8EOiitt5vg0w0Oy3qy4IrYhOXQ13OlAx5wfTkjeAzXO1O+OiN6hOfXdgJJ/XY1Kme8A1RxOeQb0zwK6Yu7iTCenwUTtqzrBAufla4e6fIyMIuxO2mnSGY8EGFwYWLTQu7wQh6E0bpNDR8mr/XzHXXBAqog/VCYudupu7CT3rbC+caYAOlk7eM85+Ql9lmc+wTMp7Nub2cGW7ib/02EHyLm7zj6lvZpXiMKuJyOTq+6nWmNgP8hqil7My626PRsx1Ie0HSUid6tFPwBf4byE7/VH101+Lmzt7d4Cy0Tzc6Hee09dDQsIqOaq/k3ljey8QNNek2Yp50ArdbUM6496WulHlnGXsBro6dgcWvWUwBPwKJqPMLmf2FRKff7Dji43TWsKUMGDZ00M26EwwCr7RrYUy0pnlbmoCauQ6XyqR9n0vXVTiLC43XnQ55ds9R+sxNUUNA1EeEa0zbHdLgKyxGBiECquRluiegq1tjXeDGXkcLI/cJg3hZF0CCbDlq2IHjrj4zxGY37NAL8JBwJD9SQXBxBdv8k+TngeyAglUfkb3EOwRi7+0OgeBhMyPzlgxQAoMTKiMXh8HyO1gFdrAKH8aP+bdXuK4k4mUvuyT6YVcVes9oADtrnhfwgNCC5F9HEJyaD8JrSUANryUBELoNXbyBBm0WEzNievNX2JfAI5tRRzajdngz6sB3NLAquu5JADm3frtQoGu3T6t9hfpPVqiLPK9O4odw+I1KQxMiIGU1IQICz936nlWTdCj/0/isRt/fjEgWO73wDn8663yIAHZioj5lFy0/qOxcN+09NKEFNQDKtKAGQGDesF8shhxKG8KTXXrZCb/vmnQ8krrIkwtUp3caQSLmDgdUF8twFTFXF7njNx8oTvEpsjugVO7ecoJMtB5ESEIrQoQ0mQfc7vo44yLMLPN2GnuBkvd0xAyZqLPczX6BaK30MYlc1Vk2wvqcXjl31XXMJPzketHbUInrlxuVyVIDuETeAhQjCWuygWjyBJtpSY0IRDexi69akbjjhDxRzLzrQESt8SITQcEKtCf+xMAvb2wsLS0gsk+fYEtDSEVHqbSLFWlQqHKC5pWo+1wQYZPG4MeDR819T9BKR/yJE3KZ3BDTzglgDxBlc+AgX4zNRcB8qQcdBYwv7YDliWRwYrMKoPDZKMM85BQggTmLtgtwdhINlBOQ0Q2tyU47IBg5s8Yi5EmhGonKHbQDm1iIyW9iIVSlA5e8BFCN3g9zwvZDtO6i1h05/yXw9AqvPDlASmz11g2qhBbfiCr4aGlHkgBpcg9qF74BtrbosZ0OfIsdUMOI05VXwwiq0UIZCdKEw7ftjbn4kLrQshkQdzU45N5k4axIMKPCujHhp8LK0+8xrRwQuIh9ygtcBGW0wAVhkE7UEuU7kI0WuAipHxu/lStiXPC5H7v8BfTioz76HR4a1mUyvtOQbdjyAZmO6IQboXckC5AmtCMiiteOwFW3A9oRQTbyeq8T0pHjrdMbO62PAe0VzRbUd7QT1NY0e0tZyg1R9yoH1CBiTOaFN4IqrPCWIDioOi28IaSxohQizY5vvOAia91Y16IsiClFp3ZcMiQlYRmSYGrHDRcGoxgtb+iFplho2Y+EomVa9gOPvIFp7bY3+BVhLVU7oF8R2bx+RUh12owWgQSqzR9xvX+DW/dzegWfc4vY0Rc6u1EEy270xGY3ziMoAzKFVoAIKc8LZwRZaOGMkOBChmUHAixRhxsuevZxgxWG+/W7UriNPXsr5dgRbserWwPOuyF8IqZnLLdlI+H1DbsK1ABJ6D2gkntAWg6oWUR2mU4BFaBzP6WFnyE8As33L/ANd/LKH6Ck4GVFke+odINFuTrB7dxyN17Oo2XutJz7EUNKC5syLsgxYEp8JLZ70S0gFS85Mp9U83HxeohG4RZ+vaNVUna9NQVIs9pVd1xAu/DbZgZLdYFYSqjQQgHz3mLEYaEPmTQHSOgh014jqoLVVyQRXj33dyASEAy+uFXQH7Kh4FD5DpTSVaDXLK0+NH8wG1JZaQkK/CGBUxgj660lQOLvmdgFJiAuL6gjr7dpwy92ubA+oknoUE+hvssTNJ2f0GD3z1gX09AFC1DwNqZ6hx6bNyaQ05nrvPBFNDe2c1frofApZeRO+uHErnw5NrHs5H/wgVXErpJoYQlcmYIdTo09IfAF31Q6IIU6/Q5N+HzBfYeJCONPokKqjK7PCani61W1Y2at0PWqtkC4nZU4Cxwy5dUghKLVwII9Hq9b2EXOoMRnelPHwHROWbAj4lecjA0nRKI3nBDJaDfOrnbp7kPzRXFWsHVpNCMDY4xfYTLMaIRkCzPU0gJPwtJcj6JBmRqjM3EGVpkn/L6SfUkCW22FdbQNSqMY3RgbUmhzDTjWoUWq7CLVFJxjJKMVpQbm2uDWvB3JL3BNlS7ziWiq5DWxfYcDlgG/cWT/4GB/qmB7Q9uHJlWJFrQWut2sCmauiVkM44MjIo3tE6lBOForWzdQsR2kwooxLHb4sdxlBSP5V5FOyIRXIew7QS0QcKIXO9j30CELl1qkapF043UHu+BEVBV6fSMkIgpJd6CMZnqwA7VKMypC4hUhQupsGqA2zDL1hV+CgMhOy30LNh9+DkKIlFlz2RZEx9/ORYizJPIG8miWBL91YwhTyBNjh1WBPKm0KIUkNtZPa1HfSsJv09jF0nc2ZKFLQ0OqhB9xEFLF3Sold9AyLWYRUmFtVstQLkcWftsIiTTa5/Oo/PHx4X9Pz2dN/ps+psdTqJl+fDz9p5z/U9b/1PN/6uk/z398PDvY6fVB1gd5fdD14fyz9ReP+RQQpe1J1ifZnnR9Ov9y/c2jFl1/+fpkp+h7PMn6N9mfzn8bT7r+Tfen89/OT2V9ezn512l/0t73J1n/JvvT+W/jSde/6f50/tvrU35D5/rvd8rWf7HTsv7m8XxhWtqeZH2S7UnXp5WZ+UTTYz0FY2l7kvVJtiddn9Zf6vrLvPF9fRpvWDmy/k32p/G+lSPr33R/Gm9f0fa3r/9+f/v6L/a3r296XFs30/Yor4+yPerr47r0688e1/xxGs/y+izjWV+f19+vP3xcbUEaz/L6LONZX5/1x5OwPn9/+vVsLz7//vTt5fnLee/6/PHT0+fT//fXk1R/ffmvv+bT//fP00a1Sria9NK7qqjl88ym/wc+7FSC
Copy blueprint
Re: 3 and 4 way intersections
Posted: Wed Jan 22, 2025 3:37 pm
by solublefish
After much fiddling, I fit my Celtic Turbine hybrid into 128x128 (4 chunks square). It tests around 200 TPM with 2-4 trains.
01-22-2025, 05-37-08.png (1.68 MiB) Viewed 617 times
0eNqlnUtvXElyhf+KwJUNiIObmZGv3noxs/BqPIAXxmBASeVuwmpKoKiG24P+7yabN2+xWZFV37lcDaYhnsqbGa+MOBnxz6sPn78fvt7f3j1c/fDPq293N1+vH75c/3h/++np///v1Q8hlvdXv/7+v7+9v7r58O3L5+8Ph+unf/n19u7Hqx8e7r8f3l/dfvxy9+3qh/96xLj98e7m89NfP/z69XD1w9Uvt/cP3x//y/uru5ufn/7D87+4tqtHwNu7T4enX/ntvfCXf33xl1H6y28PNx//5/rb7f8dXkAkCPHTzdfD9cf7L9++vfhj++3v768Odw+3D7eH5w34/f/8+o+77z9/ONw/ftoGcH9z+7iC5995f/X1y7fHv/lyt+7zdbI/5d93+rrEP+XHH/h0e3/4+Pwv7GmFr3AjxA3lDO773//4H59vfn2CvDp8Pvxy83D4dOX8XoK/d/y59PhzDpAdd/ThEerHnx6unxAdqA3Ig8kUJp1DKRSln0OpG8rH7/e/HD79jnF943ySxRUn/PEkQnRgG96p1H1YT3A6R60cNSwcNguwr9Tn/ubnrw7kaqQY5FFzhrxfX1pyUHYi7cBXtsRO8S+JXZiIXfHwM5bmp9N5tiyvpHnxcIus+MFTtlBVzfdhmqr6Pkynu9X9vWqebV+YsQ3LZmyX17a9erjUGVkfwLm9BvYsVYzuLnzwoFdVyh1YwJhk73m6YNd7GnWf9Qyw4D5jpj+Y5j8YPODyCvj7169f7h8c5CGAyx9Bswdaz9sY72An5+qZmNhUU/CI6uF00RT4MGkRTcEEJmDDmVZ/lStQghQlH/ga0xP/lPb7QIR/VK+fbj7/9/Wn25sfvzwF4DPs5GO725GxrZnBuv4plR1+1fwf8IQ+VVnoqytmDVqSuBmS8tqQFCXwl5XMXbbJSubDBHr6Izh5fTaewzXuv/KABW7REneLE1jXIphRm79tQrls9C3rRr/7q/bk3+T4L/v3x6rbLvN3wV1mU8XdX2VXxd2FyTASTNu1OxuJfzKMBC2IuDQtYceALZEIMyfRo2zoAJunJMJwsgZgach33Ir4FkOddQXzMysVWxd/jz21yk3X2ujvtQsvOyk/HSQ7KR+GO6mJmAZPuQpUrpjnApU83EQD16dI2V2uJ/8Fq1VKPqy7CTzxlwVUrDsjKYZQeaqiC6gNH1fjClqwBlnga61YoUyQgRowqiADNdJ9NWFfqxADjsWGy86lcp9lI/qJADbreZGFpCkqd06hCevVL1VuGq9indpwQB6vdt3pFR/eE622yAF78CXMdTctqD7V3doGvdYxCgqvBcrb25ZUV+2vzujBx0XZO5xEj+bDuqiF2hJLPqorRhUeUJ6rvIvb6GqzstrONXXALpcNSef1KysCLNah602+CGwUb0Nr0GIdYCfVpJqbDu22/56+XJaD7mQryF5kfyfcnyiwDLNdku1NNYIOFTG2M7/n4cKMoUURtzPcvCUnnupKoAK5cGUcOm5utjAstOKVt1KaVZKPCEvkBqONXSW4tOQVbb7i5CIbjkTjcVdB5T+r1BArPjUkLHIKY3buVTOQF6So6ZnR4O9g8LcQO7Xki5JfcX9BymDF6dewzUUNcqEkLMpuBFTwijNMV60C9mqxC7IfeI4jKLBZTZ0w2KLmThhsVZMnDLap2RMGKyc6EGzEujbu4waKhiHyVEfxddiHxQWvXM+axph0V+3b/mhyDc6Io8bMCzuGVTbxT7Fwpt/Yt0LWyBmEKfrf7pu9yPMasfnAvrR38QLShRNLy77QPvm/4SpAgoFh+YNM/LGGKoT2IUX5LmGE0hUSjBfTMgf2aYxYH60rG49d2xY2FwIL72r5zP76wJXeII7x+IT5HFLTjWXykTiLdzNEPpIt2OymIxIwPRZUnoqdVIJDdpEjLFBuJ32Z/BAsyVFtm2yHz9rVKFGDuDE7tSwnV14gAo5x0fGTgl9RiB8lgeN1sQmuawA4kyMvvrz5LOsdOQ6fgZyDbgsmSJi9cXQmAWVLVPpGDNtCAbhxxvoKG/3vx1n7Iw5YHs7ap+p/tS9A0DGljcttKG0fspy3n4kTzmrkfvZcyiL74NQmPrgEWe9S95GiXIkwkNsPJcn6PFuhyfzD1MkKMy/mnl8gTkhcwKGZ8008OqkxhoJVISR//3xY7lL62e+uuhNJ/j2+6k5khhTlBHYqhEIQqupEjp98WaarIZb9Zl7AMVddTSZbKqvJBKeK/o19JlYSu7A8XS18oLZDLXxv0XaoxQQJ14sGxzSRe2/D3L28KZu/PlOLecmQDW1ZPtXJDsIrflnUFVb9kP1rWWsy/TnFSaAiEB0G2yMBVnJ4wXRgVjRvnwzAgxqKv16zX8nqUbVcBg6+JzVsiCgn13Hclfy99VcLE9l5vlrXhHTuXZq/uT4sjcmCut4mx90pkv3tcqHgKanqPkwUGAybSQk+EvZAoyCaAHUwLpzsetxDF0gNytbPjeCiEZcdHKK84buI/PVg8hfqGqj4grkglCpmi8QOaYQKCzlyHKfF2ae7T6kXqjd5s6Oxokxv5F0lVssUQfEzviAwkLPaJLYSbFmvIoixY0jc5q0eMLpxXgwCC2iNx2ImGhAwdXyLz6IR4lIMRSUYRVTiiqHivaj+VviwTX9JnLdDI1utVV/ztna3dQPWscHiieBiEqOmZIMeEzPBhimGY1eIU4Fw7Q3tN3GkQkdUpY0RZRfyRApck/Ca1zCB7ApkQTmQzXIZwaT103T0Don1HKGXrXAUA/QeLsrshiG8oPQV08KvSIuPO+mVQguudb4dQWlpkjgFtiobJBPQGSyvEkUf1rVFnM8wmjBFI7BiPJmVJWO3ZxNYV9NT02MU0jgqps7MUvVB3cWa0K8s+riuElrY9049BtK0KO5uy/Ma399p3rAi+bCuvInUh+OKXTCub+afm79GUd+68v08v5jGmhcia413wlnXG1DXLetiT6lALvO0l8UWxQf0WiTSXhZbHTw0FLNlzJEdz6uCf50XyQ8jvAqkkxbvXTHodJHkCjJPk4wcWyBNlqLQpGI0yQqNCNeOjmUjbAuV/EATczKBpCKyFmn2bcFuJzgtsz/8ZSB5jUIbxmy50VDRlatElV6FNrboHc5yPr+7coHsdAeaEl4XneOXLwiIXEEL5W2fsKdX07AnfrqCUzK2rriBJG04J+N60BIDoPbHSrlLR8VhyasKNfIcrnKWFbvDfvYARRZHuIAGtTIu821wvf8L8gbKsQVf1lzjxPkceSJqPmzdbzAmu0tTLC8sBkux1M4DjOGnyC2/LXIRLzynm7gmtCBX+UNCu9LEd/2brURbk95gjF2+Q2y8C83ocxEARyE2oQd19LfAv9k0Hn52ZWurnNOD620k9bEoS+27X+8GklwS6SVb0IWwcV+1GaxfwexR3pPtBwh9JVKiyYvYMaHouXMFLEOVSaapc+piCQouf0BZooIr9IHqCq7wYqsquDza3CQN4KYdnTMYrsCaDwou59CP/AXD1V9zbfnjQJLSaRFcX/GB3e7WuJtGOAYwgQQXSaSobE2D2IZXuRgXFi3uSouQ75wojd9gfek7Wn8n4VB5I44tJxX9FvNBb/k22Qq3R3nQAtB41HUXjfIr4yuZuHA5S4E2wM42kQMXNethQFdsRsDeryyTdbvKF6p8IWlvqfymPQyX7SqxoK0S0jHNB/ZnKSz7HiJ2YAPxeJXQp8fgL5q/HdiW6+Ik2QwtPhDMuoQ4/dDm4mao18M3gRJJ4k074oWv1msMI8giHNJ0QmiZWrXmo7qgmJ258bALyT+mvV06rke7CDLr44TTMq1Ejq46FewJbcbxgpOEmsIlgboyWmk3Amv7nmygSTBZbsyLllz0QMWXC9/l0bYcx7xvfUv/lsRbdwwj4g9vSV0NiQqynLyNxyB3V4JKq36m2Y4dRJZxvUajfAwGnkW0eaanWxCsnm1BsEVOiiDYKudEEGyTUyIItssZEQKrtO8QjiwHOR8CCk4px72+2t9pfy4XHtZ37EiBtC6b7K7Rw4IksFySIhtioiUKypf5k4UYhLOT3ZtbMExZz6RsDdCJ2y+LXMOKgg0qaNzsNr2P5JY4v8UEq8Z7hJjy+ZxMJohsoe9Wl6n2PuXPeKzGu4ooprngGt8gKjH50AcjDXxAP0lCqxHBwvG+I4qr5j1IlLiiRrX/AELFCqhEbNV0FuOQ4UQC45rlUeWkgpqE8S6DlZXIflR5WDmC5S8VxgglBMs7NgyeN4Ft/GpXhSNr8ghAxOxJIodleD20EzqDZWsiCmwlboFi0x3RHFXbwfA04XvwaOitFkxQdzCtt9IqsVGtyTYKVflal20UqXwKk2NSFWCDbExIga+zYdKjuulXIXtSM+qoPNZNbeCJqmNdnhiIzkeeGIhQcZBpi4Cqz6+wzC1Cp8+FNmoIGJ286De9QZaNBB4PhhmUrJPKdBRMvS1xRyeTZ71eyOeIXVhWgwyExxaafXlq3+zvVAgucFY7UQADZwtnmK2ZcLS/qF/xWjVdwMDxRW1WTFycLV00dUQAeBOWxKUqYPe2ZlvQ9wvdVxYsUSHp1tOVV3/Jckkhke2VKwoIVS4oIFS5noBQ5XICQt0x0TM/CzDxSnFRWynFN3mlKDdDJpsUhcbIkaMmteKCUPd0GFv4gXI9NK4xsajd5RAq8nEjI4IQ9wx9F7ZhB21z5eKC1waW+MUuDuVwcfg0ePfb3cuSpbiniRnZVnmiTGTxHh8ok1z99V1+gtWFVKer9XHLvpKpuXbS/wl+2XOlNvjH18QiDpKJLpZUCCjvwSI4HwtiaQKBRrEygUCTWJhAoCbWJRAonvA5roDGlMzKjnrH82aAqrbZjufna0RiBB53ey7itnS1hf5kYJ1lPt1pJQ1OcPAwpxGY5pNPTUpkmqPqfCcL1y9vgzgBiDWWNWbmttTLOpez6IVPN9yNGzItCqy5dTCYwbzmK0IHEqLKmc6w7pqqZdzqaH2SAfjF5rFULpq17MG7ay6YFL0GlKDBi5WoPuCaDHE2YX7NWmaoPg59ZFBfLAhoAJ9es05iKORMyp6uFoCgbQWnR9aHMGi56kj4k73tijUvXX32Cx522ElrlXl9s3igru7WoPrehnpZW427pte4L3msJjXLDbpM2x76yfoSh3QKN4F9EoRVF/ExUntLTyOrVZwJBZ6O2QtGCjIfmSPDWDKMGLWz2zyfsbOmXMCrEWv6aPl1phBCj+J9mzRLtJbE+zY5Nd5YZb1vI9As3rcRaBHv2wi0ivdtBNrE+zYC7eKTXiRTnFNS+PF3XblGcYg8rbVOI8g8OhecNi4IyUVOarMo8tjduvisTsKWXV0gZeNednQqiO6yfRfdWRFgAunLBdY7f3/9dWK9axg0L7xNwyKg6noXfLVz7zN5wamS9akF0ea87OBahrEpLqCmbUcwsMNZvM04hie4wLq6rcQptsfwEeuWPzxdtxK6Zt5AJWeu4JkOADrafcYQykHngG0ey63F5bDDBw6zD+q9WeyfMqrqpPtZpt1UjjnY016M7tU0B9vVFGO2x/IgIGedCo0hh8IbAwV3w5sLW7WG5YGVFjOnpqydZpnodXHMOOpAmOOy2w/44oG7pJRNjE1rFJVj3G83sr/oJMe2WV30HiZKPbtoTj5ZqaYBjCbJkY7j2h70hYzi/PyCgaJ0EiE9d3Nsu2b6zLa2y5kyf61+SMepJ+vQR9JVNXMiSg7uYn1UXqlba6ukmXFOKqN5FbVKsE0dnBFAt4ycsOMbT6pO26v7DjoVsYn4aet597qXE+deNuHsaCOj6m6uL2ZdnMYRQHElcwrK+siG9HzPJtAqV/0FMw2yqd2hVy3uBFtUtz6gXTCuX9ldoi+slvWuMS68f2hiBS+50P7CsZYNsn8jC+btMNdCuz9SKZs47i5taJflSuiTslZbyXyazPukLO5afQHjpJPkovqgSRvbHZe3lFozHwiUhW/IO8bUMOSi5fEYaBUrghEmJCgL5UiNDYiTkDN/uLO4WuJaiLKQZK6NPXCNQ8GatkbjbGW0VmAbbRfmMgruQlTmyO7tpIhZkrVlEBnJmIvQhc/WVRNYsRNRHSt2wWi2cr6vvizwrKS7oRPUro3HiYzFnqvajSECKniuqPHQGtBF91V2ruxp95roiOaDJASyJh5mILarARaZ/ZyroClxLBLA6pn+5KL7x1tVIwpGK2c6nWfLw8RMumtnoY/J8B3urPncZPZxJNf3xq9Xa52OTCzP6vCdbcUuGC5ZB/fDXTFqeoownV2kFtZNzshfahETC5HcgDkvZAimf0FtTSy8RdS/OjdZcxKo+udOn4XG8f4iLSz/04M69S6R6xmmglR1vTS6szmwGzZ2NWWR/Lt0z3seBCTwUjz3Ila5T7/dly5VqWafjlsajDdi/o2jd7VA9NT304Mqwjic8Rwq+UBBrf/M1yS8bFlWqMsqVxbOCE4D1cUxTlxyVxddVEyHMh/VvTaXpaiiOzneqj5vnOA0Wd4mQsIdyXhxCCLGEnhANt6xZgIb1B7yCcTkJXBNSec2MwgPUs7i2J7hOAkU0QrlTGzUjnTyvqm7uLKCTD5dVpAJjq4g1Qfq6iyoCRBuubFFFHVi2GNQLXDxcWSxn3yZLPYTHENNkc9+Em71tHbeS6TNf4mydE++UJbuCQ69kG9ajIY7lCgMy12BO4BNWPRHvTo1FKYXzjQYrRZTR7hxzyu7BMp/BXe92AK8jlL7JZkqpO6dtfBBLUNIJzhFDdMb+kw+Ane17LYQGW1qG0wLSJI647n7mC6k7WCrrr6J4QeRwZQGtou2gyN3RASr3TGBc83WGSgsFzPR2xoh0xfL4vUHSbHBq/tI1Fogidpi+CliUuSsiQZrJmFqz5gJTl5Er3q6e+6h4J4WeetqEpn7y5H76/XTE8JNKtXOSOpAn69irLRXMmbEndni7CKrjDgHWGlIUk44BdPH5tXdef8r2s65PNmVGv90NXbPyp4zULUsBb+XWt8AGyndFk45WMkQBpoYFUo5ODbriciMFFzpWWt7Rvq7laK+ADY/JVV4l9312auhry4qxdFIyocPWble32gbssiF5x3WxJdlIlO8pfya10SwdVE71TPYoHaqZ7BCviILsMIsTeHIKu+3m5Qjy+w+EQXI/W99DTApSt0xyCEI8GJLi4HsYnWNmDmBaYvGYDJDHqDhbEf09893gy2KOWHLiMJUGi4VjQDfiMei41OszdfrA6uZj9nxF7WIZ+wZReG8hDG20QAjpbSmznW3wgLzRmusG5OVImOuwjHkL296/VmESSnroy7zs9R975TM1VkC7lLho1NGjA8enJRuon3089cieWEkrypZIU/VF+G7q5oYN5Rn7k2lJxvMjHeeyjdhxZW3rhgtsI10oqkLV64R24DnRlUgQQyddbPZdaGEoO1W1/3yXV14YJjPrkh/pTQylGjnij4BdZVQgl5FQzLZA6g/IU/Vp7u4OA5ceQYGHlJVzoow/6DcsKVyVoSZsNgolm+socUKfun5Pp9JnaUK401GN1iQo67CfJPVjDLYoqYJGGxV0wQMtqlpAgYrkFgVUYjyoDy0XGGGSRJEQRhisj7aZLC4icuILDJ7m1aj8Kjd317XIwhNJMImuy5QEf3rDAcn4oPwldBhxfmhmHBnqRHr2GpmXKps5X0i0rktTUHv8TKWdXlvVdKGb1hdZ5iS2Mo5LwTVRKJ1Zq88K6dwjObraLlFHdCXWfmupkqzBE1FbrJVSb7odtWq+Dg7yBur7wMV1sobQqSzi4zy1aIOPOCg+UCS9Q1qBtTvyptBjCAFVPOqZbHqlknVrZrQSWw9Kv82yVs+bAI+AWqqgE9wukZByfY2D5dV1+QvO4ed190Myo01RxhLdBczu5j85d928Je1SBw0IkFnvT9pdOF9s5L1jEXILr4PjzrWrkS+jLxT5sNZTVhol02Cm6atZVFNwgRH9UoTmLizLU+uRHxoQ4etqVYuKJeEx4vkKa5Up6iFTvSJZ37QBcZOy/yN9/edtnuo8+W6PpbOHrne2rNkNmKjFl3D/PxllTVsgqNq2AQmSv3UcgNuqur83JWem1FBoupv1UNy8X34vNupIPiiOBVUSak8ta7sQxMnfjPULo78RqhtEadzM9SgKn3xsyB8PMgG5GdlWhKtx2xBYlV3BpM11ktB9Ona8DuSPjbrcizaaOeubbHL25wypVhsTtn7wd/+/v7q9uHw8yPIh8/fD1/vb++ejPPnmw+Hz4//7d8Onx9uP7772/f7D7d3h3e/xHf/Yv/+7q9/+ds7+893f/6Pf338p78c7r892+oSu/Wec8wlPfXr+38/xsqo
Copy blueprint
Notes:
- It's still really two overlapping 2-lane interchanges. This makes it easy to upgrade from a 2-lane to a 4-lane system. But there's no lane changing inside - I do that on straights anyway.
- The inner part is still basically Bocian's Celtic Knot. The narrow profile makes it a good fit without sacrificing TPM.
- Here's a quick 3-leg variant.
01-22-2025, 05-40-58.png (938.35 KiB) Viewed 617 times
0eNqlXctuW8kR/RWDqwSQBv1+eJtFsshqMkAWwWBA2YyHiCwJEmXEGfjfQ5rdVxLvafKc66Vl8rC6Xl1VXV39x+rm9nnz8Li9263e/7F6uls/XO/urz89bj8e/v3f1fsarlZfV++tK9+uVuubp/vb593m+vDBh+3dp9X73ePz5mr1cP+03W3v764fN7fr3fbL5gQlue8oKexBth/u755W7/+1/7ntp7v17eEju68Pm9X71Zft4+55/5er1d368+EPx09ch9Xhe3cfN3so++1K+ObPr77ppG8+7dYf/nP9tP3f5hWEJyF+Xz/sWfDqi+Hbr1erzd1uz6XNcfHf//H1t7vnzzebx/2ypi8/rrf7Xz/+xgtnGyNt/Sl+Z6X5KX47EHMC415o2O2BPv2+uz7gzYGcPcoVgXiOFhfP0xJoWvKYlsiC+DgGSSxIOMOVLC7HI5AiLgeC1Ankw/Pjl83H7xDX6+Fy9oq/+rh93Hw4/lcBkNaILIKEWVKLg2ua4/ea84a2jFAdu96m1OEtpjUI1IvihCpugyhPjBJF5mOUJK4oQ5QsrgijFHFFGAUr+g1A8Q3loqI7Qzra3FS0nqqoRagviv/7+vbf1x+360/3h10EL/qwsAP0W2CHgJ0o1Ap3BS8KFaMEUagYJXICSGUkgIBQE+sjGu8PTuEi81WXb+HG4VSnP4Cp6i6GN3dDG9W0qLf6j/jvSc8fu1lZeypWj2Bp198izBmxSK6eNocUISrkAG0dKfOgkV1/NhA0IdCkOatGrr9sMF42GBhGeNlgMEzldNKnrpPuVCfRDhLUUAlTFywr2uigAKAdBtpgYoKoENSzLiNHCIq0MAROOnnyGLNgEcJGdSMIhMjV0MrihChrhtfWnS8bXihiynYIbyCJLzazud18We/2DLwUdCdIJvS80aiMhIFhtDKV3kAqkQpF2oa6+0lEwhG9mLWdoiLFjPSmkwsEheuPYi3CllmMHBFuOi+1m3GVojK6lU/Ifn54uH/cAVDfqL4cf8QyJ5kx3a4YleA2uUsF37ldmaQ5kXlOckNYtBUkyypcMZDLiAXJcbSWMQsgrNfc7VEtnL3sblMQLcRZ7G5TFEsbzkCYRKq+zx3lzRqRtaYs+9hgIAdhoJKAZV0Kp7CAIHqVRP+CjOp+Rqc00pTmk8Tpcf35AQRrAXMWKWfmcyaMimwp0ylTcVDFIGiQN4SWjDgiGcm0bfkmfkeAJjYUThVSCvmQyVDYdndChcK5sLSWDgv1n9ygJl8XmYpZMZpzbu4vXhZRobeoLnfomgu5KfnQ1x2Y7LHQuVR3IgxoWBamtAzDERlGiYyfalG7I0LXklTzZECzKnuYXxTacvJZGG0Xag6DqApXvgRxDPsdEYVVuiBRcgdFMGww1+u7rjJ2Uz2lf+1wyhCAQdQ/CjSKTsNbJpiv9K7Tjw0tQSu56/g8pBWqEV28iwbyFYKSe1D0Eq3WaLtQO9glgg9r9BJFS0C8Y+Dpc6FWPTxFxeygaxSt0LdHhThBDpn74vHRpolkgtNhAoZJMl39MH9Al1bR69Y5AOPL3qWvkpApfYgaJ+oup2/WkvWFySAzExVaqx2kdmzCYl51Eag6iQ+n+Q6Clhd7ovZmX3UUUAyokAMYOqrWTURc1qbFfK2Yr1ksrvhj+fHw4d9u118PIBMpK/gLarXcU7UxaxcUz5t7KUzLitN2q1bsGbDZ0WlScJBGqGOv+hUYEtOkCQQ02ZaW0lBqEeKqB1G+cl1LVMZUsAJAU3OLTS1YrAN6ja+3WBlKYVlD6+FwmIVtVjFsoUUiwGVAxfOa2bXj/WAZaEsnmhgV6gnfNdG0g4k4XzVNqMqHewW9Xv1zsQMyDX5R85b1LLF8C2mCPMXi18LHbOHyMTQfTB5BcUzq62KpDxomjV7zrR2QkHqw2ilgICqKNpA1jdALtCFSWwTfWBHqWaZqQWOOcOlQj0IUD/wCk5TwDRVNSjgED2yoOMkliaHirLHiQuIZEiaUrF/YaSOcpUtOITuapUftgcmlopalBXtOiFELGXOFdEI1i2TIWMxb/bgUMvJtF+00LDCp36u+C9bXtuhxxNkklmLnyy+S1mXRqnFmgpouuNJZoNKouGBPSxAfGgfbeeF6aSRw2WViL1eYMa4izaTZZbTnZCr2YpRJQS6bTeKNMUApYtSo6XLEGRbdmWEnGELDsq7Ax6VHw8AXuinFQaIthq1MPuwxJLSIbPQWFQwPVSDrJfzmjyOVHQ8aNW7GsExjjc2iqWWBI0HcUKKh9tOsGhtO0nLSOhWi/6FqQ84LT91tX8RlW8xFT5cU+Crehmos45lU6OsmrbXnlG7sTMqC47Vj4BiZYkehKyitdSzig7DiZfEFzAZoj0U8LDhrPYU8u45haD4wyS3sFlgSVgAImlkBVYdRoe8sZMGy55MHXmBmVtGjYZjK3lbsXbxxVniA+l354v95+tjCSBjSByuYp90eQ51pdZHIlDKqXnAsEcLj/byqu9jg0mtatq3UDkqIn07UetyYGFR9r2pJwynR2DjpJpDJGObZvLB1OWPEk/NI3T8m07jcj7Fipi7AGtIUqxdxvajV+NavCewu0FEuX7o2kY4tLESFl35NkkOLdpduRjRmqJ69tVP+U3wMX5g0Kw3YjDlCb2btlIoilB85kYXlW/6CihVQ2abGyfXMxwYYxfdY/bStlRojUaNylm5+7KiUovCDLIoXmE8fFvTtmkKl98CiKDV97FYUpaYNsApK7WgDrIK0+L6SI2jCww4cXRxpzjExxRHHNpHkvksmak6Bc+IJXIY0Y5IXHAscj+ISM+PCiUdxyWN56a0kjQeOIZLa1FqGnxymsIr3ohKTMjpvxLkPibhx7zxtRe2eEYdKlzWyE1D1IkfGrICy5wdrNAXFg9G8bkb5LB59f6W+zL67uNbM6HnLyRMxucB5upjfQsIUmZ3eV1WTiAzd8aM1GgcynlNkl4p6gEc329ezMHS3R5qWR4iCHaSRetk7zdLiAXBcVoho7SWJqES4QFtRG2CQmFKBC1nMAk5hMWoRw1sOtYrhLYXKT9ooWUC1YnjLoToxvOVQvRjecqjqbjQYgrZ4NxrgkUdf/RznMF0NA2XR1w3oKeL4iQQSZghcyTpSDp2+y4UktmWj2NfsI1wo27PRcfNorCs7IiO+BlIKDskvVMiM8zd6REa+uHS6qNDi/xFFdKKTTKOI2MASe3c/vJXMK9wqyalovd2ZGP7qUl0qfJwMZqPFxhSR2YqTvThU9QQrux/pkXP8II1Y4CrwoMqgZ99egI9ilJaZQ3yXkxilZSYdzVmM0jjUIkZpHGoVozQKtRgxSuNQrRilcahOjNI4VC+2B3AKW8JSP4m3tsJea24oAaOos28zUzgoC+Y/eQiPA7nCzwlIEBZLSBu50Z0gcxBa9TlQL/AQ0Kqhw3yyDgxnq9pYmKlgtpK189obkHMg6Q10rf+Iy5yz16UZVsbVmyo2F+ZEDUV0NS8ZhDQikh5c46zASnqXanPKMtEu4vn2ilbizkw5zBu72EwznpftlipSxXhaf24X1ABM72kKE+BlL+1NFOeM5MKInp5n00O0yqAuPYIqxGQfb8pCNSiDMex86AeJhJO9Ld9t6ztxl5fOPuvhuuMvhvJ9nm2rmK7KlPn9cDyNnn/dIwjcZXuY2l3iQlzm8DaKd0ALMzee75lICTIA05qX2gAe0M53S9hjSaY4RkxaDNguAg9IdLRFuWmphII6K/ttj/GhoMQxHG3UYCFSK8+/JdKO0YtjCA5afbNErb7p3dJwsESsFz/UpTsCzar7HuDwdtWsn7i07fkGinaJq1C+mm+g8BHCYlQrTrcr4Ufqst7TdQyfhVXwQ+ONgBqWXN/moKNYTi1cjuh9Eg+USqQOlDz/Zkl7YqYQdQjPt1200iaHWsXrIIVLQj3feGFbNEpcaPdBGxPQprsUnIaxMzim11wK1+bg+baMbrlUHsq2ZUzXtQG90BJCFDsjC9GI4UNiOo9aplwSFtGPXYgsOMXluy5c84GF0U19VlvffpgMNxrV/okBYD5asQ29UKPKfHTsLfWjC6yWAaX3rjaGusK3DTzfcdGuo1cml4vadKj+uh7O5SM/n9dDBmId0rOt/nzfgMyiXRfNAq11oek3fuDkK/HbUjyLY8VyQGXyzNOejIHLPAIGTJhXF4gDfrbbYhq0VwNXSElkPOfyGBhGHCmJefVo5Vr5PE5svKzTqYjnM5V6AcAnOo9q1c+B8mTZOnBkheZcCK8HjFD5V3vba6g4qMj0NuJtxyEeKqQvQLWQpzJvfPmsXoAaMY9/cK4xD8dOfC9EZ94ApywZNFCZqj07gmIaO1BnvXcVviFpVFHgpRcrhjHWMMcJxS19+8YapmZfvOi497C4Ac+XICrjgUIIFEWXcGAlBEqiWg8pou5b+HieGv61EIsliJ0JP0OiafBolewUiRImXTDUTsZ2MEyvTho30LFKZyBdM4j5KL76JSPMZtjQb1V2bLSZFu+5ilSNstwH79/ylysaTmCEnhc9H2wGgtePVVuaP6MWq0CVfQ7TvhSMEcMSirmBnQ7hp2cbDTVqNhi6Jyi9COzyy8D8dIhJV/G7sybIPipyrzWzr5lOr0Abrmgalrwm4vpPEC8Zi4+LhK6/zHvBhq5PtzbkGazFuFV9sN0Qt26CNbKaZfzoNj1wvXOzEjpmteNW+4IN0fSrGK1sYQ1R+gziEyPen6c2qo+1j4CS+ly7KZQHsPSpavRY6FjX2WdE4ovLqlSJP1g98sM8dXrPan/O2xJV1ODo5Ki/522JPpPgnKpT1uL1awFgyBMaQSSdFrWqubWOYWlUn3K3fvCWu5OfrbceA+mVaFeUNRdZ3gNC2ce0p6zXOqaaEPgmhfaq3WzhUIe8FUuBM1gcnfLdCG3Am7VEMB34doT+cLuFpcvAz3SYNBOr+IKpDt4oK6Zf1rYTnQRqlvV9sHz+NmA8L5C6pGFstlqo5EF9rXQmGgxrxSYna5momx/2MOk4DjWDl3V8AKTfOvJOWbEcwY0IVR/JmdGHBU3Hb+VFIoSTDEV8aM7awa35EOhHFnvsb3HAxo9tmLRvAGRl7RsAObUiYeeX45WHB0LU8x/fdzEm/xFGOMTzrNF6CIKf0C4rPd9SoMGyL+b0Ce7Wcb38IRZVcx2O2WNVNXcAlNTG0iHQ4mbtA+LlU/bATncIfiwVGLYmL74vNyMY08vWvusZLYI+mR/2MGkRzgSSnPuMgORYbQRUtNsj1rnLTyeEVJe+gXGgk9DNrJcQQsQ/gPH1+3ohK/hUl067YzznCfSi/BCHJLEiiKMESdgozhIkYZM4Ao6EzWqO6XBKk/UNCQd3Wd+QMFDRN6QBkFVLpY47LBHevXhh/uWog21GCC/0ztvIlAfwQmGH4oVzv/jt16vVdrf5vEe5uX3ePDxu7w7++nZ9s7nd/+0vm9vd9sO7X54fb7Z3m3df3E/23Z/C39/9/Ldf3vl/vvvrP/68//CXzePT0X0nV0OtMbqY/CHS+D/MnqKq
Copy blueprint
- The 2-lane turbine may be useful in its own right. Again it's upgradable to 4 lanes just by inserting a Celtic Knot. But also its TPM is decent for the footprint (~105 / 128x128), and the center is big enough to put a load of useful stuff in.
01-22-2025, 07-33-41.png (6.91 MiB) Viewed 617 times
0eNqtXdtuIzkO/ZWFn+OBROran7HYt8Vg4KS93camncBxGtMz6H/fOJHktM2yz6nsU5AgdYpFUSTFm/5e3N4/rx93m+1+8envxdN29bjcPyy/7DafD7//ufjkpdwsfrz+/HmzWN0+Pdw/79fLw38+brZfFp/2u+f1zWJz97B9Wnz69wvG5st2dX94ev/jcb34tPi+2e2fX/5ys9iuvh3+8PYfS1m8AG62n9eHt/y8IZ7857snhXryab+6++/yafPX+h2EghBfV4/r5d3u4enp3cPh5+83i/V2v9lv1m8MeP3lxx/b52+3693Lpx0B9rvV5svX/fLlxwH38eHp5amHbeP0sr4yepn054GgExhBYby/BKMD5vD0sn31OYj8FjvMb/Hlaz9vduu7t38oBmzAYJd6xHWnuMHAjSCu1wu4N68P/3G/+nGAXKzv199X+/XnhfG+NN5397z7vv78yuPl6gKX5TpzMr103lq68isv7r6uNltkAc8Ykg3win74UsMbbqy/onoxYL37lejd6tujgSkTmJZI+OOG6iu5vLazfCTw5Rz/Gk8Oz1j4ycJXmNVdIbgTTjsLNrBS9kKshXPccl9X9/9Zft6svjwcVOcEa7URGTPA2oRuZ9+lN6ZT6fUWcD5fM4j6bBNvrlsx1+3WYLDaqJZu8BVFXYYOG4GNJw7f0InBxc2ZTtBrSYYIpycQSP2AnkDwwwf0RLwub0JuxLGtT7DNVUyw1E3BmkpI8skGf358fNjtDdixvX9FjRZoucxoi2ol+FxBpeSGTgqnOikRLoY61sc4ZZLJevXgZ4Q0vuPMtbNkRQXXUJ1gBTSJ6gd1tl5fWwX90nf25own1cKNsC2YoNZbKkVB+yjHJRTEi9bMuI7qSfSCC0jnhgfkrsKWxnezINdhgyPVquIkB8+qP7mu/oLMV3/++hYJSsN7G90U6RBQbSfCwEZUOCTasCZqglEzgZphFhRi3QpMayVohTedehw1OhhVCVTYFVVCBiIcaFFCBqLCqMRqRXhzBcElK0ZcnzfGhnpdOUb48Be7/QkFOfzFjBuKftRxAL1lnn8ywRKT03DUpeJ0Jwf6PDrNZipkBjqeR7fCeJ+FK5Sh7poD4XtSyh8Kg/B6SrhlsBPodGolGcIdCLuvBTEkcU5RaPIYMiCPxPYsnR8AbCH9uEiQXOf6RKfopvOSYXN4ZLMF4+kAxCEci5MpdAClO8sBCAZmBZ3lHjSBQAMSR5IJRPOcmiPrEkGEJtYlglAz6xJBqIV1iSBU2PhpIaS2ONbTQogtsK8ZCCEoAvtvwUa1lHkBc3wHq9NQE2LXSkD9wugJatEUn4yMVoin5KoFjMc4pdMLWOGSP+YWAhHJUmgPLnzEgytwDmLYfeArKp6BGK5KuG6bq8cTG13NI+HICp/7lv1AfYpriUvFs32SCNhAej/ZxjY5EclTyemyWXmumuY7K0jotOb5zgrC78I6KwhopZwVhfLt8K6b2h1m7tN5WPfHAWsCCaju41HdHwoYTCx8bw2LBESIvYNT6UfN5W0K8VCKHpGQZYaN2xSuvcyZPrqeVZfYwHCOIOpljuJZgb7matc5eIcmzIafdPhsG8vTEjNFFbo/gvuFqutS7RV1tI7IUPzNe9YY1cECgGw81eZtWLPsAi1FOfpY58wwJf1dKQrkFl4Rh8KLe7aRKu2OaUHqjsTxsm+TKJ7ONCsQzfECZ7DDZR6K8qthKwwJTATyNfDY8AK0JSXyizJBKRkalOOHAyuDl0a2A7AmYA9KQWW9eysvsCbQDGtj+z3q5kVYFXDYvc4wPxNk4mXGqQskUvIIb5yxIBP0gbH1OCokVJD6Za/woSfW8eEmUKJ29tHNPeRHbMTMC6HtPGnhXZ5JqiovczZVgQgUaF9UYFe8q8bANJcOMgFwfKMUm2ZzowT4SPOOFSZQoIVGbBeEKLVoB3Z1yJfCAfD+pVP0ZfpEeaifsrF4d0tsVyFU+mwqQNbLR9KO9PIXQRylCDtgfa8IEpL3ETzUyMi0SkYi0j7yDpnYKx/RDpYDZQ0Jc8Uil7btlUWCHDZiYtWFJMAYxoyHzju5ipwVIpe07Qk1QUJUEazjDaO8RATpjPEJ6mGJQyoABp/WTExAVgZSeIUjyJqdFktMlOZ3Iy+CEBswTGUwuX3WE6CCxMUSGC3Q4TeJgxRYgndamKDX5gVux9R1ggED8a4wAuJxE2CPtEVlByudHiP0GRHgTLSstJi4R0xx5gqUwgTRNjNgwxaKTbINi3uFvc3PJ4QV80qTPGLjcmLT2T5Cew8vlojO5oVNb6EzUXEQbvomufKI9SJiQWPfaYQ/PdQL4Iunjr/JTeOriY93o/TQqleEbqWPxv6tVQROs/sS+I60cPwIExKtnghhPtlpBtl6mWz0zKan3L6miQph+VoEywcEl7N83cXyiOda4Qh6FJtkG9azsbJzHhdGUIgSitTlA6hy90QNRRIGF7eGyTO4ePB96GkIN+EufrJxbUGBIyhHa+AhEwuXTRz1nB3OOi2VuACkl4DE4V6mEmsjji/GHVYfOYaJE7YCwyONVPKuiAJSbBEXLHF0tB6TK3lXVwFzu1LcJrZacw4rxO1MR80rIn2F70UfO85BDCHSxwEn/F0RBk64MoR7uF4wMQvpYVvXTR3Ejpk90f1ADAR5xYeZ78jEO+LM3u6e9kRmGPg09yWReAk60aC7ZkBIWDxqFrsZh0D5ppWRLkQ2kjgePzL4nu9zHm429IIZjdRDSUIv4FupGz6QcRQBjemoFTmLQB6ULezNi8S58gR9TZqx2m/fpQh8ni1MEDzs17YdjGxggX3cpmsQUHXzlGTTkYiKVD/zFRV/hcxU9c1oITZr9jySZnyhdwT2hIx4DXjtyrL5OEA8XjSRzUnIPDjBi1maaoQYgNd7Ed+PzgUap5fzw4tXc3AUmcOPHR6gOuA1lBQsfPpsp2aPlLHLteEj04lsD6SrJPAjurpBhuDB4OsIm8ACAm+9Zl6wo37AEx72ItqocMS1BdEw1EqeryDUCJeatUAiJsaRD/70yJ8HKtkkzhhJ2Xc3hK+kQmoLqcgUu0Cmzs+D0La3HSOdlui6wx6wezagZMr/6jB2hDGC0dSRkflY1F0in2/sSm6CD6gf2mFsPqBzSEL5//Ah4S1q2RRfe28nYRKaI595ns70pn+ewLzjSMQawDbdM5KNXSdFe0HjDMR4ETHhiZKmj4HEl6TM5nLPKwZsw8wOHek7BBlDmfDRW8nkhSkG+KyRHshGihwkk7XVXWVmBBufwBVMim1GKNmB6JEDHVFQ0wp1kDodyfOGMCN1VkJMHhGTYpsRmR0aJmY3gOTClgacl9rZmzdXkqmDzutMJaaOuEY0wNQCz3TtNa3nJa3eHqkrJC/ePD6kEFcKvNNa8bAgIbcClYw2PSO2S3JaLTOBkS9i4Gcz33GAr8tQQWwz0BJs0goGEi+CkLukryE0aRl0CUeN/XmJfTVx4QrPvia2P1KF7USSZAPBvdb9EHDe8GArsRrw0vxGImJzK9mkEE1oU7RrYhcn2zwFvbrR5iMJ6fyTileM9UWvNoGV1QxIf7U6x/LPJE8dXgbdGrmQPi51nCVpQon02KlTMlZsNxgqWoYyjgPqEclRF8mVmaKPahkd8o1SSbSPNmD75iBXWO2ogtBX2fmQSCeleke2RqlAU/Y9K5M2Mz3ZPFA72PVt45UVywkSA14D1cgDGpXUR3ZcL9Jirp6bU9DGFCBTCtSzOSt7lIJ66gankcdXyAlSX9llt6kkbo7p+gLoKVR+uIdmBFbYWwKQCRIqSo4MUaQVSSWwkpTtNaItzwQOOdyjRU7tYTUqmb2tzRgwZN4wIYW9r2aKRO500yYVIYOKVNHDjZv8eHNfoxe7jIFQ5/OgbGFUfPpoW/aCsIF22uyVUtppq5A7pPTWmaAvse2KwSPkwZ0x3TycT2Cz9xBxTUubGRc8hFvJUXQByNRqcKQY2fPilK+HOJ2HaC5TEHYKKTTFUgPWbC02pg05IxHURmNi+BEtW/MM1WnG7WrOxLcvhuLGtLX5qcj4VA3wOalNfIUmeypeEdHm00J8juy8UAzVk6GQAB2+InEVWeMBpBqjso7L+cDlg3Djd8DhN7e0S0CDGa3VOLfQPprsMbdKhC1dO1QFJEGtaJ3EmPt9PvbbTKlrLKRfczq/eEL48Js6u1Bn6M43x3bWgLjEUDibXhsWP3C1rCQGi/d4tusAkOHymoiBB5mgFo9htCwiBpvYy1UxWDwCqIwkFMpXgSDrfF8Fwc+O9VUgVD/fV0GEGC+IWI4dZ+Lw/SlLT5DJjQH29sYwbQU7X6QS0GlWSQ9yq5Jm/jBXoOouzVQocTmusDq/wcpMMypdK6E4V+DhI+PGMJQrcL3E0Y8rH/PjinzM/4L4BXqn4968gAWWSiBHWCLXcmmJ5ESrUx7Y3hdedrFsdx1C94hqyaw7g1zMqMwYkkzAVtbvgGDxASR9o2OwnvU7MFj6phYMlrippRASRkwZEUIUiCEjwogCvs/E3memDquZPO9GpLlfa5nr0WBU8y3ViktGcFwfmLex7UuuPTnHG7lZNOAzSIItyeYqBqecM9PdgoiVwgcHz3ZNLDJ+v0uLICK31gcHX5U7WKHILNrg4GkGjQ3A9eRu5j25DD8qeU0AdBG8d2SONwKhz+D9XJ2BhCqDF/I6lBgRVnANYBQ034PZzt4gQ/iulHbyjBFZzgTd0RVsim2OZPLqT4xQOOrZ2kcwVPxqQIJWwYdwdaNnRjSC4JcBdpkFekWCCKcmE6AmRT+kJoEATEAnhBytRkIOikHinKm/MSOSgEc8+wJWWxLybDWDzHsKUmarmYrwoTJqBpm0EBTP7AWcUOXmu/qevEkOakwJKqxAJDPxH1S5WywT4gCjRSnvvlvtqyYCMbSjf6jYQPQWSmoDZe5a8gPM7zeLzX797eWR2/vn9eNusz1oyfvV7fr+5W//et7dbrbrfzw871/ecLP4vt49vWnIJDXUGqPEpIdGsP8BUjHR5w==
Copy blueprint
Re: 3 and 4 way intersections
Posted: Fri Jan 24, 2025 1:40 am
by Maeximus
I made a elevated version of HansJoachim's 4 way intersection "simple":
https://factoriobin.com/post/buqn83
I have no idea how these things work but they look exactly the same signal block wise so I would assume the numbers are the same (even though I have not tested it)
grafik.png (923.78 KiB) Viewed 544 times
Re: 3 and 4 way intersections
Posted: Sun Jan 26, 2025 8:56 am
by enthusiast
A simple intersection that does not use elevated rails and is surprisingly effective.
The 2-4 train version scored 80.83.
0eNqlndtuFEkSQH8F9bONKm914XF/YR5Xo5UxzdCSMZZtRjtC/Pu2oavXxpH2Oc3bDJjjzIqMjMiMyIhvm/dXX7c3t7vr+827b5sP27vL293N/e7L9ebd5o/LL7fbN18+vpmHt3N5uznb7C6/XN9t3v372+Zu99f1xdXDv7m++Lzd//Dtxe5q833/I9cftv/dvEvfzx7/0P0/Nw8/9Pfu9v7r/k/O1n919+niZnt+efvl7u7RP87f/zzbbK/vd/e77c9f9+N//vnP9dfP77e3e/rZ4197fvg9Z5ubL3e7n4P/ttlzzuvbdrb5Z/8fY3rbvj8M6RdQ/v9I7veovz7dn/+YyHNUWUERplDMi5TKZvV0UmebD7vb7eXPv58DarPfqs2/YlOAHe2Xa0s05+mIufx6+/f2ww/I+cULAhhen/L8u9A0BNRFCjmecBro4MSEU/pNaDjhlOWCfL5ypghb9NKZwi9ZrUBiTAu/3ftgOOs0G/l449OPd/npYndNtK/GO1Wa9FeLOTOeboqnGy7ARc02PZnt04/Zom16oINOQkQZmpEXRrtE2GzXZWyaitW+SsxBrvRTNi7+3PTiLOGcR/vpYgzXlfnAyU8nmSPqrCcZmvnsdGU4yveZuQ9XdRnwMDOffElm0C+NuUZ0rTKxG4YtS2fmYwTFZmYWUK4wDw7DD+wApKS9sho6KYUrUBWjm6WUO4PDjlhnbJFAKtaanjxCauJiPizJOr/+IWtWO0hbtbGOaAepxR4Z6hQ7LRXrzvkopq+tTQ09v2qtTQczGWk8/WavWtY6M1m8JONox61YiTqCiZZ740qUBVUoUV0/wuurqGXrJCCqPtzUUHOaPdx0ME0ar1/nGAoE601PHiGV25y0rskKBDJrS4uwi5Zz6KqOg5VzjEnWfP06yUgkI1aRnkRCKleRtK5K4KGO1dtagvXGJvRNR21sYsykt1jgjo5YSXoSCalcR/K6KoEbOQ3eHhBssoIu8Y2mPct0MEVvssAhnbCS9CQSUrmO5MOqLMDPm0ZtERBW36SV0O+b7HGmg1nsJluA0zRjJelJJKTCG7N8dEfLM3c05HJfLNcV/LqkZ3qQSeNxvA0dkeaqbRgasDY2JXT7ZmtsOpjJmoUCHL0Z601P1iFVGJtVj4CftwzahiGsNzah37doYxNjijULBTh6Czc2o6AKY7OuSuDnLaO3YQTrjU3o9y3a2MSYRZsF4OilgVub2WCFlqzrEnh6aTjB3CCuPvznTozYnv57nKa32oHIhZuXwWCFrhxWZ56JWGZtGhhX3wHkOAKd7CVAj5PshpuB05cSNzLZYKl3Vo7eWX7mnYWC4ZkB5+Ww7vNIuN70MK4O2+Q4ts+TBF7hzHY/zyOROE+hqQKbuY9W1nUPfLSUvflhXJ11lkOvLWWbd9bjVLuf50rkgtWlJ5YYK7RlXZ2ZiOUE84O4Om8gp1hMNgOtw+EZAr15hnIpWF16YomxXFvqujqJs1aKNxKIW624U+y88RyBVzij3nWJt8ZzBHpiibFcW+phdSbirJVFGwnErYMWdyebMVlxdzgwa7Mc7+gSCxmnWux+nogfyJMEegKPsdxZq3X9EETg3vwwrr4pSLHzVu1VQY+z2P08EW+NJwn0xBJjubNW19VJnLXmzQ/j6ruCFDtvOlOgx2l2P0/EW+PJAj2xxFiRobauTuKstRPMD+Lqu4IUO286YaDHSXrXJd4aTxnoiSXGcm1p6+okzppIGjjuRoirAzmx76azBjqYSe+5xFfjaQM9ocRYrivtsDaJpybyBtatCGF1KCf223TeQAdT7H5LnCmeN9CRSEylb9PG4xOMZ28cQk91GiH44cVSB1xC8ETBVY6YP8tpa249wbq3Bg85qWbUj7IMXskUPl7hsvh6mpO278TJnjOVn/wQ5bTXXr3HXrO+ROhw2mlvTeCs9XOdeJCTfelEMqfTPJ+Wl82mrhTrpeUf4heoWFZhed5BR6vCffxRFsJrb8rivavzEZRS2R13gc+tXzARLeRCo2ZtmkhQGA+vIAvB8oPUwxkGY/kb7HEQ2OV3sWP4vJS7hg8HTzjaLPIXVsVAWH4l0YrAijNWElhxxFoEtukTIbiWyTy14byalSCuK8xKELcVZiXwA1gVKyGJq3KxEpI4gAmRJRGlFSIz1Q+EyEzKgxGZyHgwIhPJdkZkXMuyEZnIHzIiExmrQmQiGyIJkYlkiCREJnIhkhBZFm+MhMiySPs2IuNaZiTGlcwITPiLgqpzJOLCD3nxnNdHJ0oqCKnzfAkD1QnhBFo0NMTwS0QxNqw7YpHzlAmhjzxhwuwdPF/CbHQ8W8LsyqLIghAWT5ww9q5iRTLGmadQGE+CZ1AYt4cnUBgfjadPGIeSJ08Y71dkUhhp8bwKIS2eVmEOQTyrwpzYeE6FOV7yjApzFubpFebgLpItjLR4roWRFtYtcy3UdOwYpIVknmZhbsZ4zoW5xuMZGObOkSdgiOvczPMvxN1zHiu9ze1c5qbwDm9sv4uNRzvqEG0CS3b0IeVEAhF5nF2VqGM8YkAh2nxCmgapsjf5hNq4BqDOp40x+aQo4oBqMU4uwvWChMIV67M2QC5WnpqN9iWitdN4WrQvkcSNPE1WeRPYwCapYuugn1dFTCF+OU2DB1JzIf+avAFzFoZOJe3Z5kHF+jbLC4wO5TTFGsjzwjxXqQCJKOsM48YvLKJw5c86bkxM96zDxoiqo8aIuvwmNVSfRceMyVgXHTJGVB0xRlQdMEbUat0KYrRE1YjK1+uio8WIqoPFiKpjxYiqQ8WAWgYdKUZUHShGVB0nRlQdJkZUHSVGVB0kRlQdI0ZUHSJGVB0hRlQdICbUpOPDiKrDw4iqo8OIqoPDiKpjw4hqQ8MIaiPDCGoDwwhq48Jh5LGkRWNeH1u2UWEElUFhxJRHqvgb2mITaGQyIoyYMiCMmDIejJg2HIygNhqMoDYYTKDFxoIR1IaCEdRGghHUBoIR1MaBEdSGgRHURoER1AaBEdTGgBHUhoAJtNoIMILaADCC2vgvgtrwL4La6C+C2uAvgtrYL4La0C+CzjJGi6CLDHWQnkfNxn3JSJsN+yKojfoiqA36IqiN+ZKQb2ntN6nxWEf7Pvl5O7t4uJN9n1zRZX9p+hlxI82qltPCXPBrjIN9ygNSQcqYXHhrfaLZSPCsjPQh8fGFJv0YtvlSi+NxZawnhffoMG2Bi84gx1PaytExymqYnSGe9IwY9WIs4+K6O8GJTyqya1foBJsA9DUqxmaZEFYJtMigKv0GNgTMqE0+Sa4oj6DQchjWjE26CBN4TV4me+c3xS0MZbXMmML7aMQzjPsgJhviBNVUimiicSj9gqi2Tlncs3GWVco6lCaL28xEGqM8OiDoZH0aUhqpzLOtV8Ww9n48LipWFlmcrIdJslwVqclVFmtgGLXYPZAUPCsiC+JQn41hrdsWFwssi6z80sNMsggdqbVXeKZDRyIxdbHbKylkWEWqw6HuIsPqbLy4getg0/E6mCKLS5IampWnM3QkElN14VhSoLQOum4sw9KrhGO934RactXBumFxPeI6SD+sgxE9MuKvF8o6aUuDqFlv3jNpJl1sCWuGtbXG4jrjNcl65T3MKKtMkzLdNWlLg6iz3bwz6hq+2NL0CJvty4q4f0DN8mVFD5NlXXpSfr9ma2kYtdrNm/Q2qKLww6EVA8PafjJxX5Ca5QVaDzPLfhOkrUbNtjw5ohbdS4b0LKlFt5JhWNtJJu73U22Bhx7G9pEh7XJqsW1kGBXeiR2bT2VWubSWSW/exM8TfTEOPZkY1p7849ZjtcqTfw+TZOMp0l+rVm1pELXozZu4YzzlYO1Wx7D25B+3FKxVnvx7mEm2qiMd+WrVlgZRF7t5k3aHtQ22CyXD2pN/3Cm0Nps12sEU2YKSdNqszVoaRtX9/Ugb09p0a1mGtQ1j4t6/tcl+MT2MbS1L2ufW0XaWZdRk91jSmbiO2TaLZlgbgom7eddRxmB6GBilPDZVLygAXHmvi87Hi6nW0DDqDG/d8nrrVliTrSqqKqwbJvHzRFWFQy93htXGJvb7bPOLHqbIhvWFOHq8jEJHIjG1aatA/LyJG5s0Cqw2NrHfN1lj08HwJwnxJEOR8GB/RyIxNVmrUImfJ8L9qQqsNTY19vtswL+HwVrSmWQsEmtqGHWye2wlfp6I+acssPbkX2O/z8b8exj+dCeeZCgSHvPvSCSmFrvHVuLniZh/GgTWnvxr7PfZmH8Pw9+9xZOMRTJLg8Coi95jgdfURMx/FtQkextVFAhuQz4tkXiKE5PboC3MFHOshelgmus+9GNer6b2tsGVs+qKJIdwrEPx+omhszW1iLpo6wX80SaqGIyCao8zNXRPW5LHmR6GP8AJ5xgKhIf7O/KIqc3arjYQgdhIZkvxlxSZymJ080nd1VpC+25aTnkb8RweyitLr63zXXkqQPxZ47Fl6SEwapFGtwEvumWbPNNK/CHFbYAYnXTZeoPjd2jh2GJ5zM6GMejC37/9pMY+ShnsK6xOJ8dWrEnpjYg+OEuPR/T0wjHkFvzF0jq+1+VQ1OOz/pCnEI4LkKYXv6hVjg5mOuV9WEMPxFrB7zmbEI49+bfYc7Yx/x4mWV2bn63sFoJtdkyL3bAqs2N6mOoOGs+nuYTYJj/fwyuveIAjrpP5c6Ijsbt18tSQY/ORx9hlqbgaqJjko1g+hYYYmVnZmWLLbqWN6flm9OfZZne//bxHvL/6ur253V3f7wFXF++3V/s/+2P3+eZq+6+vHz9ub7cfzt7k8/rmYcDXd/sf+nt7e/ezLPmYl7os+0+e57Hup/w/U0PDEg==
Copy blueprint
The 1-4 train version scored 68.17:
0eNqlndtuVLkSQH8F9XMabd/2hcf5hXk8Gh2F0My0FEKUBHQQ4t9PB7p7ElJO1uq8zUBYsV1lV9lVu+r76v3ll831zfbqbvXu++rD5vbiZnt9t/18tXq3+vPi883mzeePb8b5bZpWZ6vtxeer29W7/3xf3W7/vjq/vP8nV+efNrufvTnfXq5+7H7k6sPmf6t36cfZwx+6+3Z9/0Nftzd3X3Z/cnb4V7f/nF9v1hc3n29vH/zj/OOvs9Xm6m57t938+nU//+fbf6++fHq/udnRzx7+2vX+95ytrj/fbn+N/ftqx1nXt+1s9W33H629bT/uh/QbKP87krsd6u9/7tY/J/IUVQ6gCFMo5llKZbN6PKmz1Yftzebi19/PAbXptcq/Y1OAHfXKlWjO0xFz8eXm6+bDT8j6/BlMfXnK82uhaQioixVyOOE00MGJCaf0Smg44ZStQj7RnCnCFq06KVzJagUSY1q4du+D4eynWReyeOPjxbv453x7BXZfneOTKk121XbDjDgznm6Kpxsq4KJmmx7N9vFituiYHuigkxBRhmbkmdEuETZLvYwFlYvcfU9HF0kqV7qUjYs/N62cUzjn0S5djOF7Zd5zxseTzBF11pOMfQ63V4ajfJ+Y+1Cry4CHmfnkSzKDfm7MNaLrLRO7YdiydGY+RlBsZmYB5Rvm3mH4ia1AStorq6GTUvgGqmJ0s5VyPDjsiHXGFgmk4l3Tk0dITVzMB5XMLy9kzeoEacfdOKATpBZ7Zagpdloq3jvrUUzfW5vQ86va2sSYyUjj8Zq9aFnrzGTxnIyjE7fiTdQRTKTujW+iLKhiEx12/PCyFrWsnQRC1ZebEnp/zV5uOphmjdcABIL3TU8eIZXbnLTXyTIDgcza0iLsouUcuqrjYOUcY5I1X79PMhLJiLdITyIhlW+RtNfKAjzUsWpbi7Da2JTQFI7W2HQwkz1iC3BHR7xJehIJqQuzXfl4XShPrgsRdxI3nIO2A/d08nYGYfUbc4lfSu0jcwdT7eFdgKM74V3Sk0hI5deZfNB24D9OJ1gagoWu2k57jvqekEM+eWMTeqqzNjYxJmmzANy8Ge+TnqxDKjc2+aDvwM2bq7dhBKuNTQ7dvtkamw5m0mYBOHozNjY9iYRUvkfyXisz8PMWb2sQNmlBh37fYh/OOphij+8MHL0Fb5KeREIq3yN5r5UZ+HmLtzUIq8M2OfT7Fvt21sEs9pDNwNFLA94lPZHEWLFLDnoJPLI0ZG0UGFdf/nMnRmxv/z1Os0dtrkQu3LwMBjtBB6ocX7vyk9euWDAidHPQ+0y4Jxgdwk2DVqQ4tp2SVaQOJ+ujHDhniacC9MQSY7l3Vg56PxCxnGB6EFeHbVIc2+dJAi9wZn2eD0QuPIWmCmwWu2WvnQn4aCl788O4+kUghV5byvZJoMep9jxPM5EL3i49scRYsVv22plGIpZJGwnG1XkDKc4AyjYDrcN5kCHwrJ0tx8SX+xcLEFRKJdnzPBE/UKQHzAbL3bV60HviBhZvfhhXvw6k2C0s9nmgx5nseZ6IH8jzBHpiibHcWasH7STOWj3B/CCufiNInTxJ+0jQ4xR9nhNvjScJ9MQSY/luqQftJM5aPcH8IK5+KYh9t2pfCjqYRZ+5xFfjKQI9ocRYvlfqXjeJpyZyBA5HEcLqd4LYb9NJAh1Ms+ctcdN4lkBHIjGVvhG0fzNifvddQtel0ejNfZJ7B1xC8EKzqWY34hEnRa/vN/PPDHiCTS5xPclRZ7ocx6gwy3tNIq/gYEiI+z7WExP5O3n8I/0gRyrw6L/Iicc3nZiezEZprVNnkMtpOXdojNNgv3shmXxpgp8b2B01qWzQ57ZVjC/WPSN3r0ntKns0Tvibns7J2FmKESZj9k1EC7nQqFmbNvGXh3bISCBYfpFqhWNn/GXculWBTa/FhgrM0xXWLYnRCiO2CCx/kri/h2CsuGMJBePpC+tqFGzSN0LyLMPzGdbVaIJI+hGaIBIaitAEk9AgNGERT+VCExZxARMi4wkP62xEJsJORmQi48GIjO+ybETGd1k2IuO7LHGRZZ4QsU6TwIoU1SawfJelIrAi0TsJLN9lRmJ8kxmB8T1m5KWfChF19tSQI7YUHx1PiTBQmx4RzzhljQFjw7tHaA7PjBBKztMixH7kORHm7OAJEuag4+kS5lTm2RLGhPBkCWPveKqEMM6ZJ0oITyLzrAnh9mSeQ5GNtHgCn5EWj/8aafFosJEWfzA00uLRLSEtXnpB3NgyT6oQ18vMcyrEFTvzlArxHpB5QkXn3j6GVB72MjrAw15GB/DeakYH8N5qRgcW+uDWeW8LH19zHV6LDYu68CwL8USaH6Rc0NhcAirLKzMcH8wTeYHOVQa5jg/RrKJENskYhwRiUJGn+sTZ0IGvOm82xswnRaUGVrfJhbyekVCosSIxIxZQqLAtnRbmSSS0nlu2YZ5EjoQH6Rlw8yZwJDS5xQ5r8fQT0RTi22k7eCBfXOd2WjW7oVN1s9kHjHi/NRlM7lBO21joy5M80lhyX9yh6o9Jqn4ih8CYbcCQGEORmLH3MxC12rgeorZXUsPtI3Iz9v4bGutkY4WIOttQIaIuNlJIqKISxN5qEaMlCkFUrq+iDkTlOjAVGyVE1GqDhIjabIwQUUcbIkTUyUYIEXW2AUJEXWx8kFDnwYYHETXZ6CCiZhscRNRiY4OIWm1oEFGbjQwi6mgDg4g62bggos4yLIigi4wKEqhIweCi0hUlEDRraIgpMiKIxlZdQBAxm7tQIOZomSFlctFANLLZBQMRc3GxQMAsPJmCHxeFp1Lwk63wRAp+CBeeRsHtReFJFEkIqskoIIKOMgiIoJOMASLoLEOACLrICCCB8mQK7twWkUzBBSVSK7igRNkJLijRjkIIqsnYH4KOMvSHoJOM/CHoLB+lM6lkv8i4HxkpT6vgTzGFZ1XwV6PCkyr4Y1zJRQbnCuoKUF9JDeXPcyr4G2fJo/0u8WlJhXi0k/0usaIX5JJnG+UAgYIim1scn73haojmFvtUAJAJUIr85PHwCRWqVlsK/uIxycUoJwVlKL3KLgCdFmtFl63oYMZTOpDQycoAcGeIslg/HdxJHztWElUulcanujofDrm6uK9UfF7QIj4EYmiRETU21Crjf3QJmvwUsaIwcqmj/BSRjneyH2ej1jw2ZT0sgFCqLKwUU0QGRTjDcN18YYuZdB/SdS0Q1Za1WOJ1lFUtOhRb1GIm0rA1LRBUf5ZISqIU0fhiX8GFYW0t8riYULGNL3qYJMvUkFo8ZbQGhlF1gQpS6KiIxhf7ukwMa922uEhYsY0vephJFp8iNbYKT3boSCSmLvZ4JQXMish22NdbY1jaTflYD/BpOcAYbKNHcb3CYjtf9DBVVqsjRfnKZO0Mo+oiY6TiYZl0iUuGtW5YXIe0TNIP62BEm4t4knHzQm1pEDXrw5u4YiJ1YV/SlWGrFXTsnM0yztrD2DrkpDxvmbWlQdTZHt6k9nExbS9mjl1sAfK4bnhZ5Ae2PUyW9ahJ2e2ywK8pjuXmM/vaoSzW0rDhNnt4k2LpxZSBGAXWpnjnTrNXmePdwyyygD2p018Ha2kYVdcdz6jDre56wbD21h93Jqm250UPY1tekM4eVXe8YNRJH94jkchsW9kwrL35x72GapI3/x4myVY2pF1PTdrSIGrRZ+xMuktX25yKYe3NP+4eVpO8+fcwk2xORRpwVdHiYhTUxZ6xpLdZFR0u9p3YGFbnjMYNsLOsf9LDQH/s2D/xafvEuFt6lW3sSKu+mq2hYVTdhox0QaxZt7xkWHvxj3uSVtvZooPh2QGdSYYiKdbQMCrNCjh2xy2sYGsVbS32BybpxVpFV4t951iGtcYm7otcbU+LHmaS7XFJC+DKCy10JBJTF20ViJ8n+lnse0wzrDY2sd9nu1n0MEU20ibNwmvVpgZRmz69iZ8nqifsu8YzrL35l9jvs40sehheRiueZCiSpk0NouoW5JX4eSLcPwvqielnKc4Tq63KwvgV1S6ozVqYGrunTVqYHkbV1+/PNVag2ZWur4lkiVUe9I/1JxwrzwDo6HpMTdZ6VeLpisoIo6Dat7MaO76jfDvrYfBOiecYC2SUhpZRJ2u7KvFGR3uhqfFZZjIA+Oh+b0wBW3NUlKdcp3RSgi1KCK2T9No66yqaUYTLGo+tSg+BUZs1usSLnmzFqxq7vyITIIvRSZetNzgerAnHFsqDZwXMAppkkvx9nm8455lXjNuTYnd31ialw6l4POnAAetFmx+lh+v1+NEj5I50tOnZSSvfrD/GKYTbzdEZ40Kn2rhcluGkTwxm5D3q0gQt9pwXaUN6mGI/bMlPdLCFYJsd02I3zFYh6GFGdxd4Os0lxE52+TofBtXFOlutw8EFRw+cGnHaMHjOi1urDTIFJp5kGzId3PNzLBoDplilpgUN0/46W23vNp92iPeXXzbXN9urux3g8vz95nL3Z39uP11fbv748vHj5mbz4exNWtc394t5dbv7oa+bm9tfpU3HvOy0oe1Oinnc3RZ//B//R64S
Copy blueprint
simplebuffered.png (346.13 KiB) Viewed 413 times
Re: 3 and 4 way intersections
Posted: Sun Jan 26, 2025 9:12 pm
by Factoriointersection
Great! Updated the forum post=)
Re: 3 and 4 way intersections
Posted: Sun Feb 02, 2025 6:16 am
by TheNerdHerder
I started playing Factorio about a month ago, and for my second playthrough (now with DLC) I wanted to focus on trains. So I started building my own train book. When I got to doing the intersections I realized how complicated these things can get, but I didn't want to just use a BP I found on some random forum... Anyways, I wanted something with a higher TPM and a relatively small footprint. I came up with this "over-under" design that worked good but was still rather large. I then found that if I offset the lanes I could reduce the footprint by a sizable amount. And so, rather creatively, I named it the "Offset Over-Under". It averages ~108 TPM with a size of 110x110. No idea if this design already exists but I made it myself and thought I'd share it.
It could definitely be better, the signal placement is atrocious but it is good enough for me right now. I have another w.i.p. version of this that is 102x102 but the TPM suffers and I am pretty sure it is entirely because of the signals. If anyone can point me in the direction to a guide for better signal placement it would be much appreciated.
offsetoverunder.png (840.28 KiB) Viewed 167 times
0eNqtXctuG0kS/JUFz+Sg8lEv/8Sc9mQYA9nmeAXIsiDLszsY+N+XlLtbtJhFRbR82pXgCWVXZeUjKivzn837m2/7u/vr24fNm3821x++3H7dvHn7z+br9afbq5vj726vPu83bzb3V9c3m+/bzfXtx/3/Nm/k+3bwj3b3V5/vTv6lfn+33exvH64frvc/sB9/+PuP22+f3+/vD1Dbn/7zCXS7ufvy9fDffLk94h9x6m95u/l782aX7bf8/fj3nwHpAvT14QD16T8Pu0epz6H6DBTBGApj+RKMY59l5afP2m4+Xt/vP/z4By2AzfRHSiRdWWA+fLv/a//xEWR3dQFGf5ZNUoBa6aULhWvY0u1kUQlvz9fOA9wO4pKwktg98R59tgi7fAMcRTd3pzoB1We7qxEufDJ20mPccPkch60EbMZhMwFbcFgjYCsOKwRsg2GZHeswKrFhCh+jHbFfCh+qHbFdCh+xFIOWCNQw++SLeSrPzVOOYEFPpBdwI3OgmXXc57gS4ca+6X2EPLBekW/SSlvpGkYZjXWd3hDxOm38Q/EssXGHVyTuMDBM22lbgPNzYIuAn47Sf65u/tx9vL769OUAPTqly6YDntkMFVoWoR1x+eaU0DkWOTICRgd4HgbDVmh9inEqqu4LTgG0qXGbbrPPM2BvOh7+eAwbhj+ecNwU40Yb7kItRSeQFdN+yYvyK6L8brCBNnzb3Gmzb4BdddBLWR0vQo1wC2haToAT4la9ouuwW06cIOqLZlWWFoEFMeDeSQPeY6kjpcgJXgwZLEZ0MrKgR1l8sMShtHBUeIzL4TUwOs5KSJyVnQ5kEA4gZ9phQLBwVGg1XtuQTamU7p5AR2DwCVsibevICcvkCTOb0V/WrpJQskXGQkdnrKAB42Ju7Jxt2T7+t3/cXP19hNzsb/Z/XT3sP26iv4d6u3Lh70W4tLeDlv3p8L2//rQ7fNiHh/vrD7u7Lzf7QO9kQY6wUBeXxzvYI9xCqt10OgxIoAvOd1ibt+tl51ka7i9kkTYCejpys9LtXoz64s8PvXF9duweSfMzyMYgCut8kH2qykZlhiTjFT5Uiy2DYLm0zPolFahwJuYp1tDILFYwbjxGobN0iLmtFTS3x2uGCRhKdSvq1bySwCgdf7IUEKPQ8KDRZyMAyNu4RI3D1svm5v2YWn0OHxqH9jyG/HZ39+X+YUytWgHWGSQWXcaKEaVWLaP757asQYSDU/V5BgIS1Ya7riwELE7Veydgca7eKw7bcbLeMwELO7HdMQGHYfEbMdcYNrK5HaUXj/HWDItQ9t3RoDyNgZUInjvK5cv470Umohc6eEa2E/R1dkHaMH7o8Bm02eX7y0Fp59I3fzIa4WUz7t2WgBygRCQJ74KWGFpeXgVJ+CGc7ZvGK2DsPb4l5IpDEkxBzvfbhjBvknBOvy1fDiwoGkraeB1qCMyxIouBl3i7GpPq7uagXOPahoRGjbZ8tUJ8hQjIhMjC3mhDCF3B6zp09mkJgeUuzuZYabCugl4+1/HXh8pElHfMUZgiNQhEfccchmG4cGnULmuMG6tXpeM7TN5GB3gYLn6N5o1YB+UjR0heFTrGw+RVnKny+WQguHA1lZQYNrQKcLXHQgZqhWIjUdyLOSMwxzKe6HCIxtMgekYqxF5cYSKkXIC2ELrjjMX8/YhLM4IJMQYX5fY9sUthSoe3mMh48aLN5qEguHCq9hQ2/GBB4ORMTmpCYDJ6Lj58/hFxYSecpslATWJYvORKGWlXHMSzO/3wAlcMZ0vmDFAd0BJHb9meLnHVoKjVg7QNLUzVOMN0vJB+sAbhtg3KRq7GCcUBNgRy3qrFqYln3Nj0y0gFR3pBJjxOnLNFVURR2isUZSBqR1nlBSjO6DN0GzbTAs8/N8zlT0o8gKxT8mX5YKc0V6grwoiglR2y0IcqWKyWUWq+jJHjZYWrO7xfXtJC5/FylsdLDqGJEzSH1gk4QfkVJ0jirDuDbMaiANLit09S4OrEmbRThGQoQhvthChogX3MrEeDFcTLM5YiUqmAohectpjTHUHSPrRY46QkWaALYCmFjkSlkJHoSdkGfwTijK3A/IXIZaBOq1QMVMFgLafxDoU6VQmKYv7WEouoqPVcqvGPux5jwXHZknGNpMIDM52/DwrLa36F2g2+Gj4t9tMKAi+5UAqisMBg3vN0KRgAM6e9dvpoxovdcOe0WCbAOTWQhpD2ixakgcdOy6/6g8aWQggUHzanbeVgZzNdxCOD59vSCv3ESMC8vvFJlSB5fePutmaaQ+LEu+GU+8wJiyGff1KtwdvPWNYu9DtYMeRpqdIPYTFcY1/CYrDOr2y/vLCZvd2W88YBjI3phX3Ni61MRXJ6ZRD5/ItTEd7dhVuoiT9uzBnRBJ+9xZ0OBFVe0MwIamxNvkBNMDTxx04qIzgfcEpn8AuNr8Lg83maUhrIH0WlFAdlFpfcG0GVRN+jLNEAUA6oeKGHX/QBSnTwWBJF5BGVCs6WLPuFvHxT8VdEGBIvQl7vWgeIhTbwA6BKG+ABUKOL7szifYk1srNPg+SsRKwQwYQqfONsPf6OuN2GsKXmgjHlqjwRGW+lGv08vCMnS/n2OB1Z0UyzhY0jC1UL3YEHkvwVHGSPt67RuQwkaKdTGQTW0mq7GH++CZsaQWIqm8e016QxShR4EMfkeXnHxSwGAsyrkxgInnZxA52oq1MYSMzGOtCBmH11AoOI6dC99ByDdqCKTB2+AzAnBKW9WLyeJzUa2Bu3ac8r0C7K4Uqphd6rUGWeoj0+nhh3FLiQ17Nl0JnSK0vdBxIy1tDpW7W42ZV3tofMKwXPibUMseBZWOqhQMxDBt2aKalrJ8UgcCpQL64AzfEPcDJ7HVqxlSxQ0c/8kQWBrCBtMPcUAB4waG7sOsY2IHe+bBHrl5dIoz2/1wGMdqEpjZjRKEpTL0vFXQyIvldZtDK9KrwsUCA45wcpljkTZW4DiEKVtT0ixflqqWQlF1LXo6XhzNWPg62IFna23EHJXBXrxzH5SqD+UKtAgBkHVPadT2yGqvHF5JMNdkRMX/OcA2k3WkE/5LMOONLkRmth1zV2kxX1PTsrE8zLvgdvvjF/dB9EoJXuAxBnCC3xz4SnRl8dUB+0pOOpS11HamcUrdx4orsGhZbajC0c6q8pAdHmLDk12Dg0SWq/RuxCkkoDqSvJIjUo9mzguWqckoFuSjnd7ZBvmsKlFi5jlzUvujtglTvtlgb8eSfKEHUGAvKqjgVuGmPGG7K+HBHDp3vMj9Z0DVUuhKBse/mRnH0tpY2IaQk6QAlXKkvCEUPTrRpsPi3Bx4pZByNJIQzV1zLasTYY3i6DOFSWCkksYah1LQE9+vhG8lbyqrzWEl70VPFlwUeiCKG/AnPnA2seNlwX3oPFc4OEbgd1Xu0UWhtx9k20IA3NTTL7Biuqt2W0TcqK7EHiT4pVpNKuc7CZtGsb4PTV1jEG1LTa4gwAhWzxidRCmfKnKp4/oCv4iulZH/S4xHRF6dJULCfIqAhdES1OxX4YfkGJh9kqQqhrQsdO4K95TFkJ/BUh5XxOoMkiiSUUjldkoYbb+if8mKhK28SBoLY+nYAEXV1Mj8Fn1qQPlqEQ6QRy92dWyXQik+kEXm/BrOd61xYvrCc2P4FG9QibTkCoq0vnRx9vbH4CielkV3BBZhSdFFwAt1BTfczou8Eai4XwPX9SF8uI329N2w40MTF0ior7z0f1pXlITtPz8eNly3TzawGKdyzD47+WDy+vKgSxDDP25Vf9RSMZ8lf/QWcd0mDPM8dmR3KHuIUs/oGB17MmgxVoZJ9hqcgotk62AxagY5ihE1eWygWBKpMMHriy3BXK4LLQCp+89RgIJ/Vn54sMS7RCn5yBfHm1Ig4AC0vfvarq2QoYOaqd7jmQFeOTVKYHKaMFgd80TxdYzxUg1PWaWOcOoQqr9nFjLKts7btCDaqt2lp1HQnqZGtipFGSVXYg0XnzqRriog0CluhLB70GrFa8TumHBilQqGSVHl2uGAVcOzsIT5HpiIZ35pgMqSoEK6sVNSYpm5It1JGeeIa317B4UePZpjBdP0XgGCo+FYWRtdD1eo7AVqovxuT7436P9rxY43Jt3gADfVA8q2EM01eT7xrboQ4GbTpTP0Ef3XgIrpKxK9LH1NCJJ0uIqViy3p02x8iU4Y4zfhP9gTSgNXyqyUx/KjK9zNC5JkvwqOVVwSMx7kTD1Yn3spNPgM8WJxwPnBI5OO28r3kOcYW1q5i4yp4UUFy8IxS1uuDjrJyH4sa4edXbhHhIhSe4Q9Sc7pzP/ohHexP9oSZz2RDYRt9dzu4CSYMdL96YHhMikwlc8OTK590CVIzojlFD2BiVffmIocJk/DRbBEOFvVxOzMLCXm4asIIJC0eGmdIC+KTlTAgL18nP9ut8FFLYTNilr5r6GM9CcmL4yXRZj4wCcrQ9xmO/vNHnhxaGKOOYRqVjAhvJEJhAYa/j3TKmVxgGEBqu1H3XCypQVj2xjqfBOTzvZOmMYoopPtEUY7rgQ4aWOTHqZCr3QCYCOlqO0U9XIQTix+CJhXLGBwqfbzJFx4bUvbmRD/dn8MEioE/1l7T0fDJvuPtECcZEOCIDFh2fXzJXVkFTcx2ty9jJeB1EQuRGtms3gHZxQ1/r61jcRGSQjs41ebI+2Bggx9tkTDGoQe6B6JNRQ9gYFZ9s0gjtc/YBPyZsJkNbDLWQMSiGygaLGGpjSyQMmBjg3tnybyuYK86J7V5sAI3lmXd1PVyOcJXzqvGUGDTbFfs5anze4KEp8+2SVczYo/UZfkExYokLydrAwJUd8GbYvbKfVGpggcpkh2NCKHd2+ocBjxq9JLZNJgYrbH9vQ3pKeVHoiWMMGe5S4YvunUB38DJm2vv28qBxL5kcYWfAc3QvXLI2R9XQIuCU49StxpFUtTT2TY8L0mXGTwo5oFb3fQIPz21NbMDuyLtMr8JW5XvCLCJa0qEXcJnIuqKtsy9sY6h3ZIMOy+Hyx9Bo3UcZyxzqHt6jw1N4VOItrbjzmOSNSZjK+rTLaGgcuYzwdUU6nThR6zG5H0eeEXoj3JqGuKEla+zQPYeYksYxJVPY4AgJ1ZzsDeeG6T9e+2GVEBetvO9DPYs5Lrhpx0LvumOZUMPbS01liY7wR8TglekNJATb6TDSERKtC+08IRfXle1sE2xbjEyykzWUOrQSeOXIdKHikJfs8JzLiad0hHnoZDhpBDQRTk6wYSm9Ez095rMwACJvzhapXtz0jNaCLGUAjuW9OXF9cuYgFyAtMloQsrxzcoxdyAluO7DEvIO6/5ycVqIeA2XaTrcYqNDaOJCo0lFVQ6KqnBpt5AGuICc4CtShvKF3zgLPIh8DWwiMt+cI1yG0xBkv8IhXNwaF6zsqAercI1sMNJNvYjHUQr6JxVDZsSgYaiM71GConexQA6Hi9R1K7JbiB8sJVGWNfQ7JnMxMPpnafQLpeSYGn8ywA/kyVxuQMUooayHHt8PAdCyXLf5yOpYbAXU2xsiDbhfZEv1xAyChP24ApLT+AtlfNmMjjhy8FX+33fz38PPXzZu3b4tv81aybPO77Vs5BB6Hnw4Z8eNPx99uj+2hH386/nb56fF/t8dH+yc/HXL040+Pv90eC5wefzr+dnukevO7wx++fth/PtK9N9/2d/fXt0eC/ubq/f7m8Lvf//zz6/7hX7//tb/f/fv24+GDt5vD///6o3C5aD+E/zkfbLcX//79/8X7VgQ=
Copy blueprint
LHT version:
offsetoverunderlht.png (77.26 KiB) Viewed 167 times
0eNqtXdtuG0kO/ZWBnqWgimTd8gXzsMC87D4FwcBONBkBjm3YTnaDwP++ktzdUiyWdE57ngb2OKdZLLJ4LdbPxfXNt/X9w+b2afH+52Lz6e72cfH+w8/F4+bL7dXN7ne3V1/Xi/eLh6vNzeJ5udjcfl7/b/E+Pi87f7R6uPp6f/SX8vxxuVjfPm2eNusX7P0PP/68/fb1ev2whVqO//zxaQvw5e+n1f5jy8X93eP2X93d7r6wRVqpLhc/tv9N+rz7/CscWf5CxkCcgxLfpRHnXdoS+nnzsP708hfVwVUQV+ovuA6SwSuVcm6liedY9HAyT4+LUyacT98evq8/71FWV+dw5DLfK71Kax51jV6ljxMDT1BxgSItqVYQSY3CL9WnUOkdtQrQZy7stQc7LRyATSi14oNG8VBh7eiQah5oQUELAQprSiNAYbXZiTOKKrAORSVQYRMSib0SWJsisVmiMCqxWwKbFmF2C1cs81Gzh5rhw2U6R/MrhQ0ebuHPZ9dMS6Utvplv8WWG8XGBNKA02S80/co2b5P1oDx/X938tfq8ufpyt8Xu8m4i86L8KOiS6URyOiHZO5oVdMliYYGN4oU0nxee1GvibZ8CzmlG5SJNvJATXiQPueAER59gX94qJ2/Fx3ahG3xeSYdiTyoswLDZh/UEwkAv8MgJPN049YAF3bjpGETIVfKYGImOv2K7DDbeIgABhCXezw6vWVw84My7xwi9eBwVs89dV+Os4rji47qwDWRv63M3Ri+8DagAT45XBNQ4gQoXK0uvUKqh0Sfa07p00LrrzZfV+mb7xw+bT6v7u5u1J22DQVI3gE1Gn+hboMvylRJ7kmmDTrKUOcYmn2iXsbCzqKOqBQCVtG06yK+Wy4dkavDu9WBdtzmjnqVOHoSeZCOaBxxxgqNPsHdKZqEdKQhW6cP3hL2ecmRbnmZHTzE7kC7iQd2258H3q6ctrRdINh/dE+Gc4cNXceHNhdPkRhBcYXenMfuGWrc4BVyKBRkFVDg5h7vc/9s/b65+7CAnQVh433tt977d3989PHVTTvoq2PaCgyLnZfC6m3tSIFYqYHyn7QyLPINSuPjOlKAZT8rv4ok9rF1WnJJJizKyWQFsPGGyS4l4JLucqHRIqieFGBe48f4LEpFWOL4z68B67K1wVtKKD+sSKzCxleEBnJa0RhALpyVTJFBhVUtKoOL5/kSg4lmU6bQBIuaKF8fGnITKZQ2rqNGTMKluhE7eBsd0qzGoUyA+ahHVhrFK8ZoNHncbb93iYfM8QDRhebD5ASn4NaN9HyRSbmBAZ3JGCrxIuYHZSmtngF2KCwacEguMGrMDL6Qh0VFrnGG3OKJflt8Y4JiucVTHgHdrjDUhBQLnGIRJdBwxwwUD1c3ytPr6DqhnxGCsmKHAiZSGEb4g0kD0echINrJnuP8YjcEFdS5OdSMppyUNIkKKobHZoNcLcRkfacdSoM6ESHuWglT88faR0QfEYJV1AjFYuGiQAsVc2rvEyKXdSwwWrhkkTsQIB3NkbwZ0O+Ix3OixiVsQj0etJGgabOz+2FLqIsJqpeYv2WWloFXwg9E4zWYEF1lZ908QnycK7FZOdgjDRf1K63NCXeBMG/yT5gifYjh8M47DeEluDAvFEHrxfpNYfVxXbeH2k3gQYiinE4/aTyY1Bpu4RP3eRdiMqRCsVbxAMFldQXDxqty08OgvPFHFwjFk3VLpomWkcDEd0kB9Ox61lNB73VlyBXPbE05nsbgDGIi9NVBt9ODJnpacXWC4tqYHBgL0wrW1KQKDYJW2JxAs3k8/amT0A0ZL/HEckH5ntDsrTvm0XfeBTyPeHdImEl2gOlsLe+yDtWesI7zmnru/KfD767ezo60f+46PASkjnUAx4S337TyJOn9XOoh4T3AeZQ/ZlcS2l0WkDSGmzO+2rympoLs9OSsxQfcrUsWz+XGiEcBtePPByFQ/hsmBlkefiTmySZj44lLjWZcs80W+QzRsaET97XGD7Aym/eSMPPlCn9HWqfILl10ouClxDAYjEr1m2OyYMrCV13bf3T9q1EDzAFNNLCJ13FgCLaerSb4UuRQUZ3wgMh8Q0E2eEsAYLG+zVuOtFuwDNuMDhflAmvGBxHwgz/gAJTtEEl7PKlKpM0ilpLDxH2CkpfK2z+dEjUjoG5gzpAp5Rw9bsbKX9DBYXu2O8F3ExN77wwjNbF09nl75ZlyWOj+D0eNMZe8uYpyBPcoxDwjBHrVxACmmsQLcWXqLbNIlIom6Jrxr4WeXmtIt1xG5kBGb0Q0mU490RDo4YoPvvhwi3gCVqht84+zgszrdIYzWod0dR724zieF+iTa93EU/5zyj/pi4w25K7YCd3/Uf4hbEiL9xTcxSwKfdunwCmwVOcsqF9hYYEj9JKT5trnDgjzfpnUQQX2VwC4ezr9I5zz2YRsd4wLlDol8/tLNr0qM+P1IGYEumyGJAt1NER/Th1T6FOus2eYHThChaX60A+Hn2cEOBF/YA7DD5kqEOg05+PDBIcRyJcw+9fx1EyNDiE1HWz0OTkPlcqZCjA8hlEGMjaPqW8IokTTb5HS2M7NRFMSWwk6AgVArOwEGQqVnHyCoaN/Hofu5QcMlRCNtG90ql6jMCKXSiHgxmhTlDVqHUEMjiumadEaKUqKJLjLnzrQazaxV6ayVu+5p6SwYXyrorK6hWfCxyxdoxZDXPR6+BR1rLhnYUON1wx+IaNxgggtgyldVIfk14ws4Y7oFaMIRfAzIRHh4k3UjxoMMLA8ImwqTentxWvzwzCrR2RV8iAZBpDMQCdKb8VBF4q0Epe2HkwsCFLI6K6Q3l9CLKuMHOoNFJcHN8DYu34WZdw2lQ1Om9Xo4JQ2Z9oZP8BiW3KES7SDUlzx5AUxCaiRpvuE76uXAduNFVXwPOWPKMRys1ccQMmjqkMLehqyQHUG7NKbgq9NpJzmRwURnmZn2TAfuN0T+Myv/HSor2xp3mgEtLjDe0zTcIIEqG1LwrNoQlUE5wII7XTERsMKGDxiszs6OdXK2xdgoYsjZ4taOGJExnB8YLzIbWMW3+XeFzb1hy6hzE4a9HcULSoSeVMhtEwKQzcR1lltlbooQI3NGfy6h0HNaLohjqLImrcdk6FLIUPfHzvMKNxiqD+vOGMbbKuysEtXGThuD+oGkwReqxgJhFKzw2OJ80+BH/k1mn0wdQDSVkNm1GwusUN0R7aY42EZ9U3m7ZfZM7DC6sHTL2xoBGtvN1CMcHEQzXTd8I+GK9kzE/I/ssKIdE9K631Pqe3yaXNU9z9zBy2gbhQqn0RrYCTcRmGWsIbHWQf2h7ESmb1BU84EKN+d18K86o+IrO8oyYnvR5lsWn1KiQ+IAdFka4QdWDude4mIZJZ5aGY9oiHKdbWo7HDY2VoHITGxoAaFmIrSAAAtrRjtMrLNDC4jMNju0gB5hCKxN9rkgs2/qY2TOiN8I4ZIZ8RuhEcLHb0KIyIyGCWFEhG9WEmZrC5hjHwNHCLTS5YXh9jEGz+bwO1qj9HjtCJX9leigGNcNXMxT9M2W/XyPF9iCjFJRVXZ6ayzQWzDzGwX9i9OKN1TE/pYxzoTS4V6HcHxazXkGVLIsuRcBF4nWIp8i/AmWydGuQBFFjeisLQyusLPvIzDXUe0Naf/mM9ZY0evgwBM0Rp8AeC9Q0fkZU/tZrNjbRsYWz3rLruw4TGTyhdr8SMsflKMpkDVXgQbQaookI3v0CTsnWRRRxERc4WoMLj61SSl66TeLRJDBrUqM1xhuxyMTjjSV+ZLq51RSJUc6I6OnFH89ZQgqBHp8DR/wOW6Wu+ZM+3LIyDKdMWBj2hzfnp+0bnRbKEccP98FvorSzmJQ484Gs9PDyuSLgs6IRjeMIMZnNHdj/WMiE4NoBnkGpokq/OjJNKFRMjToREugz3eE4BLZ8dzOqODoIgt79xcjGC19TSPhBAuvCp7oG25TI8NLtSTyOSAB3lrSAhsj8Wl1s/qlsKdxhkQX9/GGicDSEEnA2zOGucgQLP6YySoJAUv0pDcClr6rj8ESszorAUsMHEwELDF9kNky3OMbbo0iQ83VG4EBDi0TJOarlc2+nD5dUJjsS8WnF/pscg+jFubcvUBed9CGGr002pDT10T8XFoT1v7DyNxDlkMs5r+moo2wdTaQifAVb5LKLqovCLitMwIV7OywUUmc905c3DrnhTTkySJFezoOsgWRbPC4i4M6QF0/Bk+1OFzPAIGF7bk+BXZffg70wBrkDSsLM8bVDMG5AmG0BfoG466P5NmFwp+vbC6B/gvK8EQL6W5YcnErOaMVecXLQiPnLSuSmzKiW2NwhBXRBvw1k9ERxmCF9VgxWGU9VgyWdi0xWMK1zC6s/3R9Zj1WjFp2xLUaJLeVnAqL8QA0Z9MYLMVSRob3awy5QORRTjvq3oAMu69p4kLLrKfMkMd9TeB8ycTmAp28MsOmFZfuzi6iNi106WYaSg19AmVqYHW+5+IWckifZmRb8fZ8cVF9QaSfSEeeijcNs151x7Aj+x6SIrcDTeGJv4M0VEBnVGeMWvaJdmVNoapA9RFdidBEjsHENi2TY8jUrR4b3q8x1BB7OJW8p64Niqy0zXm1XYEchlkg+7ox1Ehq6gtbDbhRZAY3Ro0t+xYhS2Ts0HqMXGMSLkMTirn5FrPE5lsMCVOMfNtchukAimDDI0NHe2gChdhW2eeaDAmxDb3wEjlyE1wOGJ7oNOT6mqVInqvQpsHzNrTLBLfdx466QKCDrLg0+5wwttPLoCgAbgQ5HDcGHTcJj92GhCRIcGHv+xvifyYuIdkI5Maeu0hYmAPpG5ifyELfX5nCy9PtLy6uwHPiBl6aTx9cYtN0FsdIIzBwDQkec2JfLTQsKMrwyAESl5ubllxW+MigiyiTOczvIHHHi2dtpNbDKehLeaFLn5taxsd6aDpLn+Cn20vIY1DIU4jxgs3F9WGNHZKCwSZ2SAoGm9lrgBhsYe/oYbCVvFKHobLTOiBU4kkUYr+IZhBiuyqsYoEAVdYc+yE23voh7SxOYl3c1ql01cwaYKC7w2phz8vOOivpZqTg47D2JfkhbAvkuno4kaVHfRxh6engKEuPL03N2P3y3Tl0UsZkxxP08qKhr45MerPHdZFYCd9x7ONy8d8thY+L9x8+bIPJtNw9tpw+Lj/EILuftuK1/2n32+VuVOf+p91vp5/2/13ubvof/ZRfUPa/Xe6aZPY/7X673GVw0sfthzdP66+7LM7Nt/X9w+Z2l8O9ubpe32x/98dffz2un3774/v6YfWf28/rh9/+9fu/t/9/+/PjSwSYpVlrKaVYt6728/P/AeMFXE0=
Copy blueprint