Page 23 of 24
Re: 3 and 4 way intersections
Posted: Fri Dec 06, 2024 11:30 am
by coppercoil
BraveCaperCat wrote: Fri Dec 06, 2024 10:41 am
I'd call it the S-Junction because the elevated rails almost make an S shape.
$-junction
Re: 3 and 4 way intersections
Posted: Fri Dec 06, 2024 11:54 am
by yaongi
coppercoil wrote: Fri Dec 06, 2024 11:30 am
BraveCaperCat wrote: Fri Dec 06, 2024 10:41 am
I'd call it the S-Junction because the elevated rails almost make an S shape.
$-junction
Both of those are better than the non existent name I came up with
I briefly tried to think of a name, and quickly gave up, hence the mk i. S Junction for the linguists, $ Junction for the capitalists.
Re: 3 and 4 way intersections
Posted: Fri Dec 06, 2024 9:46 pm
by hansjoachim
Awesome! I updated the thread, added the T section and T cross and yaongi mk 1 and also the turbo ones. Reply to me if something is missing <3
Re: 3 and 4 way intersections
Posted: Sat Dec 07, 2024 9:29 am
by hansjoachim
What do all of you think about quality fuel when testing intersections?
Re: 3 and 4 way intersections
Posted: Sat Dec 07, 2024 10:41 am
by BraveCaperCat
coppercoil wrote: Fri Dec 06, 2024 11:30 am
BraveCaperCat wrote: Fri Dec 06, 2024 10:41 am
I'd call it the S-Junction because the elevated rails almost make an S shape.
$-junction
Wow, it does look like a $ Junction.
Re: 3 and 4 way intersections
Posted: Sun Dec 08, 2024 12:04 pm
by Hovedgade
hansjoachim wrote: Fri Dec 06, 2024 9:46 pm
Reply to me if something is missing <3
viewtopic.php?p=625779#p625779
Re: 3 and 4 way intersections
Posted: Sun Dec 08, 2024 12:07 pm
by hansjoachim
I didn't add that one since its 2 to 4 lane. It needs its separate catagory.
Re: 3 and 4 way intersections
Posted: Wed Dec 18, 2024 11:29 am
by Vinyl_Scratch
When I was working on a grid aligned rail system I came up with the following design for a T intersection that both seems more compact than anything (other than the bottle) posted so far and seems to be a unique design as far as I can tell (you can trim it down a bit if you didn't want to fit it to a 32x32 grid)
I'm currently referring to this design as a compact half trumpet seeing as it looks like two halves of a trumpet intersection superimposed on top of each other but I'm open to better names if anyone has them.
Compact Half Trumpet L variant
0eNqlms1yqzgQhV8lxRpS6F/ydjazuMvZ3UqlsM11qMKGwTgzqVt59wEj2xm7iU8nKzsOfLRa3a2jRr+TZX0o267a9cnid7LfFW3WN9mmq9bj3/8mCyXT5G38eE+TYrlv6kNfZuN1bbXbJIu+O5RpUq2a3T5Z/BwI1WZX1OO9u2JbJoukK6o6Ge6tdutywIn39ONF/Vs7XvRadf1h+CU93bV/Kdoy6z/cKMEbj1dkPz7cqd6f0qTc9VVflZORxz/enneH7bLsBpvOd68O3Wu5zkabs2KAts1+uKvZRV/I/OgLM7DXVVeupn+Jo2lXTAkzNcW0BFKdkS9F/StbV8WmGcd69PANV5gj1/2fqwmuTj/OVRZ9TAz+MSIfr4wdAOOdz3XxNvKSsi5fi75cJ8TDDOmXJfG4QNlP+cXy/CKO3HDfL+7MPQ0ouzOXwlNsMj78LXzfD9zNSz9juIQND3y2Qtki58MNDBdXoXho26brCaSFkZI9i5KcRSryhMJSR8mYOv4RyHMBJqSKUCGuqYqiGlaauIgGPGwxc/2suST1TvYRFUMo0mYy/YQHIy2WUZEDHibyDnG1ou2mQkPmaPm8QCmMACPMzs6ZYdR8KcHHhfkQ4TwOzEqrWBEpL2l5p+BNhVoogGlQpsKZFpYeONOhdhqc6VGmw5kBZQaYqXJ43vGJVwKG4jOvJAzFp0ldZVNXbNtZFQsBNVtBKIYPDJ/OcIbl0/HoVY5PZ8SxZysh5Um6IPEBiRM9Q6TWaA0nnsF9rOHEM7hrNZx4Fi8RWsFQPD20Zoo1fb00CsZKrA1bxEWnXz2UDI9LLi6rTTY8YNV31Sprm7q85U47d2EpOaQvedc1y4YWguoEGMZf/n0o9/3zr6ruy25/bJxMlk7thXOr44l8mufYHdsvM4YHdKk/1TgSY3Jg/KfI/b4DjOA4wOrPLJdMTQbsGI1i6idgo2g0U+chdhqmJkOYlqnJEKZjajKE6bmaDIEGriYDoDbnajIEiqtHfJ6shISexYHqy1IMoWtIb2gSSOoNiycUY/7hjDKMsTuuMkKgnquMECi8QhmPz5TLuXoLafcKrt5CoGDr49RbH5vsiAMUr0VIYKkOltPsLYKL/Pt6zcGt/8gE+mEO7D06pnsd6F7zCZehk51n6rhrf4/tyVtqYHV8Y1GTQMvX55h/jJ33j6C4gr1ixFhRlDr0kjuN8trMQGFhgRj3zxLZ7XpYImpBUsmJgpc0rXAovKRpg0Md6lTtcahHS06UidKQcRSYXXdpgPQM+XepVBgFbmtfaig1g2S+6pI3r4lpL8BdDjVt4aW/v9QEjQZTVPIqp+Y9wNkTXxkqYBkMFtGt7nTogiI45j5FkdUxsPoQwn5mEbxzkvZymuSOo0Sec8dJZq/IYWEXu9hKI9ZJrnWOtk7BJyLEiQNYhx7qOCnEsR4A6Spywx12oIdtmRwtaA68bkwppa8iz5NQzzVO0cbBux8RSOvIuRXcvNB0Xgi8ixA+5UiWzowsOhuE4o5thqO5Y5vhGCyPxlfIEyc8zniJHfB04gjHHdkMx3/l2JShs1BwW2czHJkzBzfHEcwzbeZmg0IWBskt+oYuDFJxxznD0czwNLdqz5Bgbpk3dNRLyx3oDIereQydz9IzlaGxNCdwx0Xbo7i13NDZrLi1fI7DDXBLJ+DHUwOzr5SiprTi26+UhOLW+zm7uXFv6cRU3Lif4zhmIRsPNQGFTH1F/Fv9Ph6l/mdgj5PyU9vUpMN23Dyl0/cQvw8fqRGX7/H38SMdH22eBkzVl9vx8efz52lSF8uyHn77o9m2xap/+HNYmB7+6g7btuwffgwXvA6hMR0/szLoEIwO0ls97N7+A1wZUDc=
Copy blueprint
Compact Half Trumpet R variant
0eNqtmk1vo0gQhv9KxBki+rvb173seTS3KIqwwzhI2DAYZzca+b9vY4OTtYv4rcyc7DjwUF1db3V1Nb+SZb0v267a9sniV7LbFm3WN9m6q56Hv/9NFkqmydvwcUiTYrlr6n1fZsN1bbVdJ4u+25dpUq2a7S5ZPERCtd4W9XDvttiUySLpiqpO4r3V9rmMOHFIP17Uv7XDRa9V1+/jL+l01+6laMus/3CjBG88XpF9+3CnOjymSbntq74qT0Ye/3h72u43y7KLNp3vXu271/I5G2zOightm128q9mOvtD50Rcmsp+rrlyd/iWOpl0wJczUFNMSSEUil9dIZY5IB5ipz8yXov6RPVfFuhn8d5y1a1sDBaZsNWduWZevRR+tveEHZY/sABhtr+G7PnLXL/2M4SpQcE2wXfoxcLPdvm2brieIHiV6trVaoOzAZyuULXL2HGpyDqn4EIIVeEbBYHkxgaeMcUWU+v6kEiHuL7QXNTHc+lQXbwPxPPqEepwCH+dmH6c4j9PXc4L4T4nx4cC0GzjN0FBKscKCshozjMj/zzQU030en4TFhraYjCOPTawx83FEYQMv7h1ssMwxg20+azDlZSlArGL5Qb7L9EbCGqdMAUyFMhXO1CjT4EyDMh3OvBBYV2xawpcWBzr20iIZLuAvipLhjMBeuSTuGZXzbQ84XfCLG1wiSiJhMpa5l0CyFlOw6DTDCbjqGGOHZWfw/KAsDMXVoRwMxUWhPAxlTFRAoRafKJ2jeycr6UAlqQI2FZ9+Lfk1yBgH5kDx3tW0rNZZZK76rlplbVOX16hRppYkvUuoa5bNzCZmAsQStPy5L3f904+q7stud2wGnEZ+2jKft++P5NMMOmVTKrS3i0ZtOc4Y+xQz3nCAN6YQ/QPu8BzLrf7M8sAslICdncmZhRLCFMxCCWFKZqGEMBWcXEgm2eyAl6uA2wmvVoIx8VCVKHMc6L5cCyF0j5g7dmIE0jkysJo0HlI255ZACFRwSyAEKrklEAJV3BIIgWpuCYRADbcEQqCWWwIhUMctgaC+qeeWQIipAWsQTG0Hmd8j/XMHtjPcPFZRWF7fccytEui/OMksgeRFj8tTULS96D/xLqO/6DR75zzqL46G4hmwi2aZ0WHRJuVknkCojtlCI6wVFNejoTE2aCSyoXF4ZRhIKnlYAa9lUuBQeC2TCofieqOdSonYs/UmryKA6qJ6za6TpsBVlK68YR47DMcdQHr0ltn8l8C5pXe/CaUyo/dwBlAklEoAHlzLlJjc6q7cSh7T4Ruu015Q+ttuDbCqxqNVlQNQWFVj2XkJpdwa8Ma8f3/Z4JalmrPH1mcwhTLMWluRogzQ7mrU9YwlcOdv7NEqDXjKc4dH9qYCKA49rY7KQuIQeY5KeTy8Vu5AcrhbpjkOeIRs5OxAPclVXPsCbR+3O64FzYGbdvo0Ti1pjuXao2gOvOkZNaQv0sRwakxg4fCfhmlo8wJ3mDRH5Fx76DAV3HCf40jekfTZqNun/kJxh0pHvGBH/AzHMJWtA6Tsq9cb5lLjdEhuho0DSXJMjxla24Kb8+c44Svv6RjklRDJ1YGh04bk6mCOg6b98yRe1f6B5HJFYOjQkFwRzHEM1x46b0jLLBWNRaLCcUc5Yx036xs6ZUhu1p/hKG60W1qQH94PmD/JGqtdK377JEsoyRz/nN1cFVhapexXA+Y43KVgeMEJWAqU/cK2xOrD8I7yP5E9TMpDrHNNqm1qHtOH4SON152/x43P8bt//z58pMOjzWPEVH25GR5/frE7TepiWdbxt7+aTVus+ru/Yy6/+97tN23Z332LF7zG0Di9A2Zl0CEYHaS3Oj8c/gMHchjk
Copy blueprint
Re: 3 and 4 way intersections
Posted: Sun Dec 22, 2024 2:36 pm
by hldswrth
What I consider a cleaner Celtic Knot elevated 4-way 2 rail LHT intersection, scored around 95-100 when tested:
https://factoriobin.com/post/l0ug0s
12-22-2024, 14-36-29.png (467.06 KiB) Viewed 1303 times
Re: 3 and 4 way intersections
Posted: Sun Dec 22, 2024 4:54 pm
by notnilc
notnilc wrote: Tue Dec 03, 2024 1:44 pm
Made a rail book that fits between city blocks.
The trains per minute on the 3-way intersection is only 70-80 though.
0eNrtXV1v5Thy/SsDP/suxG9qgDzlJXkNFnlZLAZu951uYzy2121PMhv0f48o6X7YLkrnqNjT2Y2fWuorH1FksVhFVp36n4sPt8/7h8ebu6efPtzf/3Lx4/+c/ufLxY9/Obstv325u3rYPd3vPj3efCz3/33xo+m6y4vfx3+/Xl5cffhyf/v8tN+VJx9u7j5d/Pj0+Ly/vHi4/3LzdHN/t3vc31493fy2fw0zguzMgHFzfX83vfvLzae7q9vyxNPvD/uLHy9+u3l8eh7+5/Li7urX8h9fPl89DFAX5c/uPu4L0Ne/Xl7s756Gt+0nlPHm95/unn/9sH8c33T446fHq5tPn592wz8F89DGuUm7NH3ZLg7oH28e99fTj/7r5RtQC4PGDIM6HDTCoB4H9TBowEEtDBpxUHygEgwa8IHKOCg+UD0Oig+U6XBUfKQMPqcCPlQGn1QeHyuDzyqPD5bBp5UnRgufV54YLXxieWK08JnliNHCp5YjRgufWw4fLYvPLYePlsXnliPWK3xuWXy07GluFbAB8dcHAbF0P4p4mlf72/1vV0/7j7u1BhuiG8Jb+Ovnx9+Gf8YPuBLg5cZHCT2+7I4vzw8P949PMKbY4sR3CDGAmUfHp53teXR8+rmOR8enoTM0Oi6GztLgRMsdDU50Oj8/cXlxgQYnjOtIT315lhorofPTlFBbLoOKBdcrrkdUtyG6wMPLIbHCeHg1JBZDDy+GxLrtYTuTMDE8bGYS1pCHrUzCcPOwkUnYmB62MQlz2MMmJmG5e9jCJJyMAM8owh8K8IwiXLcAzyjCywzwjCIc4gDPKMJ1D/CMIjYZAjyjiO2QAM8oYuMmwDOK2WKCZxSxGRbhGUVs20V4RhEbjNG+WvKnrVHBHO//FCZU/6cALNPRocCBBPYgcPAk8Gl2rflqRWWMwAhspDexPDBuCW5sWd0EVMmzjBnsW9+RfduDwI4ETt1L4OvPVzd3dfhURx+GtCD8dHv1ewE+2tcX0lsFr+3z1e3Pu483V5/uh1evuJ3AUCRwYtqF/mK+yG37Ig9LbALn7cIQGeaDAvY6b0iBi+jEq8w7GTWx1hLS4+BsZhVl6tEuqOhJSd5zhzWWXYcyfy5ngZMZ/mAOQeVP5hBU/mgOQeXP5hDUiK/BPY6aaJPBvlU+EjC8XroDsHm78EjAPb68G7EfjHj219GHKUD39oY+TEFQLX2YgqA6+jAFQfX0YQqCGujDFAQVt0ctMVr4MZ0lRgs/prPEaOHHdBYfrTFgBYQ1mYDFZ5eJBKyFNYxxImwUYd02e/yNWmTMcdN59ERs7iH38mVBBN1wiCf3lGiYmA4+xrNEo1OzRstik5fxP1TPq7A+6RvBi8Jpuq2HbciMOotWWR5PeTidiGnp4SQmq3GN0OX+QCdlJPojMOqlrl0Co10MbJQaZv7jkS2MXscjW5hFCI9sYVZMPLKFWN0NHtlCWCIGj2whrCZjHXuYCaF69jQTQg3scSaEGtnzTAg1sQeaEGpmTzQhVNjXq7h6cjgiuJ8STN3lFdXWWcTK2u5PTxgWzrInRlAvOPbICEL17JkRhBrYQyMINbKnRhBqYo+NutfSJeNm+jiqA8W2p8+jQGTfschYX5zFpHx4/vnn/eNg7ey/PC1uW03Ij/u/PQ9P/vTzze3T/vHLmGExvWrKXDilNHwVX3w+Fe8frz7t19/c5sWn2frh5tNuMMqunx5vrncP97f7+ilcJ2OdWZ/3H+4rntW8m941aHug2j4fDlTaHuEB8KHt0Cf+zW1ejE58l7hJBB88enLah44+0kSRDYhsHdUXZ9EziIjONrcsogE93jeJ/XpPbwHMkcgdBH+ap9CJrQgtetMBP7tIYnvlQcM3Vr2EKoMS+6o4aM/45l1NdMu2Ae6bR+78v/7Wjnor7GJ2cPdF3MHEMWHzF5edyM9PfA5FbnZmvNXw5Ew4JmgEW3YBOAvDART1op5GA2/IpSSBi5/zHCy48jnWRkejaRznriSHmkttraWzWJpl16CxeZgoI3fRxj2Lo6nb5+3M87MAG6Dli55Fyuigt/WOUk+/t82ow6E57KzMhoz5wWZltmwoEdpex8YSIXspTHxOxlEDG0sEoUY2lghCTWwsEYSa2Vgi5Mwsow7lcWPVQkJ7FpoDRvxAh0xMbA4uXExsDi5cTGwOLlxMbA4uXERsjsNVARObQ4xWYiN+INTMRvxAqD0b8WORDPqOjfiBUA0eQpNQBWM7i4aFGLGpVgR1/KaKx9G92BEwqNwPAQX1sDq0XaT74YAuwoEe4MG5MpCdYTs0D1eWALk74VNGWVblluK8L8S8wmlfCBWAs77g2sripC+4YrU45wu+Blic8sURAxXJiAAINJEBARBoJuMBINCeDAdAQG1HRgMgk9+CjlboGJvVWkuGAkA6BY+JwZ0Bi4fE4H6LxSNicBfL4gExkZCqREYBQKCZTavwmFj1bCKmB05SrOvYREyPUBMZNhETQrVsIibWtQ49tjvusIK4aFKuyVVc4gDGusDbs8bi3R+5Q0IZWlTFryNnVg6suJnzOnxmBdzVwCsTiDrgq4N3IiEXdZDHdYs3tLTIIyr3y1m8DCIthBx6R56HgP0BzlaXOdhApsZivRvJ1FioYxOZGgv2QCYzY6G29uyeK8RQ17F7rhCqYclVIVTLsqtCqI6lV4VQPcuvCqEGll8VQqWpKSDUxPKrQqiZ5VeFUHuWXxVBxelfDvyqEKph+VUhVMseEECojj0ggFA9xANqE44YNvCAEt0Ap/gZos0bUvwY+LwBPkjwMncpen5mDswmQZO8ZVMH701n+COSIUP9ImLpJEuG+kG8ro4M9YNA4Q1/URGJ2z4psJgiSuQi86CvTVxkHoSZucg8CLPnYtwg4l54+oizR97hy4ZWMbKGqcDztLeETs8OPZwhetnzHUIolhyQdVNeNitdHMn9dKgXErmfDoFmkjAUAu1JwlCIxbojCUMhUEMShkKgliQMhUAd6edDoJ4kDIVAA0kYCoFGkjAUAk0kYSgEmknCUAi0Jw99IOb2jjz0gUDNhq3nqSPyumnpOp7xYSY1SetGluvQ/f/Dvld6bXzLjebXr0ObRbjAUQXm141kmA/dhpgQeTxlxvYukcExppM7JW/KdOlf900vgoNeWRXVBLG4QcfFx7yFFVENFxlkOmBmrDGtfKjOOyPGBrkN5CoHQPOyvVmE97ALakVUuRfgLfwjqAgTN+qD140Uz4qcSfRYHYcK6AM4FfUQ1fXmcCAx+sf06CbR4XWvXiZW/uhIt39AFXEM5/vWYNCgRvkTRTVg2Z0NE+W20TMpyDiB7KpKcyI5BQMg03bDnuGsPOUl2rIZpCbLOD3ZaTKMVKRn7Qzy8HnrvecM+bFWXsIdyelspvUQVyU43clyO/1WabGQ/naB7U95iT0L0wCSurpFKHKPrwaTN8qhRdZ817P9JmtjmLHkGA7oXq9wYvs8uVjUmmfZz5Q1qWdnQwXGbzXkLKJcPD0ZZBWIx0ksw6SNppuVFwq/ufSbk5UTzOhxcGHdm+y+zOjUwFpSlXYHcnLUYMA15NXXE9/rNpZeqzXYs/0nq9ZAmlc1mMg2R1ZSgVwwajCsHeVkJRVIO6oCE2lhl7VIZIW9AmOhA/9Z/noZAyoeugzBeggeMoMi6Wx7xEZ4E3JQPV8/RLY5aIfoLOpgmXLgGJAcGuSeuwgn2+8av5iIupteK4twIvJ6JxzEaDgLQIAtXy8v0GyhGV92W0UgB4d/LrYHz9RY7PdAjl+Ql68UyaCMGk4C+C66A4JafNn4glqre24wKjC5YwdDXrzxYi7LMJZtjrx4Z0fO7eAADZ49aeAGD3lnOfA6Y2iwCAUTFHYv26iU6pzo1aDRizNndY9vFYF6Tkm+lhjZksBDBxblmSCLmHFkKxKPD1iGcWxz5KWgJ1eUGgy7okRZGfaRtCaDbJX2iTMfB5h1w4I43F/8RtZ6iqKm9h3rj9RwSH+kBkMKdg2GFezoZRx2pYjQSuE7dkuq1r7InSrHitb0KM/CriM/NJNiUfnOnlsdqt9pSD1e2vPXy4v/Gj6zLGN/KQzK5rJwEZu/Xo53dryz810Y78LpLtj5LpS/G+7MfGfHOzvfnT1ZnrksO+9mvrPjnZ3vwng3Pjm4bgNmmtsy3h3/briz42/2eHdEGe7C+Fs4u0tnd8c3pLHVw29mvrPjnZ3vTn83vveyeE1mvrPjnZ3vwngXTnd5evv4F+Odme/seGfnu8OTwxjcPO1/LZbV7fP+4fHmrpgkt1cf9rfD//35h+vH+y9fhv/5bTA9phD2aHvf98H3Nkdf7P3ZABmX9xNIMVPurh52T/e7T483H4/hJ90c2FD+8urDl/vb56f9rjz5cHP36eLHp8fn/Ulkdo/726unm9/2r2Hm4ijl7dcHQ2iW3eGJp98fiiD+dvP49DxK80EyP1897HfDpzzdXA//f2q7KbI4ivTNfgJ7ze7TZFGwTZYE12RBaLEchCaLQWyislMLfZh5JSYUaWN7RbQhDW0/yDCs+SCjsNaDjEIbD1lmXGd7RoYhd+UrKJHsGRklkT2TZIJPdku+AkPuyMsolrQIKiis5k2y5mVVbwWG1L0VFFL5VlBY7ZtEbWVZ9VuBIfVvBYVUwBUUVgMn2YtnNXAFhtTAFRRSA1dQWA2cKkftbM/IMBu29SpIZARBBSWRfSyjZLKPc2UjguxjGcZ3XM9UUMjd6woKu3mdZdOVjZ6swHiyZ2SUQPaMjBLZnpHd+cT2jAxD7i1UUMgDGBklsOcvWVR8gY2DrMCQlS4qKI7sGRnFsz0jqqvA7phVYEgNXEEhNXAFhdXAvaiuAquBZZhIauAKCqmBKyisBu5FdRVZDVyBITVwBYXUwBUUVgP38l5GIve1e2i7N7KOXaV1bK5UZbc3sVG42Fcm0lKWPzKRYYbVjyS1dKU1rJbuRWWfWC1dgSG1dAWF1NIVFFpLi8o+0VpahMmslpZRWC0to7BauuymSzh0mlEFx/N+Wg2KzTSqwJC7bjWYRHe0uHhkOqWogsOmFMkwbExFDcbQvSPvh1u6d2Qcx/aODOPZ3pFhAt07ohrsI907Mk5ie0eGyWzvyDA93TvyxjgdRlEFYtNBaziW7aAKDrsVZ+TsetOxm3FVIFY313BY5VzDobWznM9uOlo914BY/VzBYYMlqji0hpaTnI2hVXQNiNXRNRxWSddwaC1tKseotJquAbF6uobDKuoaDq2p5URmw+ft14BYTV3DYTV1DYfW1HJysrG0pq4BsZq6hsNq6hoOranlJGTD5+bXgPoNLksFy3Vsb1dwDNvbFRzaPZSzlY2j/cMakGd7qIIT2B6q4ES6hyoBK4nuoQpQZnuogtOzPSTj+I7uoUosjiE3PAcgZC/Q0Kn01RY6crMSbqHndlMnXBGJ1ueVT43c1udCixIrZ5UWsZt8Rs7FNp7d5qsBBVab13BYbV7DobW5nB5uAq3Na0CsNq/hsNq8hkNrczlj3QRam9eAWG1ew2G1eQUn0tpcTqI30dA9VAGybA9VcBzbQxUcT/dQJdwz0D1UAYpsD1VwWE1dw6E1tZcVWmSFuoKTaKH2sv4gKO8PTHAICYJJlqQ7Q1gQDHvsWP1qWuK9rFwSq8ZrOLQa9/JcTiyfg2nCq2AST+jQ6s30lJJ7LvNTSlYW2ZDp4wbhhjBnB5+41y6TMZhMcjpUcdidyFqX0TuRoRLjz9I6VIFwXgfTgNjBZJLYodpudjZUcHp6NsikDKZnXYEaDu0KyNnwpmfZHQxC72BenJyCCrAJiYF5cdgKsTa0evEGnkYjU08YPOu9MiiyGUKf2NaEhj4IkMkPbMeebtVw6NMtmf7A0ke2NRz6ICBWMqN43t5eBmJJrxEmBUsf4NY+kz4WqKTNdpndZIwW2cKzHb2rVGmhYSMi0RYaQ24yjrgiEuuS1z7VkZuM9RaxplVp0TlpgCtZ9IOBNqa4lxz64dpO16Fcl0T48vNlOQ8y040db+x0E8abMSO/PHFZLFAz39nxzs53YbwbnyzPXJaVwcx3dryz810Y79Yy6//zkISOpNabf5TU+s/3jzd/v797+kbJ9XMt+h1SloUsRY9gOrISPYIJT4FkYUzY00gexoSXhISPUULoLXOA8Xi+3h7vADB0vj/Us94F6BCp49uMd7AxPDo+HQwYaN/3XJeA68ug585xl4kC4Gp6HT51TdgAj89iE9F+8Gv9kDY0FJ8ZJm+AJ4S4R9SEMbKekIsAwh7KGLODLjkGRyUWMouj4nMXj2kaw19QVI+j4hMBj3YaA1FQ1IijEqOVcFRitGAX33hitHocFR8tPFrKeHy08Ngp4/HRwiOpjCfMRHxuBXy08BgrE4jRwudWIEYLn1uBGC18bgVitPC5FYnRwudWxEcLj9oyER8tnNzBEA4YHr9lCBcMDeaKR5vzTeapaBGgsVxnRqcATBSr8GChSOMC+SUwR+sY5DUCI7CJVmoeGM4MN7aENwmoUcc8McuzBZzqjt1RQEANu6WAgFp2TwEBdeymAgLq2V0FBDQw2woIYNy8r4Cgp807AAh63rwDgKD32x1sAD522x1sBN5sd4sReLvdLUbgHeUWW0DH40FyR7cYaWig3WIENdJuMYKaaLcYQc20W4yg9rRbDKDiUXdHtxhBNbRbjKBa3NQxOKrDbZJenlxeRQRy9AiQxgbaI0BQI+0RIKiJ9ggQ1Mx6BB1kR6eexH0D65dpRoB4ktnq6VaoRgCkw7LbrfCNgM7P228lXJ/Mb/B3Kl+L4y85rG1r/CWo24aJ21lU33JQ6xhSeo6si3DC69KcXtzkvZkak9lV7VZYU+pxjAevVB/H2FNT+OC3dqsMK8udH3zLUX8RaQi+uMl7HemZAwsAweeSYcxA+uUIZiTdcgQzkV45gplJpxzB7AmfHMA7p4UhfXII3Wz1ySF0u9Unh9DdZp8cgvebfXIIPmz2ySH4uNknh+AT45MjLjnBXXOwW6CG9qxPjqCajvXJIVTD+uQQqmV9cgjVsT45hOpZnxxCDaxPDqFG1ie36xv656Q5oE8OTS6TWZ8c6oKe9ckRVCJmBbedCK4dg1tP58w7mO/sEd/5nIgHdBy9xk895+sBnT0H+Xrn/D3gGZ0HdpgIOp+DN+SRXk/sGR2EmklPAApI7ElXAAHFA1pmXwACNaQzAIFa0huAQB3pDkCgnvAHIMCw1R+A0ONWfwBCT1v9AQg9b/YHIPh+sz+AwPtusz8AwZvN/gAEbxl/AIlcNXjxk4M/ADXUs/4AhBpYfwBCjaw/AKEm1h+AUDPrD0CoPesPQNHsHesPQKiGDV2FUC0bugqhOjZ0FUL1bOgqhBrY0FUIlbYgIdTEhq5CqJkNXYVQezZ0FUrl6NjQVQjVsKGrEKplnWII1bFOMYTqWacYQg2sUwyhRtabTII3eZ7+mruS/jpVhh6ubbm203Uo12P6qzmlyJafDymy5eezFNnhOk/Xpdh1303Pl+LWw7WdrkO5Xstr/bdTBiiS2Wr/UTJbr+8f74Zh/CYlo4l0UYIh5Bvkte6Y+G8c1LfPbN0RUfUEL1W3Ibd1DZTIVcAp2oi0CpwCgcgAIapXE9kqBN89kVlDkN8TWUBEsWsiY4mofU1kVxEs+X5TAusqKjFa+MwiMuyIytluU+rqKiqRuYjPLSbLEp9bTEYoweK8KXt1YV9lZ/otmauTcfb8IMcR7foteavHzaU1uh8ZPS7nry4zzrCpUPh+/66SkyPDZlp3eyqHdZXpLMEJRA5l83Ge61sn7Dd+vrr9effx5urT/fCOZSY/qO2Wtjtty5zWHRG7S9QRJ+KMXaBNT9syp3VHxG87YrL1OCrMl3WMJX3DRmXcclrr6nQzeGw8UY2ASA/whl7Tbcu81h2RdkHUNCdSRPBt/R2RzuIDvaYjqESBJWK0CMp3YrSIMjXEaBFkdN03yFvdmW+RuLozcUvm6pp6MU5Ejcupq8va0ByUoXmrDIm4kQDbkrNsvKL5DMtJraIt+aFGRgp1EG9KYkkNIbHAUBJNwIm4m0avn50NLOdo7NpG60cq42C3lHFwdmRQz5XYNcuViHCewa5pdsmL0wbwvW2Giko12i2ltZydQiBQ80LTrRS3X56H1WkoWoNn2bKQE5OPUrWikIhaFHj+RexZF6ZpuuwOj8pMhnVguGRZ0H9pmiu7k+Ny43Km7Ir3kmdxtciqkQLruyAxxERVCzyKOiXWc+ESZUHHBQHtWb/FUkmyoNuCgBrWa0FALeu0IKCO9VkQUM+6LAhoYD0WBDTiTkBCdUpGLVFzpK1+rVPCchbrijW+83BTe9rUP2AvZ6suf/jRZIVi8XvDbhIjEexEAQw8gJ0phpFgUHSNMrlFKsJZPipkaRkrfUhUZaXu8LicPrG2RmyZl7rDo52IohdEYFbXsQf1kctKBU/qI5eNCp7URy4LFZzJkUs+BU/qI5dzCp7URy7VFDypj1yGKXhSD6Fm9qQ+Nk0y3REBxURkCRH8/LrMRuVE2SYckc/yPmzARi7TdGWT0RBt9vyJtZy8EFcyTtespYyDRhT0ILkrCaao0bUzE2BGGpnpjp1kV65JZ3rS7DRyBTTb8V99qPf8dSWdFKtHZL6u5I9y3WWgwp0WnjuHKo4vUdNKsihWXkeuwmUD2Da5aWYlLxQtN/V1JRMUrCD0dSX1E9YysxjL08HSVZzkEo2OLQ1egTH09x0/b71GJhHfMfvx8tzHIzqWYfzWwbTQXHVsvWUraya3oZBfDYqcBjWYvFFMLFJG2LFzwsr6yJNzogbDFha3su7wZBGzGozjpXbev0PmKBF3MTdT1iR4pMUyTNy4nFpZ33o+YXnuPScrEc/W93NvDqgyQ+zg2clRaXdgq/4J7V5JmoSK/o2wujzJ5e8kS/7Nn4kPSOBZpRYFKrCrhpN1NJ4PuQyT2ObIWhRPeVyGocVf1qKRXBtqMOza4GQ1F1lhr8BgweWz/PVfV/ISFzCWIQJptHvInoqR89A8YmzERBeG9qFFeeazQIHliJzGr2VLJVdqwp9FD2A2s0esj2R4U9fLKz3OsO0XYRxX6LXWXZ7s9krh90Rs+C7iRCCYqjsgqKUOjwpYbjVZL7wGw86BStH7TFYLr8GwxcIrVdCzJafk6yLtooLMjlaQberXvzj2X3xx4/cGXgcNPSlCRU4HvR4QeR3MiRS7irhkVuxkGyj3ZHNkmL5jmyNr2t6QzanAWLI5ciF5QxzhT1ZLkG2qs1N7yPgZYNaXW5wrevkbI9tXsiLsWV+jhkP6GjUYUrArRec7VrCjl3EMudMQPeKx247dla21z5E7Cmj7PLejMMKKQOSWVO07I7ejUG8PqcdLe845VGLhUIkTP0osHCpx4keJhUMlTvwo03WYrn15PkzP+/J8mJ73Z88MP1+WHWcz3djxxk43Ybwpj41PXBZz3cx3dryz810Y78LpLk/w41+Md2a+s+Odne8OTy4TtfzrRGiCkLS4/w8kLejOaE+UmQaP8voNTC1LfIJEE/FDy9yepIXgEYAXR4LxANYcBDcDvGi6b0DQwvBdwOspQ80BW40Miwi8sjKEJ/CGxDfhZmFoZODZxDDewNOJIeeB5xPDIwRPqPAtaFkIbiaclYVgkcJJWQi+K5yThWDmsmxlH5KVBay5y9GygDV3EdC4jdjD40wnYAYDWy/awiWYmXLReEgOQfbi4O1yoli0Az3C1JFUL7ZRxraMjpZCqKe0G+KA1qEp7XJGu1tmaVkrK+CIfiEqV24haVkDzVs4WtZMb4KmB552DC8FfszrvwE5i/0W3CwMMYlj/ZmmzCwM3UtgPZqmvCzuW9CyMHw/+EpmtpCyLG9ULTApmWValrW1jCgyHGh7kWNlAe1FBJS2FxFQ2l5EQGl7EQGNVEKfyJzgFYwrdaIHs0y4ApzmLTFRvAg9WjyPbMzL0dHvbfJaKhRjkQ3EArEG7XhbHNPuRcIZD0boNKbMCeh4N2UIQolWUsfwHcXEuigYPVPMfPqPmMZul+lWwOx1gGwDjLetJ/G7ZbqVNU8k4U21pHnPsa1g1j2C6Unj3lJMK5htj2BG0rRvSrOC04zg0VU4HwoeaoUTt+BhVzjDDB6D5bYwrGBGPcKwgYazU/xC2ZMWPaJGcIYVnLQpR9KeRzBT+8LueGwVzteFx1kRhd07ypaXuTlWSFaWl7s2HCOW3AiGGF0cuQ/ckHuFZLQJ5OYy0lI6N33VrOoTCpnhooI9n4lIlCzse3DvmCAq6DaUhcxbiFYWwixkLohKFXdLrrZtOVYIeg2cYoVhAglkYEBbgpVvwq/CUMFkMjCgLbsKQbCDh4UQXEB4WAhBW4SHhRAMS3hYCEEGhYeFEEX6DGsXQqCsYQiBpq2p1kiuk+G3MGTaFllvG3ITw3RAm9dYV+o9YpBkPJyDZWdFVLuFkuVDlZLFIujfl5Fl9z0pWcC2xTVKFoxwJyCj8U7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8s9B0LJSueib8bOA9APvBC3vBC3vBC3vBC3fj6BFzVfivxfXS/hOXC/vBC3vBC3vBC3vBC3vBC0MkYr/Rkwv/2QELYNLbS7jxJEyXh+IVYYbW36wh+sDycpwE8oP4XjtTtcH8pWCWH4w07Ut13a6Pv4BT9DiXhC0uBcELe4FQYtrSdDi/+8QtLw2t8+5WC6FB99aW6e/sDh7izItxYLu8eaklMvj9fCq49NnTyx+yd+er26H5g6/3t0//jpOw+v7Xx+uHq8GO2/4338Z/+O5DL2JL99VMQgZRHuG6GodRQD6MzwvOWgU1iAinx7vnx/KjBn+6IcPt/fXvwwP/Pp8+3TzcHszDu/LL1js/1k3EW1IwYt9/lJvEoDZiD1+vlHFjF+W+7ugXX++urnb1MbJaJ9RqwfknJidDeWff/j3uzJG81Inex7uu+R0+VYpXeEPzehqldCV6MSqJgld+bvkc/VMr6Vc7zXTNTvdpha9w6JfwbLfibfbfVva7vcl9rsusbb5EptjbrvERt9yibUv+ug/BpD9xx+uT11VmQXwRmHfN519AZx9g/J4n3/v8++fdv7FdsdwW9bkClb+Q8+seuBthwY3eJ/tvs/hyAsivT/ubOQsalp5rGTdFhGrYMELz2kFaNMdgV7x2rx3w0xP4omJ3TTTK1hbWFXK7t0y3x64g1V6+H1Jf1/S/6mWdMfT/IwqTq1h3Bain8pcdgTVz7SZr2z7FrKfWts9vU9DKqLKN/B8P40GPm7YIho77/yQq5wXTTUIxpOjbr60l1MxgvEAqZsvw+VUlWA8R+rGy7Emwfg3Y0WC8cGxHsF01DX82k8HXcOv/XTMNfzaj7/25YXTCVdfXjMdb/UFfD7bKhUSzARfGlGu7XQdyvX4zNjsND0ztjZNz4yNTNMzpR3DKmama1uu7XQdyvV0claeOZyblWcOp2blmel0rUBc2qk9BaJc2+k6lOvxGVeemdpTIMq1na5DuR6fGduTp2fG9uTpmbE9eXqmtGc+bywQl/MRY4G4nE8SC8Slm3qwQJRrO12Hcl2eKT9fuum7ys/l2k7XoVyPz7jTu8rPh3eVn6d3DRLzNOjBSSxfS9YxZfKgOvY/39yNLMR/v3r8uLu+v7t+3D/td4/lBHaM8Rb5AjQIvRphzs1UQRg9hNVDOD2E10MEPUTUQ+hl0+iF0+il0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ulM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+ulM+ulM+ulM+ulM+ulM+ulM+ulMzfY7dRLZ9ZLZ6+Xzl4vnX0D3Xnk1FM2Iqsb0esb0asbMRIBKluhwkgnaj9tM4y+GXYd4nb/82IrFBBzI5y+EU7dCK9vhFc3IugbEdSNiPpGRHUjkr4RSd2IrG9EVjei1zei1zbCdupGaCDSib1P2QijboReY1q1xrR6jWnVGtPqNaZVa0yr15hWrTGtXmNatca0eo1p1RrT6jWmVWtMq9eYVq0xnV5jOrXGdHqN6dQa0+k1plNrTKfXmE6tMZ1eYzq1xnR6jenUGtPpNaZTa0yn15hOrTGdXmM6tcZ0eo3p1BrT6zWmV2tMr9eYXq0xvV5jerXG9HqN6dUa0+s1pldrTK/XmF6tMb1eY3q1xvR6jenVGtPrNaZXa0yv15hev5kZ9Coz6Pcyg15nBv1WZtArTQRirRV6rYlArLVCrzYRiLVW6PUmArHWCr3iRCDWWqHXnEF/DBT0qjPoz4GCXncGve6Met0Z9boz6nVn1OvOqNedUa87o153Rr3ujHrdGfW6M+p1Z9TrzqjXnVGvO6Ned0a97ox63Rn1ujPqdWfU686k151JrzuTXncmve5Met2Z9Loz6XVn0uvOpNedSa87k153Jr3uTHrdmfS6M+l1Z9LrzqTXnUmvO5Nedya97sx63Zn1ujPrdWfW686s151ZrzuzXndmve7Met2Z9boz63Vn1uvOrNedWa87s1535gahm3rdmfW6M+t1Z9brzl6vO3u97uz1urPX685eoTuzGqFXI8yMEioIo4eweginh/B6iKCHiHoIvWwavXAavXRavXRavXRavXRavXRavXRavXRavXRavXRavXRavXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXQGvXQGXDrXKCV0GK4Bhm+AERpgxAYYqQFGboDR6zFi1wCjgZzGBnIaG8hpbCCnsYGcxgZyGhvIaWwgp7GBnKYGcpoayGlqIKepgZymBnKaGshpaiCnqYGcpgZymhrIaW4gp7mBnOYGcpobyGluIKe5gZzmBnKaG8hpbiCnuYGc9g3ktG8gpz0tpytFU8/J9NcLp8b3wqnNCqfqiiG6P7IYom9VDDG0qg8YW5UHTO2qA+ZW5ZH6htWRuj+0OpL5Y6sjmWblgkzDckHGt6qeY0K76jlc9a7l6jlc/a7l6h1Q/a6G1TtM3656h+1aFbOwx2IW8VjLwh5rWcRjKQt7LGUxF1M4FsKwx+oX9ljyotS5CMc6F+FY5yJM9d2HX6eSDwV3KvhQfkvHKhj5WAUjH6tgTIUe0rFGRjrWyEjHGhlj2fnpk8ZC89OXjOXk7amIhjsV0XCnIhpzSfjyYWYu8VE+zcyVPcpnmLmgRykAYcJcbL48E+ZS8+WZ6RsLxLEYhz8rxuHPinGUjrBzDZHSFXYuHVI6w3anYhyHgh3xrGBHPCvYUTrF9KdiHKY/FeMwU8+Un4/v6s/e1R/ehdprP3z5ZZC3p0G6EMMtSXbg7sP9/S9n4G+rBi2aXksWlWyDvah2/cr8urouNuBPp/pK1Y/6+r8mmL5d
Copy blueprint
Made improvements to the grid aligned city block rail book. Added a 4-way intersection, made it rotationally symmetric, and made it align with (0,0) instead of (1,-1). TPM on the 4 way and the 3 way is still around 70-80. Slight downside with this version is that the rail sections use 1 more tile of space. You could probably make some improvements around the signaling for the 3-way and for the corners but I'm pretty sure it won't matter since the trains will be bottlenecked by the 4 way intersections.
0eNrtfU1v5EiS5V8RdNmL1KCbf9dhL4PF3hezh0Wj0FBmRmUJpU5pJGX11g7qv2+QwZBYkjP0nhld1T0QuoEKpshHp7v5l7nZe/95/unm++7u/vrb498+3d7+cv7Dfz7/y8P5D39dXI5/+7J7+Hx/ffd4ffvt/Ifz/3P7/ezz1bezn64fz/5+e787+/7ty+7+6/3t/r9nn3Y3jw9n/7h+/Pns8efrh7Nfd/cP+8f+cvbv91dfdrc//XS2/8fHn68ez/ZPP179sns4+363/4fd2efb+2/7m89ufzpcXj/+dvbp5vbzL385vzh/+HZ1d/l4e/n1/vrLWKL/e/6DG4aL89+m//5+cX716eH25vvj7nK88+7629fzHx7vv+8uzu9uH67Hgl/e726uHq9/3b2AiQeUOIJcf779dvj8h+uv365uxlsef7vb7T/61+v7x+/7f7k4/3b19/EfHn6+uttdfr6/fXg4Hx/d18FYqN9/vDjffXvcv3J3QJoufvvbt+9//7S739/wBPDp+uvl7mb3+fH++vPl3e3N7vy5sH8s26X//feLV0jyXJTH+6vrrz8/Xu7/c/MaJfhDPbVAPAyS10HCE8j97afbu9v7x9VPGWv5fvcf33cPj3/76frmcd/g4w0P+2q4Ptb9c1W2XhbREscTn52eS7x/9nJu7dcQ8S/xAPKX2ILJcFlO1F4h27FpDBX7oHD8IN/+IDeQ9tAsjNMYeRtJyNZuo3iwucOidi7Ov1zfH8xy30Yt1EC2frtskWz+drslsixtlEyWJTdRClmWNkoly1KbY+RAdvTS7hfiyG9ql4YespsDhoDmHI7m7AbEnoW155XSsQbt2rPbiyH6/urvd+uzkgCflxHA46SBALJ2vvKhrKG7poV61tJdbJu6Z019pTy0rTeHAe/Z0rRhAluaZgf2kZxmxU09b7z5bzdXv40Y5/vp8Nerx92X89YLnq3+eNslNhFLe3mXaby5B6zgFdLK5gpYdCXXgn3uA5+/3/+6L+SEfrXayjK8AB1ay9IBRZ0bXYBeH5y6hZrdP4i6hdp4Xl2+Zj8OQV2+Nt5zF/r56uanyy/XV19v9za0hhWPWH9oGWkhJwo5zMjN8SI0+s1bNjTXYkIss6gbqV3cShf32EjpbZOPg9oEmqWNmu2BlCaUgAOyP67sX49HxPAcG52LsDXv3rbiGLSW55ExMUatpbyEb1pKgsfxNmizRrKu0uNTpbdA0YksrRpOZgzn5f78+13bTTIOt+Pb/NuTZsKnt9lApOkKcWBNuGNNSHvhmOi9enMCSx6sqtHYGlWVW5hvdKpP686WCHSqFG3DAjC5pcQ6Ztpt9GIT9Pnnq+tv66NmPTZ5fGn8gTD+VFjDaJe92saBtgdvoC0j5martcbD7KjqlmN1Z8sklYUca/LbY0327FgDrCtyYG26uZzI0Vi2Zp/OiZ+HS7s+W/05Z3amhApN97R2jVZj4VqtXQZ+5SHNCk0tdHQWy6t9jJnPi5CTVH57kiqKndvsOi9vTyBFPwVWwPJK3Ay+WXrwwOZ5xqqvmrcFS02HcVgFb42Zpainlgp0p7oVeqs7VX7Ll9q22ETnfSj+MLYGYL9Q4fnPHTCBXVltz3+fVtd0L0GbnaYGcuYKyBavRmrRUf5yLPFfgHVoTXBF1GZFtGy5ZhQ0OqJ2C9W53Wo9NE2YnSIDsH2eIhrAiohw7brBoZNVu8lSE5T3WyZp1kQbHvb7zxbxYhcYmqDwgtMToHhAAgEKb/cyAQof71YCFF5yOqal4EMxRzQVHt3giLZy8IGZIxprEfnwxgAjQxO12a3QSAj/NBq+CoXwxDLZOX7V6ZmqB8/j/HHVP26xLZ+T+M8h+pLLW8FLE76QcQOvG7850TpXqRXHemPUZgjQQM3jsoruYhPe0ZWenkayJqAYAP9Y4KaVvAz/OF0fab0+ImP6wvfkFJmvArtyKqvGyX0PfFSRS/szmn1M4Dm2ENMhHmpSiOkQjzwpxJjs4Um2ENMhHpVSiAEXD1KpRGvhMSuVaC08hKUyrQWvXivTWvDytTKtlbEh4mntEl7NAM0+iwa1HM+Qw+vTkCYsGJNbyOIGMNLLRRYY9KHKiQr2TWChIjPkWM3AgjYoT+S9a76j2ZCLEJjT+2c/d+fwYonZBFWeGfpIFDyhBc9EwWFnTWDquMCusNREXTFpPLiy4oWNeJR8aVZss6wRD7wkKjbip/LSLGuz20X4PDAGvDPHQAZlNAagdiVE2K/WNoMVWLR/pfbA0NyPaMNdEjFqvop+WS14JgquPJ9PFS/4IuYFgc4e7yhoHEwu68sAZgOSwNC1UslpPIE+npq49UwKpEs2I6CRdMlCoFDugBMCkY+jFqYW+HhQYeqj8vARh8/8yb4kAp4/LZRMwMOOVj80UdtzQ/Z0pazgt+HxowzCUDLeGxn7gF0tvm0Wzakgw54Wz1hDMZa1jQqfFgbCBsqgii4Lr6PLXBPewYWegROwyi14XlAiUL0qkCMkbEoteGpcaBa6acEFDlyLTxXcxEnUx+d1O2hu+AocqpaYAbLAPs1EjGAF7mkpEIWt8I4vEQNjddbCNq21wjNaKkRh+QktM/ZQ+USjTBhG5RMfMmUhfOZeZkyFX4BmYtqr/AI0VwK+IgvyUnAjl2FgHddAQWVwrOMaQgW3ev5pii7QvCSDYpE51wYQMipDYCYW/7RRrdDEIkNkPYlA5KIM1GwY3GqVt6sEp0g4VkablwBn/QhEg3EH8Wm1wZr57nj4TDz57XjAzBw9HYCYUnFCrYLKaru30T3rQUTCmsWBHs80rPct1wTmp7vjMqu0G43qVimsmxbhJJNFRAyQKnrpj1ROTawC0BQtyKBsNEWyCIoBin6y5IsIGABKykksKiXJH88Q48ARGYigc1794xveOH4S8eSkER0wQ0tQTRrRQecPQnCiHIHbjcft9Pyyapt4mRzR18pVyNHxZaOsVFtVDemNVhmaNDqU/+RpCH5tqLGJDp4npLxa7GalLGJWgMEgy6nBYBGpAmDNC+k1LIQF7sjZt8UAuwhdAQo/RZSfKH3iDjeiR5oqc4cbGGghDjcwxKo93IDgw6A93MDgnfZwA4MX7eFGBAKyRUHXMh9uYKUP2lMIrPSwB9O37bG9Kg6JPIbA6oI9MMBQ2QMDDLUaUZvNFQetuyAifGjRkaccWKFFdcoRBZqloyf34S9rol3moKJZiB5aAcSo8ve/rpHmAjsmcnf+skaaXTqyhwjYSBHZQwSo98Wq3Ty/rIv2whNnbpn9/hEJoZfkyEMKqDKSWAvbbLkEd7xEjMYJzqjNxBCUovboA6yLpD36wCola48+wOIX7dEHVvyqPfqA4POgPfrA4B1x9IHVdxby6AMrqCePPjDUwMXWRyzITTKYLuSedu1QkJvkRMbAtwrM+MkWYSxQbPzcotC3FFNsfET84rmawtihd5SBdflBqI6kDnxtQW1cIcNmYkC4hj0ZNhMDUtZARt1HyN1ZIhl1D5lzSWR8PIaaySCclxXbXuKVQgbIY4WtZBxSBBIPpA6s9xYaolssL0QgO1QhVUwx59g7PBdzToxsNZAx56/HoOautoKzYwnc7FjB2bE6EjeTIevoMqGCqX21kAWupLsYCBPxeEiLJ0AdR0+CgQpHT4KBeo6eBAMNJD0JhhpJehIMNZH0JBhqJulJMFSc9oVpLdjtKYKjuoEkPYmvw4IZmhDvHJcwGtPbY7p3oqVSiUA4vXdUBPUToUrMxqoKXIoqVlVRy6OCVVXaCr404bOKTeV1S+QmeiFzV2NCqqSqOFoa1tOUEhnIHNYI5Ax4caSWxethoY2r5n+JSOSrF78Z/tDER2PSTrQiw1fsX1G/vJFG+7J1fRM0aflqwFbIXAotVuhCkuA0Ziqu6uEJtwztymnOuAQHDLE+IjhgiPURzgFTiPURzgFTiPURwQFDrGYJDhimtRLJV4OhZtb3DaEW1vcNoVaOiDYC4e0+DCQTbWwrWQWnYomNBYp49EFIntiXH98cdIMniWLXPj6oqGEbH9+cQUMkaVyxj08cjSsGmrVUzGlArLVoacGTg8ysGvCbAm+sqEoa2jhOFQGSBoQS0aOyR0+Jrq9xm2SInuB18U0raBpZDFqu8gQEb/sYt4Jvlz5pmY6xysla2v8EhCJ5VOjoKXAqNXgzmSUlK3WUAP0en1hd4tTk5vTJaVU9EhKC42kNpLVyeq1YRgJO5X0KnHxFAuSofNKFpb22t0oJZiatUkEC4tZ8yuoJpi2LmopJK2oNtbLTVmjLhdL9rF2e7PjyvN0YWVQsD8kWouEzPSmuVG5gB4eVyo18eYDKTSZ5rYS4xnJWz9QQfCGnHkCVx+fKdom2AnEBTyGetlopI1m5vjhyLAfkvnxhdTVTsa0aik1ZM7X3eXh8y7GnFKTGo62nIPsyVPDoiQrxdQNQ02hRC97m9gYID4B5xgG21kWtdJuRxbhC9+hY/PZCrmq0brO0sdRS0WuF8xot5jWwoJFfzsi4ruBuObZKeyauapn13J6Sa1abJTI3K+hZjvAr5a3qCmgLUA9qjeg1QEeKVeSCuE6CQrfo+OW1XVCv/vIVQJQFd/3LGY6FMODLybkiSrvcMM3fvEMqwIgc8PCVuXTFtUuHn3vPpfNtnMqWp42Dk6kcyxPbOGw/KQFZVgYn7HeulM+z39keD1xgy7OCE9nytHupgzhm56GjtHvMy0iPNsY8WqxhFDKKYeQTbiPRlt2uGWEtu7Z7rLCWXR1k2cJa9lr5WMuu7ZFAWMtew2Etu7btQBJbnhWczJan3WPRoIhwtPAxSriNxG7lV0rkB8Wifg3LkU6hNRwhVw01Qb0FD2SIp+sssNbQHl18ZEeFgn1nYm1jpXyZbc8VnMLW+wpOBWhZZhN1g52WJQRN53DDfkz78eL8H/tWGt/yV3ex/9/+/z9e7H/K+FOmn3H8Gcef4x1xvmO8Jc63jPfEwz3jfy5G9qzni303GS9GYrH9/fspz81XMl3JfBWnq8OddbxzD+LmK5muZL56fsH034txxz9d7d+0f27ffdx8JdOVzFdxuopPV8/P+em5OD/np+fi/JyfnovTneMT7mIcjNx8JdOVzFdxuhrvnO65GFvGzVcyXcl8Faer+OO+Aa4fd38fW+7m++7u/vrbaCs3V592N/t/C2f/uPptf/3r3igOsbdJaqg1RonJy3iUOpvG5Ll5hti39Jfdw+f767tDw5//+8/XD2czzNmX293Dt//2ePZ49cvu7Pvd2ePPu7PPt/ff9n8+u/3pcLk3sLNPN7eff/nL/v0P367uLh9vL7/eX395QSt0MOCrTw+3N98fd5fjnXfX376e//B4/333bHuX97ubq8frX3cvYOKCnOj689He5xFmf8vjb3ejWf96ff/4fRpzjh3056u73eXn+9uHh/PnWnCjQU+943p3QHpJi6roKJfNuV/IsbUd+0AOgO1VET7a2MeaSA61zRIncv3s2osLdpvaLAu7R20aQyWXS779QY49CmyrYWqMfEVXk2ztNoonl0keWT3Qm9N22dgFfLvd2OV7G4VdvOc2NT1ZljZKZZeObcpddqO8Qpro2IVZmzKRHbLbzIueXA27AaL6Ze15pXSsQbv27Ma4WhzCVMX4XSBA1s5XPpQ1dNf27rOWPipFNoFYU18pD23r7RN0die6AsNuRF37bDmS06w4jkHXq8+opL28y9pzihU81vEoDkr2quRphCDnxmEgzyZEEB+5uoVWPHjqFmrjeXX52v6zoC5fGy9qjp8FODFehMoTZ9HS9lypIyMkIZZZ1I3ULq46QOJlcVsmH9XHvO3SRs32QJonIZENWfKvxyNieI62gCUPRJ7HoLU8j4yJMWot5SV801ISGXrlgdNgrTZqfKr0FmghQ61eG05mDIeMj/dA7HVis1Z8M8IIlUB9SogaBWuaQPRevTmBvVIyfSO00QOpBCloA7o9kvuVom1YACa3xJ5U+HYbZVWGkjep3qbCGka77NU2DrQ9eIM2ONkDW+rsVDTGPlsmqZcB82+ONUBsMB4NfzQ/ZBmEx8YfUZvrCTw0fqVwzaZL2qQhj1AJZJRJ4OgdBXKPc9HmD3mAAQWXMz32YqCWy8AODU0LwFVLV8rWNE80Hv4pq+l1v2XWCIWd+IBEhhK0eYYekB4rUT2tIkJZJW0G32xekH/ueRasCNlOKap8pdfgrXG4VPV0BfAM1GEr9FZfr06btOcBKThFnPyc0x6APUj1JAFDcIAF1kBOXAHZ4tVIsjC8LGuz8ZKKOSI4hD2pZhUzw2vwpmEUkj4Cazp2NgzA9tkNA8khgTSdG5w2lz0AdA8O54Wc6xdIVnY4L6QnQANHi4mBRo4WEwNNHC0mBppJWkwMtZC0mBhqJWkxIVQ8vMERjeXg1acMTdRmt3JCEliGV1ELDCmjc15LNYlVEqoJ8KRUL7bPUdNBvvycpty6ng4Sq61MHvG/bvzmtOVcUfFMvm6M2kTXMUIGgYhqnAxaEsSAEHk4cQb8JiDFXZDW64NJq3YarsjIVFMgCQtfGyf3PbB/J5f2ZzS7MJ7yUIjpEE+AKMR0iMeaFGJMxkNPCjEdEjyQxIiIh6VUorXwKJVKtBYetFKJ1iJ4IJnWiiQLIoYKBtg+rV0wan/nM6csFCBmf4eGtRS2uGBYroskcBhIxaIGsG8CO06Z6FjNwII2iEmZKCANGTxHwh7C2wS9rhUCQ8gdYQWPHCU6VvBEaihhRc2kflDATJrlKA8AiYILlVQlgqogDqQqEYbqSMbzAMg9uSikKBHUmaMn4ycaA1C7EgKpSxQwWJJu/GXVNvcjMZnEjrCKJinHsYIXk4ISVvDKKSh5vKOkgVRQCqb4BYeGyJRKTuNJSAkkcD2D66zOw1NGQAPpkoVAIyFsjyEmrbA9Bp+1wvYYfNEK22PwVStsD8ErZFVnbUsM3mmF7TF4eKZcQW1PPbjGqicMBY+d8YR94KE0njEL2NPiGWvIxrI2p61cSD17rKxVFQgWGiIrzYy7gZQfDYBWjiuOlB/FUHV8riFhU2rxpLTnvtBNnECqbgZAMskVHV1yww6aG74Cx18nZgQrsE8zESMYThY5a8yHDBkAvONLxMBYB2th27Dw0WEqRGFFK10Pltprpeux4gettDwGz6dAZKpNk1a6Hit+1krXY/CFkK7HeiSum1rxehBcOLVWAhXc6vmnKbpgorQD3yePiyEgElMGTsnxaaNaoYlFBko7J7jVymkXPrJ+SiCYUfAYmjkQHqtonCPhWMVtYgLuID6tNlgzNZ0grDxZSjxgZg5KDkCopqwEzJzw8SHhwuK4lWVZNdJ2oUGPZxrW+5ZrAvMZf8dlVmk3GrXITGHdtAgnmSwiYoCszkt/ZF1qYmWAUWjB22RjFJJFUAxQ9NMlrwyUlFNYL8lL3hjTnxRLB45zQMSRcrwrxUUD1uofC/rGKZaIV8090UEHDiKBnHwiIE8lBAvKsbjtSqXirqNfVm0TL5MTw1q5imqsbTTK0ISv5AwREeU48VSPehrJXxtqbKI7UtK23Y9QUs+UVyu1/fGeGZqynCxjYLDqyXFjSaqyOtgfyf62GO49NVNNoegnSp+5o5bokaYq3FELBlqJoxYIMQzaoxYM3mmPWjB40R61YPBee9QSgfBwUfCyzEctWOmj9qgFKz3sqPRte2zvAEImD0WwuijarXtEaMRCJc8xoBrGNU1XUJtVgYeoeMLY8BCVQNhY9KozlyjQZB8D6V2IgpQ5qvgZoodWADGRu/kIqCVKzKozjdf13Fz9x0IeaWAjRazaTffLOmkvYHHt0kRMWcmRpxBYZeDMLYkYNpO3FrYNC3e8RAxBKWqPTMAqhie8TAxximCUzJhb0R7EYPBVexCD1bkiGiUTJpOd9iAGgxfiIAasEE8exGAFDeRBDIYauUj/iIXcSUYzE542/1DIneRMRuRHm0CtLAJVoEj9uUWhb6mmSP2IuNPLYAqqx97hWNcehMpyDr62oDauJ4N4YkBIigMZrR8hr2mJZGxQDEgVJDJaHzJnPHwlOgK1kAFCEchXkFLJaH2orHj0SmybVnuRW9lzvAgN0VVMYfVYjXhTBDz2Dk4cNRMjW41kBPzrMai5q63g7FgCNztWcHasjsQtZAA9ukyoYOZeLVSBPR61Mg9FGQF1pLsYAhWOLAUD9RxZCgYaOLIUDDSSZCkYaiLJUjDUTJKlYKiFJEvBUHFiF6K1HDzBiRCojqRgia+DlBnSEu+ES1+N6e0x3euJXSIQMO8dFRr2RO8Ss7GqyIRZrKrUrC4vq6o04fNW8O2W0HG7vG6J3ESvZH5uBALiPa4bO+e8RiDHwItT8dA0bLKJLqQIxuthoV1qr6WfeWkezeW6l7AZfrv84KI0nahvhujYvwyOeTPgIr194OAla9lzwFoqXEIvVuhKUvI0Ziqq6j084ZahXTnNGRdneSnE+ghneSnE+ghneSnE+ghneSnE+ohgeSFWs7h8bmVaK5PsORhqYX3fEGplfd8IahhIttnYVqsKjmSCjRWYpoKoqGBjgeIxffAqMtgGfHMSDIGkg12r20hStWJ1m7QsxgmgavUhaxm1U1sO7K3QmJOAiDFUkiE5DW3dtkEVV5EGhPbQR1RCZVjFbRIeeoK7xTetoGlk0WtpvpND4MNW8E2TaCkYYWzGWOUkLWN+AgJ8fESJPY9r5NTgxmQWarFwaiAJkNPxsZLCHanJj+nToBXZSEisiE+OU9lIwMm0T6KV2cDgPSmJsVa3QRWW9dreKqVfGTkRiwQIXXkFpUtq98lml0/6WbEtfZqKSQ9qDZWeC4EDR59Zxe+V0mXHl66Jo6OHSLZoCo8LHB17HVS5ge3LK5Ub+dI1cZJJQishXqyc1dM/BM/OZ4BKjs/0fNZWGS4gMdnTpihlJJ3XF0eOqoCkl6fjWFKxLUWKTT0ztTdieIDLsW8UpMajracgm72SSA7F1w1Azc0lk0N0RuRmfClaxdLc3qwVtZptRlb4ddCK7+b2Sqtq9GyztLHUctBrhfMaveU1sKCRWM7IuF6julXac2ZNarNsT55VraW+VsKitnNk8VGrukbbItODWgd6DdCRKhe5IP6YMIj6y2u7oF795SuAoIRCXP9yhpwhDPgCcq6I0i43nMYw75AKMCIHPH5lLl1x7dLhFNJz6Xwbp7LlaePg7CnH8sQ2DttPSkCWlcEJ+50r5fPsd7bHAxfY8qzgRLY87V7qEpKCMQ8dpd1jXir5tDHm0WINo5ABByMRcRuJtux2zQhr2bXdY4W17OogyxbWstfKx1p2bY8Ewlr2Gg5r2bVtB7j2zbE8KziZLU+7xwpo4eFo4WNAbxuJ3cqvlGgR4IAv6tewHOkGWsMRctVQE9Rb8EiGeLrOAmsN7dHFR3ZUKNh3JtY2VsqX2fZcwSlsva/gVIBBZTZRN9gZVELQdA437Me0Hy/O/7FvpfEtf3UX+//t///jxf6njD9l+hnHn3H8Od4R5zvGW+J8y3hPPNwz/udipN16vtib83gxMpLt799Pnm6+kulK5qs4XR3uLNOddb6zTHfW+c6yeMH034txxz9d7d+0f25v9m6+kulK5qs4XcWnq+fnwvRcmp8L03Npfi5Mz6XpzvEJdzEORm6+kulK5qs4XY13TvdcjC3j5iuZrmS+itNV/HHfANePu7+PLXfzfXd3f/1ttJWbq0+7m/2/hbN/XP22v/51bxSHMNkkNdQao8TkZTyffTKNvV08Q4wG9O3q7vLx9vLr/fWXF6w9B6O7+vRwe/P9cXc53nl3/e3r+Q+P9993z/Zyeb+7uXq8/nX3AiYuuH+uPx9tdB4V9rc8/nY3muKv1/eP36dx4tipfr6622OdL0u9//7Jmq93B5SXZKXaA0mPBP+pTw49Ev/bVYw99BQeRw8NQ1uhuVVeNDQ0tjWwW6XM2+scl+1VjmsPjeMOEseug8Kx9BA49j30jUMPeePYQ9049RA3zu8rBly6ivXWnkrDnTVvt5a8/VMUb8X3EIjF9+yEPiy+gSfkYQklW3w0IYRs8dGE0LHFOyC+5SekYXEVW0IZlhCxxRuK0LDFG4qQsMUbyocuqrA+9hCFRSVsSU1YVMGWlYRFJWxZRVhfewnChqG7rGpw26uqBukhfxp8B53SEDrIlIbYQU80pO3lOVvJDhurc4bSS+My1HeVuIxDH4VLNDOCFLiMsr2+ZfTby1vGsLG6pSL5gRC3VOQ+ENqWMfeUtoylp/RkrD2kIRXpD4SeZXIddCdxqlBCdhJnCiWUHAm5WtwOUuygDplST3HIlHvqLabSU9AQT3lg9Azz0EHOMLseaoZZOogZ4rkOhOhgDl01B3PsKTmYU0/FwZx7CgLm0lMPMNet5QDL0EENEJeqJcQA0QQJVguw+J5SgCX0VAIsPaT6VmRrjXpwJfcRbFPkO5zUayv1T5Brq8Nmam2L9Id3EGtbJEgYtdqq30yqrYZ3UWqrsacSWk09Jb1QBlBS1aqWzUStat1M08otUiXeRdPKDW47TSs3yPaaVm7w22tauSFsrGnlhthT08oNqaemlRtyT00rN5SemlZuqD01rZwbempaOed6aFo5Jx00rZzzPTWtnAsddKKcix2Ushwe4RIYa8gd1aecKx3Up5yrHdWnnAwd1KccSfXJqU85kR7qU058V/Uph4euEOpTTmIP9SmHR68Q6lMOD18hZKKclK4yUU5qB5ko54eeMlHOu54yUc5LV5ko531PmSjnQ0+ZKPcy+MUuE+UIWk+mHnIHmSiHhr2QMlHO1y4yUS4M7ysT5RYhMBvLRLkg3WWiXPDdZaJcCB1kolyIXWSiXEgdlJdcyD1kolwoHQSdXKgdBJ1cHDoIOrnoOgg6uRViUKPykou+u/KSa9GDbqy85BZhMhsrL7mYuigvOZQYlFRecrF0UV5ysfZRXnJp6KK85PBwGJwB3RHhMASo3155yeHhMJkAjdsrL7mUOigvuZQ7KC+5VDooL7lUOygvOTzshVBecnjcC6G85LK8r/KSy3575SWXQ0/lJZfjn6G85HLaXnnJ5dxTecnl0lN5yeUe2kiu9NBGcsV1US9yRbqqF7niu6oXuRLeV73Ilbi9epErqat6kXsVVLOBepEr5X3VixyussuoF7k6dFAvctV1UC9yVTqoF7nqO6gXuRo6qBe5GjuoF7maOqgXuZo7qBe5WjqoF7lX0rlvsHlEIEJQhm0kkWToIYkkQ1dJJBn8JppFMoSe0koy9JBEkoFkcsFAc0+dJRnKtjpLMtSuOkvieuojieukjyROeioZifM9lYzEhZ5KRuJiTyUjcel9lYzE5e2VjMSVrgpE4mpPsSCR4U8Q+RFx24v8iEhPkR8Rv63Ij0joIPIjeIzNSRkdkdRBLEgk/xniPLKIutlOnEfwWJuTojrih+6iOuJdT1Ed8bK9qI7gFDInRXUEZY0hRXXEx+1FdQRljdlKVEd87iCqI750ENURX7uL6ggaYLORqI4Et636jRD8MoRKjwTfU1RHQthWVEcW4TNWUR1RqOqeFNWRRbSMWVRHSBIZQlRHQt1WVEfisK2ojkS3raiOROkpqiPRbyuqIzFsK6ojMXYR1RGNMO4pUR2JeVtRHUFDXTYS1RGcFOakqI6koYOojuDxLidFdQQPcTkpqiPJbyKqIylsIqojKXYR1ZGUNhHVkZQ3EdWRVDYR1RE8KOWkqI7kwSyqI9mZRXUEDTF5U1RHst9EVEdy2ERUR3LsIqojOW0iqiM5byKqI7lsIqojuW4iqiNEvEY+ieM2EdURWOD1LVEdKX4TUR1ZxFhYRXWkxE1EdQRWYeVEdaTkTUR1pJRNRHWk1C6iOlKHTUR1pLpNRHWkyiaiOrIIZXgXUR2pYQtRnTrKwOzrYFSBqaMIzP63HH7H8feoFTP++WL/fe7wW8bfcvgdx9/TPZN8zX6zOV2M+jj1II9TR3WcehDHqaM2Tq3HexYP1FHbZzhI94w3TxdyuIjTxSSEs799/89lFtDZX8l0JfNVnK6mO8skmVPnO8skmVPnO8skmVPDm/I2Hpa3kQ95G4u8zRsO1aGJGXhRG5tiTuiqmBN7Kuak7bVo8vZaNGV7LZraQYpm6CBF43pI0UgPKRrfQ4om9JCiiT2kaNL7StHknmIx/3RCN6e1Yt5N2uYdpWikixSN7yFFE3pI0cQeUjSphxRN7iFFUzpI0RD6Nr6Hvk3soW+Te+jbVI2+zaZSNKGLFE3sI0WTOknR5E5SNKWXFI02MIGRohk6SNG4LlI00kOKxveQogk9pGhiByma1F+KJneToinvKkWDKt/QUjRDHyka10GKRjpI0fitpWhCVyma2FWKJnWVosldpWhKT9GY7kI3G0rRuB5SNNJDNaazvs2GUjSxqxRN6ipFk7tK0ZQeUjR4UAUjRTP0EI3prW+zoRSN7ytFE7pK0cSuUjSpqxRN7ipFU7aWosEDPxgpmqGHFI3rJEUjXaVofFcpmtBDiiZ2kaJJnaRo8sZSNOVPkKIpdTspmuFdpWjcZlI0sp0UjX8fKZpAkkC1C/tfSdDmLfqedg2UPrI4dTNZnKWWjV0Xx723Lo5sqYvje+jihB66OHFzXZzUVxcn99XFKX11cWpXXRw39NXFcX11caSPLo7voosT+uri9Faw2VJtJ3fRxSlddXFqD10cGbrq4ryXgs2Wqju+jy5O6KyLE7vo4vQWsNlUbad00cWpfXVx/NBFF8f11cWRvro4vrMuTuirixP76uKk7XVxchddnNJFF6f20cVB6TVoXRz33ro40k8Xx7+DLk54B12c2EUXJ3XSxfnTFWwYuZ3aQxeHULBhdHF6K9hsqbbj++jihHfQxYnvoIuT+uni5E66OKWTLk7to4uThl66OK6TLo700MXxPXRxQg9dnNhDFyf10MXJXXRxShddnNpDF4dQsMkqBZstdXGkiy6Of29dnNBDFyf21cVJf44uTu6hi1P66uLUrro4eCwMpYvjuujiSCddnPfTremjuxPfWxcn9dDFyZ11cUoPXZz6zro4deiji+O66OJIF10c30UXJ3TRxYlddHFSF12c3EUXp3TRxakddHF6SNh0EZuRLgo5vq/0TNhIIae3hE0XtZncVxymp5pND7WZoZfajOsrB/P+YjZbqs2Evmoz8b3VZlIPtZncWW2mcAxckMbMO0vYbCMm4/4UXZwPCRulhA3w8WkjYZx/HQmbrURrAP2XDwmbDwmbDwmbDwmbTRVnZGtlnA8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jm/8yEjZlFI+pB+2YMmrH1IN0TBmlY+pBOWb885PMjVvI3Lg/yNy8UqQZloo0w1KRZjje9vzMdPvFyCHh5iuZrmS+itPVP7eQjf+XEbL5fHv/bW9F/4RqNh2kZ3xX6ZnQU3oG9TkfWbeAw2n0rPXIueXeLmVXnY3SVbhiY5kNN/wJOhjO9dDBwAVwCB0MnEiE0MHABXAIHQwXO+hg4OQhhA6Gyx10MFzpoIOBM4YQOhgydNDBENdBB0Nke7Z78d3Z7heRCxuz3Ut8V7Z7SX3Y7iV3YbvHwxgYFmA8qIFgAfZDVxZgPXcIVHjpyQLsfU8WYA1vCM6E6+PWLMA+dWABJrhCiG8vPdl6fe1BfYsGM7DUt8FtS30b5E+gvg2+J0NpCF24RbmwhpPcoouoBiu16CKe4V2YRRchD2Zi0VB7kg4SrCA4A1x0XZnaovQgP4u+A/dZDF2pz2LswHymCIQgiM8UUREE75lC/4ahPYu1J+tZGnqSniW3NecZHjlBUJ7hYRQE4xlBDoLzCaXYg04ope5sQil3JxNKpReXUKpdqITy0IVJKLsuREJobAfLI4QyiJA0Qjn05KnIsQPjQ05dCB9y7srHkEtXOolc35ftoQzbkz0U15Xrocj2VA/Fvy/TQwk9iB7weBaC56GkDjQPeGQLwfKAh7kQJA+lduB4wANeCIoHPPqFYHio0oHgofoO/A6wIk5wTeaAdFofZzsuBk4Wh+WPqLkn0UMtHfgZauXCDxDMpWrOJqQJS+mcHiwPS6Wc7UkZ3OD7kDIs5XM6sCYshXQ6cD5oVHUIUoalqs67sCYsdXY2Y03QqOswrAlNeZ3tCA6W8jrvx0WwVN3ZjFbBaThEcIKDpviOmY+A0Nwh+AicS38GjwAhykPk/y9FeXrl/ztXe+b/Oxk2SdV/pcazUaq+E9k+VZ+Q4SFy3J2WFoTIcXdomM1GOe6Opg+BctyXIj2b5Lgv5Xk65Lg3dXosOe5LYR5rjrtGjudkjvtSgMec476U29k4x12jtHMyx12jrXMyJX2pptMhJd35vG1KuvNl25R0WE+HTElf6ulskpLugts2Jd0FedeU9KV6jiUlfamQs11K+lITx5KSvlTBsaSkL1VvLCnpjMzNqZT0pbDNlinpjLTNqZT0pZiNJSWdka/JJ3H8JinpS4UabUq6i9Gckr5UmLGlpC8FZSwp6UsBGUtKOiwYQ6akLwVjLCnpLrlNUtIJPZiTKemEBMzJlHRG9SWfxImbpKQvtV1sKemEoMvJlPSlhIs1JZ0QbjmZku7QYAsyJZ0QazmZkr6UZ7GkpMOCLGRKuiOINPLJ8sVNUtIdT5yxgpPfNyV9KaBiSEmf0rv3a7YxZ3tK7t7/lsPvOP6Ox9/jhni6SOMD5fBAGh8ohwfS+EA5pJf7Kb08He4ar2S6kvkqTlfTneM9F+O3uPlKpiuZr+J09VbS+L8dEqyRrPHwkTVuzhqHGJg9kvbRMxE9dE1Ejz0T0VPPFO+8bRL2e2WMv2OG99Alw9v1yPCWHhnevkeGd+iR4R17ZHinHhneuUeGd+mQ4U2kjeceaeNVkza+XYa39M/w9t0yvMP7ZnjHThneqU+Gd+6S4V06ZHhL7ZvhPXTN8HZdM7yla4a375rhHTbP8I49MrxTjwzv3DXDu/TI8EaPxugM72HjDG/3Z2R4CykK204Qft888bdyMNpljH2yzdN22eZ5u2zz8s7Z5nW7bHMFAT6Tbe56ZJtL32xz3yXbPPTINo99s81Tj2zz3DXbvHTNNq9ds801+eBZkw/eI9tcNs829z2yzUOPbPPYI9s8dck2z/2zzUv/bPPaK9scPalks81dn2xz6ZNt7jtlm4c+2eaxa7Z56pFtnvtkm79bOniPZPYyvHO2ueuQbS59s819h2zz8M7Z5rFLtnnqkW2ee2Sblx7Z5rVDtjmRGO56JIb7HonhsUdieNYkhm+YbR67JnGnHnnn/9KZ4X1yrjsmifdI4pZeSdy+b5b1++eIb5nEnd47iTv3SOIufZO4h8oFXmGp2++bGb5Njrb8KenmH5nhH5nhH5nhH5nh/8qZ4RulcOc+qeYfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeF/Wmb4lOidF4neeZHonY/J4IvM8Dw+UA8P5PGBenggjw/Uf/bM8PgqM/zL7uHz/fXdoa7O//fD7uzh+93u/uyn2/vPu7NP369vvuyR/2nzx+9vHx7+kD5+sXz41arn+U7BE803E8qGZbEuneBJt/B8fImnHcKj1CWeHwmPWJd4Iic8el3iGafw7H2Jp8bCa1UcEp7QiVxbfMmKY8ITe+6QEV47JIQ71yEh3PkOCeEudkgId1mTEP7GgCdDEzSdTgg3Eke8kRnegZZCeK/g5RyjA+VGOwV8xuFFAR9xeK+AVyWO4/BOozwOw3uiaRO4HLkMAw6aEcfQpW8jvpUq/tbXC1G5FV85FRjVg3vZS+fXk/vd6ezwk8CO4wzwoMdeNmE+8OAOuJAfAUYvu0jiggfPcqLS/elEceR4UHCODK9M7fH4kOoLl7/8kj3EIwnjqyNRHODMeUW2+GVocwgkIHl8taf7J2vOlr6Dnq0t3pdM8UPBoy9023wg2Isvn7tbgroxmoe+GJNtH7Jc997eX33dXX7+effQMucXNWdMCeepIgacMuMPp34nv2rbj+KjUHDKlcivnXHGlQh7e3BIBYkLDs6vlXEak8ivlI974qzLgQc3xwg6L8nlCDPh41kc0ah8cIsjWpXvnIK3qiIVXvBWTWj3FMEx+f4puKUkvoMKbikJjoHxBGVW4tkpPL7ES7CHyROGkRXrRmmzI6G58eiuvlJ58Th8huGzwt103F1UhXb66k7AJxxU4WQ6GkylUuVxeIfDK5xMgttLVjiZhLCXpIAn7CUr4ImmVfRVIZpW0Vcd3rRF0Vcd3rRF4Rp2eNPCquqXDh8KiqKvOtxeiqKvOtxeiqKvEuYC+4MLjqmYTInWLD3JEUtVLwSiA3bUdVAvBKKjkuwx9z4EKurVBQTv1asLCD6oFwIQfFQvBCD4pF4IQPBZvRCA4KngqkspJwgLa1UvKiKUHj6oVxUYvlMvKzB8Ua8rMHyUguZSBgI1qJcrGH5Ur1diJ+n249oCw8/wgkgI1KJesmD4VbtmgeAVCfnzAuMlfHojIR8ZtU6xrP4hD381nnUzgthlAj5Q9NMlDwzUyaF7mWKPnfVFKCIsqQ/7MPzMnr5FbzlDWqbZoy8UI11ARc/f4kZvlIE98WtUqiUx/zJv9SVCH/nNrzR2cvHKM78IcahIYA/9NvqsqDz1gzqzJOWxH4aeqXM/DLMoD/4w9Ko8+YPQFaoZx/UFBO+0Z38YvGgP/zB4rz39w+CD9vgPg4/a8z8MPmkPADH4zJ0AYqBFewSIwVftGSAEr4iZ8jjt+5Jw4C1UwUnCl7QDHfQLliwDbIQ1QmS9ZB9gQ6wx/KiOscbwkzrIGsPP6ihrDF9/IIvhV9YRi6DGgQm0hojhCcaDJ3cUVFRhQ60RmvYlHwK4yoeoxF/xI7wVpRyNPG0RjE90A/kdiQxfNn9I5uKaiTEsFlNgM2ZPlc2lhFipCdaGS5zul+BwuMwEqpAZlRiqJ3MqMdRAZlViqJHLq8RAE5dZiYFmLrUSAy1cbiUGWrnkSgg0D2R2JYbqyPRKDFXI/EoM1ZMJlhgqnmDKtBbMrCpCoCZSTC+9rdPicu6pJeJy2Qq+OYvlypEMxFe66ksyizqRSew70EgmUScuif2FHC7idDGRTox3XIxHDm6+kulK5qs4XR3u9NOdYb7TT3eG+U4/3RnepqcYORrOLv/72f84rkcQpor0iqniz+OgaDXRknMCZpLokvTbNefXd035DV0zfmPXhN/UNd83d0j3Lfpg48jwUdCxxpGipqDDgiPFUkGHBUeKsIIOC44Ud8Vbgdi4tbigjzWOFIsFHWscKT4LOtY4UswWdKwxAl/0scaRIrnAQoKgecgQwNyJ28LFrtwWznfltnCuK7dF7UptkTXMFjB61FBc4AM7jq7ppxrWC/hAUE9+sTYG4COA4nQXr2rF2S7Bk+C1uboIeNDm6iLgUZ2ri6Anda4ugp7Vuboc9wWbq4ugV3WubtTRYYC5ugg6nE2L9/0g6vxfBN2rc3UR9KDO1UXQFXEXhKXwPZTYtyhOc4lNl+Isl9gxasgo8FZVsFEQu//Iz6SE5yKiyXqEb0FBSMF4chRCKrilKBgpCA+agpGC8P7F3IGNKZaubEwo4/5lGDbh+EkD/T4bG1NCQ5rX2Z888zohYyusn+fVeaIIeVEK6i0bwhgR1Vs2juSC3LIpyS42o1dKfJ9PcI9PYI9/ylawdXhUpOD5dbYOkZ1WHRXqEFk4cVSkubPvS5yiIcLwfYkwfF8iDK8iwtiQOKX0JU6pXYlTNPQXBHGKhv6CIE4p0pU4RUOEISoijLeOA0JX+guCjaWkvmwsuS8bS+nLxqIgw3ACw1fUdXw8Yyhvs8rCBBhtyAjSX7xRC46Y4RT0F0QTKtgvCPuraF4vwdajYLwgOqSC8IIYTWpRey8R9Kr2XtY+BBjE1KbhvyAmZg39BbGsWLJfsB7M2ocGwzNNG9U+zMqRYLwRkZkI0Kz2jFYlBcZbey0h4CvFIfEcObgV3wVDSuVUYUsMYYd0oKVakl304KVymsglgpjKaUKXCGYqp4ldIqipnCp4ibGa0pWcakl+YWancpqwJYaeShO3xNBTaQKXGHoqVeQSYSwSetBTaUKWGHoqTdASQ08lWb2Dg6iSpGxHlbQIU3oPqqRF4JKVKsk77Q4Rm54NfBSuLx+F68tH4fryUTiOjwIKcsFAs5rkwvXlo3B9+Sicko8C2yhi8G47XrOg3nRiRVVvOjF49aYTg1dvOjH4pN0fYvCZC27BQNWbTmg2DlWhZb1i2nHoQdkXXV/KvihsiIaVBQ4mpHh+o40kEGWquFwnJXTeRFXxhpv+Jb9OtPBUPPN4GGtNzUmOkebFog02wey6aqNNIHiF6g6D7noS+yVRBpxg6J46T3pp+/4NDgssrMRo+ymy7zOOiSlp41iwzpYyF8iCtXTpy/il0ehhGL80Ij0M41d2fRm/NII9DOOXSrGHaN8cejB+GQKUMHx9hBKGn/U+bgi/6H3cEH7V+7ihBN2BTLnGUPVhShi+Pk4Jw9cHKmH4Qe/shvCj3tkN4SfW2Q2h6oOVMHx9tBKGX/VaDFC2+6BXTYDwnVo1AYIXbfo1Bu+1+dcYvDqaH4NXh/Nj8Np4fgw9UznYGGbRbtog9KplY4cYJAYtczqE7rTM6RC6qJnTIXivZk6H4IP6pAqCj+qTKgheHXqIwatjDzH4Qp5UQaBVfVIFkbEM6pMqCN6pT6ogeFGfVEHwXn26BMEH9ekSBB/Vp0sQfFKfLkHw6uhDDL5oE7Mx+EoeXkHMRoM2NRuDd9rcbAxetMnZGLzXZme/hl9ycY6BpCN1Zj1QZ+6vZLqS+SpOVweSzelOKTPJ5nTn/krmqzhdTXfKRPDph8OdMjF87q9kvorT1XTneM/FeGTu5iuZrmS+itPVdGeYyEDDXM4wkYGGuZxhIgMN9U2KzyOzJ83ymf85WT7/wO55sUYFOrH4P98pOA8olhLsGfJPLBHYM4yfGL2SZ2g+MVIlz3B7YlRKniH0BAmUPEPjCdImeYbGE0w38gx551vxb6WJmU5Tdp48vvLHJGxMKcGRqA2dhNMMnZj+wuvSOn+amvMtKu3QJP1wb3BzntAT8aEnGydB36JY8xH0LYolH0HfolnxqZg4N6OJkIGcFDLFvnnC4I7pk1nHt4lxzSN8EwIG90ha5ZuIxMG5gIEBQbbhm2hFt2/INyFpe74JWGjxmPkIJPgKH5U3h4VCCb4K+k0iM1GhtEgkJmqoOPG8REVcO5GW6P32WYmKWHYiKdHHnjmJi0h2a67GUkWxf6qGL1tlaviq7elQokYYNgstD65nZLkmbh0PLNeEreNx5ZqodTysXBO0jkeVh7R9UHnIPWPKQ9kspJyLTs9yAipSHa3mU1AOGMqOnqMNBrNFhDpQ9Il3YL3snpQt8xRF5mYxui8jyE+u+iHApF31Q+jkGhMJ+o2F3Ek0YnAdsbRHuTGfthK2GOM0dI34TW77gF+U7dJTApzJk6iYWwkOGV+X9fSnSSwxrxIkKZsS4VVCTlcUhJXEyZMi8Js4eFKEfRPnToqgbyJmPbvtZTGzbK+Kmf32opg5bK+JmeP2kpg5dVDEzLmDIGYuHfQwM3vi8Bp0edy63yO7C384Qt3/lvG3HH7H8fd41Dn++SIcDk/HP4+/5fA7jr/He8Y/X4QDzvjn8bccfsfx93TPhHM4MA0TzuG4NEw4h0Pd8c8X8fCu8c/jbzn8juPv8Z7xzxf7ZaU7/Jbxtxx+x/E3c+j6P+9vv3/DjlzLv8CR61YHqZdx+5PUyw5HqZdu+7NUt/1Zqt/+LDVuf5Satz9JrYqD1O0Okd3Q4RTZuQ7HyE5IkWMI1JMaxxAo3I+EaCi4JwnRUHBfEqKh4N4kREPB/UmIhoJ7lCfCZvAjUryhBO5RnpiW8GU33lAC9yiPN5TAPSoQDQX3qEA0FNyjAtFQcI8KREPBPSoQDQX3qIg3lId7VCTWT3CPinhDebhHRbyhPL6TxRvKwz0qEQ0F96hENBTcoxLRUHCPSkRDwT0qEQ0F96hMLPThHpXxhgpwj8pEeCfcozLeUAHuURlvqAD3qEI0FNyjCtFQcI8qREPBPaoQDQX3qEI0FNyjKrHPhXtUxRsqwj2q4g0V4R5ViZBpuEdVvKFQVqvnSDvs4CRGFhc65kHpq2Ihi5tZXKy44OljFbK4lcXFDtEG1jGHCJM51jOXqUPEDcXf/PbBvClsH8ybIumd44TvMPccp3eH+ec4mTvQQZeps0LQQZepI0LQQZc3PRnE2wk/GnRVI1AHOug2PRwUoqEi66Db9HhQiIbKrINu0+NBTzRUZR10mdKYAx10mVKWAx10mdKTAx10mVKRAx10mdKOAx10mdKOAx10mVKMAx10mdKJAx10mVKHAx10mdKEAx10mVKCAx10CKhjHXQIqLAOOgTUsw66TCm/gQ66TAm+gQ66TCm+gQ66TAm9gQ66TOm7gQ66TMm6gQ66zKm5gR66zIm4gS66zGm3gT66zEm2gU66zCm1gV66zAm0gW66zOmygX66zAmzgY66zOmxgZ66zMmwga46BBUPpKhEa+GRFJVoLTyUohKttYilMOv+LJPQ30H3ZxFcYdX9cWk7KZFFJIVZu8GVzTJtSJG0k6k2S420d8m1WYqmmZNtHB5CceS19Jwu2oZ6AXgQBSMTgEdRMKBp+4Qjh0dRME1VyJBwCLSSMeFQpNvABoVDqI6NCodQhQ0L95ymGUgQ6TkpM5AX0nMKZiAdpOeEy0DCRs8pl4E8jZ4TLAPpGT2nUwayMnpOngxMyPacKhmYiA2hCumpxFA96arEUAPpq8RQI+msxFAT6a3EUDPprsRQC+mvxFAr6bDEZI4G0mPJio5hLktWagzzWWKonnRaYqiB9FpiqJF0W2KoifRbYqiZdFxiqIX0XLJiX5jrktX4wnyXrLYX5rxkNb0w5yWr5YU5LzHUQDovMdRIOi8x1EQ6LzHUTDovWT0uzHmJoVbSeQmh4jEWlWgtPMiiEq2FR1lUorXwMItKtBYeZ1GZ1mJjAkGShqWYFgiMUZVmNioQLnBhgcECs3GBaIHLwAJjBS5sKjCSm+4KmwyMobLpwBhq2J7rwZW4PdmDK2l7tgdX8vZ0D66U7fkeXKkdCB9cHTowPrjqOlA+uMpmB2OobHowhsrmB2OobIIwhspmCGOobIowhsrmCGOobJJwzJwcFejby5wMFejby5z8FOjby5zqFOjby5zYFOjby5zGFOjby5y0FOjby5yiFOjby5yQFOjby5ySFOjby5yAFOjby5xuFOjby5xcFOjby5xKFOjby5w4FOjby5wmFOjby5wUFOjby5wCFOjby5zwE+jby5zeE+jby5zgE+jby5zOE+jby5y8E+jby5yqE+jbg1DZ7GEMlU0fxlDZ/GEMlU0gxlDZDGIMlU0hhlA9m0OMobJJxBgqm0WMobJpxKeZ+8aQxFEoLc7yZ34SSouz/JmfhNLiLJQWpzvTfGec7kzznXG6M813punOPN+ZpjvzfGea7szznXm68yi+lqc7j+JrebpzFl9zZSno5spS0M2VhqCb+4Ogm/uDoJt7k93vwOhHcvvVDbn9TvH1HYMA35JJe3i8vb/6urv8/PPu4fEPUmmtu1+H+j0/4dsybLufrr/tvlz+fPX/ru6/XO5L/Pl+97h8LjBcgsvCNtb3s2vycphck7YQR4Ffm4+vdRu81sOvTVu+NqCvjX7L10b4tbLlaxP82rClSVGByDOtejNittBdYoviU/HK87a4HfA70Ea+Ras7R3fpTV4rQGz2HHa+QWQ2lT8wb93brcSPCZtUFz8mbPJafkzYok9xyQm5nGguKjXhYG4iv58mdIRi+09hCdzVxxF2yWRinL3hvr7ta+FVQ62bvhdeNuyba9MXw4PEpfujkp/xvZF/b9rivYnvZSH//hYd5ekm27TiCv3aTeqtwh2jbPm5fuDfu8X3eqcZQ9uW4gXv3JvaiveKF29Se++auLjIEnmX5Dmf6LFr1hAyvjfz75Ut3qtYmUT/+1s0ntDgtckHhIF+7RbtFRw9dm3zXuHfu0k1e82Y2baUEPiha5uPiIoXb9JqiV5pz7GBxvdmdqW9zWsLvdLe5r2VX2lv8mJOmfHQN3J5Q5iR6GcrWEK7osb2sNeGp30542Blf2+gXVfbvJf3imzz3kQ7gbZ5b6bdMdvYVVH4aMdzmtMcrmjfmMYMu3t74B2dwyZ+dcc7drd5sSh80yvNthSafMtfezihM5Zd4WfdptIUntZtXpwUPuq11uIHio06WVF4bqePWB6uj4fbhwPr6Zi7zD/l4nBuPZ12l/lnvDgcX0+H3ocz7+kc208PTYfYfrp1OsH2h6Pu6ex+PmafTu7nQ/bp3H4+Yp9ePR+bT2+cD82nF81H5uPZuswH++PJuszH+uO5usyH+mNp/HyoPhbHz0fqY3m8m+6RhQygLGQAZSkD6Eb5vsNXjRDjbzn8juPvJ6nAuJAKjAupwFm+b4S4iIfyjBDjbzn8juPvZ4m/spD4KwuJv0N5RoiLNN8zlifN94zlSfM9Y3nSLBU4lifNUoFjeZJM94x/vkiHOhz/PP6Ww+84/p7uSc/vGv98fNf458O79tbzeH0zH5W3o/LHVK3T5++XN7ufHie54baWowWhWhFkMJdhpvEy10MDYRHCsPbt5FPz9xpKeyRYNiCIGcFbEXIxI1QrQjG3RTG3xRyUZTDewYzgzAjZjFDMCKs1CXRH9imnekpUT3lrzRxFxw0I0Yow5vQaEcw2ls02llU2VlQ2Vsy9spi/t5hHp2oenQ5FSOYBMpGzuzO/V8wI3owQzAjRjJDMCNmMUMwIVWNForI9caqnRPWUVz0VVE+ZbUnMtiRmWxKzLWVzv87mfp3NbZHNbZGzxopyUT2l6r9F1X+Lee4o5rmjmG2smG2smG2smG2smPt7Mff3orK9Oljfe3htNi+dsmrpxD4l5tJ6M0JQlTyqnkrm0mYzQlGVvGqeEpUticqWRFRPedVTKpsRlc1IUj2VVU8Vq3WJefzxgxnBmRHM45I3j0s+mBGiGcE8XnnzeOXNNunNNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnNNpnNNpnNNpnNNplVe5as2rNk1Z4lq/YsWbWfzar9bFHtZ4tqP1vMNlPMNlNUNlNUNlPM41Uxj1dFZUtFZUvVPC4dXltIR86geaqo3lVV75qDvQ1zhhUgWwHKGsDJ2tI8NDdnVTVnVTUn+5RTPSXWNpjJvywIwYpwDEe22nIL4eTspnqqqJ6quqcG3WNO95joHvO6x4K52WfDcWbDcdZRsIWAVLXTVbUzd9cNKk3MlWZAOFagmIc+C8RcE95cE95eE95eE95cE8FcE0HXkYKuIwXzF0fzF0fdF0fdF0fzFyfzFye7tSe7tSdzTWRzTWR7TWR7TWT7dGKBiHYIe4PM31HMq5FiNqtiNquiG1KKbkgpdvMpdvNhC2+v7Lns9p0PuetLqqey6qmjaVSdaVTdnoB9TFePNZkb8FBeMe9hZNCYgKg2vKLbFopuWyi6bSH9WDS3RE1miLnszmwO5t2ZOJVp6LaxotvG0o8F3WNxq1Yx7xRbCECriK5VRNcqomsV0bWKmFvFvGsV8/69hYC0kNe1kNe1kDcvsjaoa7OHQHQeAtF5COjHgvkz54oyOxZE51gQnWPBUt5jpZl9E2L2TYjdNyFJV4H2stu9CZJ1ZTd7QqTYy17MnhAxb72l2r/DfCbrB3MhLBBzIZy9EOZzGW8/YvDmcw5v9+578xLFB3shzHO3j/ZCmOdFbx/ivXms9vax2psHXW8fdL15xPT2EdObR8xgHzGDecQM9hEzmEfMYB8xg3nEDPYRM5hHzGAfMYN5xAz2ETOYR8xgHzGDecQM9hEzmEfMYB8xg3nEDPYRM5hHzGgfMaN5xIz2ETOaR8xoHzGjecSM9hEzmkfMaB8xo3nEjPYRM5pHzGgfMaN5xIz2ETOaR8xoHzGjecSM9hEzmkfMZB8xk3nETPYRM5lHzGQfMZN5xEz2ETOZR8xkHzGTecRM9hEzmUfMZB8xk3nETPYRM5lHzGQfMZN5xEz2ETOZR8xsHzGzOasgm4e7bB9zszkgIJsHzKw7hs7mU/NsHmaz7nw222OqLRBzgqD5KDGbZ4isO3PNujNXS3nnOjOfJOaoidTIuiPXrDtytXzlnLKazDVtjqLOSVXTSVfTurNZy1dWe1XPCNncWFkTZcg+lVVPHRtIdwBNP2av0nCUA7M2SlE1SlE1ii4wPOsCw+nH7FVaoxliLrs5KDib48KzKi48q+LCsy4uPOviwrMuLjzr4sItLXEobzHHBJdBk95fVGHhRRUWXnRh4UUXFl50YeFFFxZuab+5vM5sAU5lAeaNXzHvX4suKrzoosKLPbnZBGGv9/k7xGwx5tjoYt57F7PboNidvcWe5b1BTZi9EMXucS52j0Qxx3AXsz+h6PwJRedPKGYPSjG7t4vOM1B0noFi9n8Usy+92B36xZ7lXcz+iWJ26Bf7qUKxZ3kXs/ugmFObi/lcouh2sEW3gy321OZidhAUM8lXUW0J2aeK6qmqe2rQPeZ0j4nuMa97LJibfSaHM599VXO8gQWhrCIABHGDjiFu0FHE6Xi9qo7Xq+p26pamONLEDXaeuMFK5VidrmmdrmmdrmmdymrFrEhTRSVJQz8m9gJ7O0TQFT7qHkv2Amc7RNEVvqoeE51Vic6qRHSPed1jOusRnfWI3XrEbj1S7BD2scoPdghnh7CPYd4+hvlgh4h2CLt1ert1ert1ert1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Zrt1Zrt1Zt0uJ+t2OVm3y8m6XU5Ousey7jHdXjjr9sJFtxcuur1wsY9hxT6GFZ31FJ31FPtYVexjVdFZVdFZVbWPSfOLvd156HXOQ8ubxQ7h7RDBDhHtEMkOke0QxQ5RVeYkOisUp3tMdI/ZrU3s1iZ2axO7tWV7/8/2/p/tLZLtLZKjypxy0j2WdY8V3WO6/lx0/bnYrarYrarYrarYrarY+3mx9/Nin1WKfVYpOiusg/nN84uDfYFlgXB2iGKHWK8LZGoPuqndUODjNG+B8GaI4wQT7BOMBSLZIbKqIXPRPaaztqKztmK3tmK3tmLvpMU+YNVhs9Em2kcbA8Rx5LFAODPEsedFe8+zQNhbJNtbpKy3CNI7o86PtsE3J/s3WyCcHUJIiB8vzq8fd3/f3/fp5vvu7v762+P5xfnN1afdzf7f/u368bezTze3n3/Z/+Ovu/uH6U0xSQ21xigx+Ul14/rbl93/PWg9/OcCaF+mh29Xd5ePt5df76+/PK2UjqKnY6Tg1aeH25vv+/KMd95df/t6/sPj/ffdHnNf0ofzH/66x7j++u3qZnz6+Em3n27vbu/HGji+2o1vfnXjp+uvl7ub3efH++vPl3e3N7vFEzJ+++7b4776dof3TBe//e3b979/2t3vIS/WYS5WFiHD72M5XgAJAzQfYzeB/MWrGrhYOT0eq/Z+9x/fdw+Pf/vp+uZx33ZTc+zffX2s16eq+7H1ssCUej7qbZY6MkDzANYESgzQcFQfaQBlBuhorm2owpcp5BZQ1ZSpDTVuRd60k+GZodNmJ84BbzsWeIv3CV/l0TeRvKbOV7ACX6pcmkhRU6oVrKQYw8ZxuYWVFcPYGlbBR7LDNGG0maoYzFbKLoNiPJuw9vPNP67vp8nmr+7CXciF+/Fi+pXmXzL+b/6V5l9x/zvOv9L0a//cRZieGO8P0337e/a/xr/u/7L/7aZf47/K9CuO/9v/2v/lIk9/HXHz9Nfxb3n6674cF2X66/7t+18y/Yr7X+Nf989d1Omv++f2v2T6Ffe/xr/un7twh08q46cdvqSMZTl8QB1v8NMNdbzBTzfU8QZ/+MLxw9zhy8bHx99y+B3H39M9frzn8H0jwvhbDr/j+Hu6Z6wCN9fpWAlursuxGtyhDkeIi31TusNvGX/L4Xccf0/3jNXhDrU1Qoy/5fA7jr+ne8ZKcYdaGf88/pbD7zj+nu6pi3fVxbvq8V3oKuzs4Ze9vT3urQtajvnW8u7y0+3tLwv0/3V1fbP7cvZ5udQ7sfY6taRqL8Lu9y+4fPh+92LFNq2/rvZd+Nfd3+Z/8ie+6vf/D2kMVTQ=
Copy blueprint
screenshot-tick-205740633.png (1.2 MiB) Viewed 1312 times
Re: 3 and 4 way intersections
Posted: Fri Jan 03, 2025 9:31 pm
by hansjoachim
notnilc wrote: Sun Dec 22, 2024 4:54 pm
notnilc wrote: Tue Dec 03, 2024 1:44 pm
Made a rail book that fits between city blocks.
The trains per minute on the 3-way intersection is only 70-80 though.
0eNrtXV1v5Thy/SsDP/suxG9qgDzlJXkNFnlZLAZu951uYzy2121PMhv0f48o6X7YLkrnqNjT2Y2fWuorH1FksVhFVp36n4sPt8/7h8ebu6efPtzf/3Lx4/+c/ufLxY9/Obstv325u3rYPd3vPj3efCz3/33xo+m6y4vfx3+/Xl5cffhyf/v8tN+VJx9u7j5d/Pj0+Ly/vHi4/3LzdHN/t3vc31493fy2fw0zguzMgHFzfX83vfvLzae7q9vyxNPvD/uLHy9+u3l8eh7+5/Li7urX8h9fPl89DFAX5c/uPu4L0Ne/Xl7s756Gt+0nlPHm95/unn/9sH8c33T446fHq5tPn592wz8F89DGuUm7NH3ZLg7oH28e99fTj/7r5RtQC4PGDIM6HDTCoB4H9TBowEEtDBpxUHygEgwa8IHKOCg+UD0Oig+U6XBUfKQMPqcCPlQGn1QeHyuDzyqPD5bBp5UnRgufV54YLXxieWK08JnliNHCp5YjRgufWw4fLYvPLYePlsXnliPWK3xuWXy07GluFbAB8dcHAbF0P4p4mlf72/1vV0/7j7u1BhuiG8Jb+Ovnx9+Gf8YPuBLg5cZHCT2+7I4vzw8P949PMKbY4sR3CDGAmUfHp53teXR8+rmOR8enoTM0Oi6GztLgRMsdDU50Oj8/cXlxgQYnjOtIT315lhorofPTlFBbLoOKBdcrrkdUtyG6wMPLIbHCeHg1JBZDDy+GxLrtYTuTMDE8bGYS1pCHrUzCcPOwkUnYmB62MQlz2MMmJmG5e9jCJJyMAM8owh8K8IwiXLcAzyjCywzwjCIc4gDPKMJ1D/CMIjYZAjyjiO2QAM8oYuMmwDOK2WKCZxSxGRbhGUVs20V4RhEbjNG+WvKnrVHBHO//FCZU/6cALNPRocCBBPYgcPAk8Gl2rflqRWWMwAhspDexPDBuCW5sWd0EVMmzjBnsW9+RfduDwI4ETt1L4OvPVzd3dfhURx+GtCD8dHv1ewE+2tcX0lsFr+3z1e3Pu483V5/uh1evuJ3AUCRwYtqF/mK+yG37Ig9LbALn7cIQGeaDAvY6b0iBi+jEq8w7GTWx1hLS4+BsZhVl6tEuqOhJSd5zhzWWXYcyfy5ngZMZ/mAOQeVP5hBU/mgOQeXP5hDUiK/BPY6aaJPBvlU+EjC8XroDsHm78EjAPb68G7EfjHj219GHKUD39oY+TEFQLX2YgqA6+jAFQfX0YQqCGujDFAQVt0ctMVr4MZ0lRgs/prPEaOHHdBYfrTFgBYQ1mYDFZ5eJBKyFNYxxImwUYd02e/yNWmTMcdN59ERs7iH38mVBBN1wiCf3lGiYmA4+xrNEo1OzRstik5fxP1TPq7A+6RvBi8Jpuq2HbciMOotWWR5PeTidiGnp4SQmq3GN0OX+QCdlJPojMOqlrl0Co10MbJQaZv7jkS2MXscjW5hFCI9sYVZMPLKFWN0NHtlCWCIGj2whrCZjHXuYCaF69jQTQg3scSaEGtnzTAg1sQeaEGpmTzQhVNjXq7h6cjgiuJ8STN3lFdXWWcTK2u5PTxgWzrInRlAvOPbICEL17JkRhBrYQyMINbKnRhBqYo+NutfSJeNm+jiqA8W2p8+jQGTfschYX5zFpHx4/vnn/eNg7ey/PC1uW03Ij/u/PQ9P/vTzze3T/vHLmGExvWrKXDilNHwVX3w+Fe8frz7t19/c5sWn2frh5tNuMMqunx5vrncP97f7+ilcJ2OdWZ/3H+4rntW8m941aHug2j4fDlTaHuEB8KHt0Cf+zW1ejE58l7hJBB88enLah44+0kSRDYhsHdUXZ9EziIjONrcsogE93jeJ/XpPbwHMkcgdBH+ap9CJrQgtetMBP7tIYnvlQcM3Vr2EKoMS+6o4aM/45l1NdMu2Ae6bR+78v/7Wjnor7GJ2cPdF3MHEMWHzF5edyM9PfA5FbnZmvNXw5Ew4JmgEW3YBOAvDART1op5GA2/IpSSBi5/zHCy48jnWRkejaRznriSHmkttraWzWJpl16CxeZgoI3fRxj2Lo6nb5+3M87MAG6Dli55Fyuigt/WOUk+/t82ow6E57KzMhoz5wWZltmwoEdpex8YSIXspTHxOxlEDG0sEoUY2lghCTWwsEYSa2Vgi5Mwsow7lcWPVQkJ7FpoDRvxAh0xMbA4uXExsDi5cTGwOLlxMbA4uXERsjsNVARObQ4xWYiN+INTMRvxAqD0b8WORDPqOjfiBUA0eQpNQBWM7i4aFGLGpVgR1/KaKx9G92BEwqNwPAQX1sDq0XaT74YAuwoEe4MG5MpCdYTs0D1eWALk74VNGWVblluK8L8S8wmlfCBWAs77g2sripC+4YrU45wu+Blic8sURAxXJiAAINJEBARBoJuMBINCeDAdAQG1HRgMgk9+CjlboGJvVWkuGAkA6BY+JwZ0Bi4fE4H6LxSNicBfL4gExkZCqREYBQKCZTavwmFj1bCKmB05SrOvYREyPUBMZNhETQrVsIibWtQ49tjvusIK4aFKuyVVc4gDGusDbs8bi3R+5Q0IZWlTFryNnVg6suJnzOnxmBdzVwCsTiDrgq4N3IiEXdZDHdYs3tLTIIyr3y1m8DCIthBx6R56HgP0BzlaXOdhApsZivRvJ1FioYxOZGgv2QCYzY6G29uyeK8RQ17F7rhCqYclVIVTLsqtCqI6lV4VQPcuvCqEGll8VQqWpKSDUxPKrQqiZ5VeFUHuWXxVBxelfDvyqEKph+VUhVMseEECojj0ggFA9xANqE44YNvCAEt0Ap/gZos0bUvwY+LwBPkjwMncpen5mDswmQZO8ZVMH701n+COSIUP9ImLpJEuG+kG8ro4M9YNA4Q1/URGJ2z4psJgiSuQi86CvTVxkHoSZucg8CLPnYtwg4l54+oizR97hy4ZWMbKGqcDztLeETs8OPZwhetnzHUIolhyQdVNeNitdHMn9dKgXErmfDoFmkjAUAu1JwlCIxbojCUMhUEMShkKgliQMhUAd6edDoJ4kDIVAA0kYCoFGkjAUAk0kYSgEmknCUAi0Jw99IOb2jjz0gUDNhq3nqSPyumnpOp7xYSY1SetGluvQ/f/Dvld6bXzLjebXr0ObRbjAUQXm141kmA/dhpgQeTxlxvYukcExppM7JW/KdOlf900vgoNeWRXVBLG4QcfFx7yFFVENFxlkOmBmrDGtfKjOOyPGBrkN5CoHQPOyvVmE97ALakVUuRfgLfwjqAgTN+qD140Uz4qcSfRYHYcK6AM4FfUQ1fXmcCAx+sf06CbR4XWvXiZW/uhIt39AFXEM5/vWYNCgRvkTRTVg2Z0NE+W20TMpyDiB7KpKcyI5BQMg03bDnuGsPOUl2rIZpCbLOD3ZaTKMVKRn7Qzy8HnrvecM+bFWXsIdyelspvUQVyU43clyO/1WabGQ/naB7U95iT0L0wCSurpFKHKPrwaTN8qhRdZ817P9JmtjmLHkGA7oXq9wYvs8uVjUmmfZz5Q1qWdnQwXGbzXkLKJcPD0ZZBWIx0ksw6SNppuVFwq/ufSbk5UTzOhxcGHdm+y+zOjUwFpSlXYHcnLUYMA15NXXE9/rNpZeqzXYs/0nq9ZAmlc1mMg2R1ZSgVwwajCsHeVkJRVIO6oCE2lhl7VIZIW9AmOhA/9Z/noZAyoeugzBeggeMoMi6Wx7xEZ4E3JQPV8/RLY5aIfoLOpgmXLgGJAcGuSeuwgn2+8av5iIupteK4twIvJ6JxzEaDgLQIAtXy8v0GyhGV92W0UgB4d/LrYHz9RY7PdAjl+Ql68UyaCMGk4C+C66A4JafNn4glqre24wKjC5YwdDXrzxYi7LMJZtjrx4Z0fO7eAADZ49aeAGD3lnOfA6Y2iwCAUTFHYv26iU6pzo1aDRizNndY9vFYF6Tkm+lhjZksBDBxblmSCLmHFkKxKPD1iGcWxz5KWgJ1eUGgy7okRZGfaRtCaDbJX2iTMfB5h1w4I43F/8RtZ6iqKm9h3rj9RwSH+kBkMKdg2GFezoZRx2pYjQSuE7dkuq1r7InSrHitb0KM/CriM/NJNiUfnOnlsdqt9pSD1e2vPXy4v/Gj6zLGN/KQzK5rJwEZu/Xo53dryz810Y78LpLtj5LpS/G+7MfGfHOzvfnT1ZnrksO+9mvrPjnZ3vwng3Pjm4bgNmmtsy3h3/briz42/2eHdEGe7C+Fs4u0tnd8c3pLHVw29mvrPjnZ3vTn83vveyeE1mvrPjnZ3vwngXTnd5evv4F+Odme/seGfnu8OTwxjcPO1/LZbV7fP+4fHmrpgkt1cf9rfD//35h+vH+y9fhv/5bTA9phD2aHvf98H3Nkdf7P3ZABmX9xNIMVPurh52T/e7T483H4/hJ90c2FD+8urDl/vb56f9rjz5cHP36eLHp8fn/Ulkdo/726unm9/2r2Hm4ijl7dcHQ2iW3eGJp98fiiD+dvP49DxK80EyP1897HfDpzzdXA//f2q7KbI4ivTNfgJ7ze7TZFGwTZYE12RBaLEchCaLQWyislMLfZh5JSYUaWN7RbQhDW0/yDCs+SCjsNaDjEIbD1lmXGd7RoYhd+UrKJHsGRklkT2TZIJPdku+AkPuyMsolrQIKiis5k2y5mVVbwWG1L0VFFL5VlBY7ZtEbWVZ9VuBIfVvBYVUwBUUVgMn2YtnNXAFhtTAFRRSA1dQWA2cKkftbM/IMBu29SpIZARBBSWRfSyjZLKPc2UjguxjGcZ3XM9UUMjd6woKu3mdZdOVjZ6swHiyZ2SUQPaMjBLZnpHd+cT2jAxD7i1UUMgDGBklsOcvWVR8gY2DrMCQlS4qKI7sGRnFsz0jqqvA7phVYEgNXEEhNXAFhdXAvaiuAquBZZhIauAKCqmBKyisBu5FdRVZDVyBITVwBYXUwBUUVgP38l5GIve1e2i7N7KOXaV1bK5UZbc3sVG42Fcm0lKWPzKRYYbVjyS1dKU1rJbuRWWfWC1dgSG1dAWF1NIVFFpLi8o+0VpahMmslpZRWC0to7BauuymSzh0mlEFx/N+Wg2KzTSqwJC7bjWYRHe0uHhkOqWogsOmFMkwbExFDcbQvSPvh1u6d2Qcx/aODOPZ3pFhAt07ohrsI907Mk5ie0eGyWzvyDA93TvyxjgdRlEFYtNBaziW7aAKDrsVZ+TsetOxm3FVIFY313BY5VzDobWznM9uOlo914BY/VzBYYMlqji0hpaTnI2hVXQNiNXRNRxWSddwaC1tKseotJquAbF6uobDKuoaDq2p5URmw+ft14BYTV3DYTV1DYfW1HJysrG0pq4BsZq6hsNq6hoOranlJGTD5+bXgPoNLksFy3Vsb1dwDNvbFRzaPZSzlY2j/cMakGd7qIIT2B6q4ES6hyoBK4nuoQpQZnuogtOzPSTj+I7uoUosjiE3PAcgZC/Q0Kn01RY6crMSbqHndlMnXBGJ1ueVT43c1udCixIrZ5UWsZt8Rs7FNp7d5qsBBVab13BYbV7DobW5nB5uAq3Na0CsNq/hsNq8hkNrczlj3QRam9eAWG1ew2G1eQUn0tpcTqI30dA9VAGybA9VcBzbQxUcT/dQJdwz0D1UAYpsD1VwWE1dw6E1tZcVWmSFuoKTaKH2sv4gKO8PTHAICYJJlqQ7Q1gQDHvsWP1qWuK9rFwSq8ZrOLQa9/JcTiyfg2nCq2AST+jQ6s30lJJ7LvNTSlYW2ZDp4wbhhjBnB5+41y6TMZhMcjpUcdidyFqX0TuRoRLjz9I6VIFwXgfTgNjBZJLYodpudjZUcHp6NsikDKZnXYEaDu0KyNnwpmfZHQxC72BenJyCCrAJiYF5cdgKsTa0evEGnkYjU08YPOu9MiiyGUKf2NaEhj4IkMkPbMeebtVw6NMtmf7A0ke2NRz6ICBWMqN43t5eBmJJrxEmBUsf4NY+kz4WqKTNdpndZIwW2cKzHb2rVGmhYSMi0RYaQ24yjrgiEuuS1z7VkZuM9RaxplVp0TlpgCtZ9IOBNqa4lxz64dpO16Fcl0T48vNlOQ8y040db+x0E8abMSO/PHFZLFAz39nxzs53YbwbnyzPXJaVwcx3dryz810Y79Yy6//zkISOpNabf5TU+s/3jzd/v797+kbJ9XMt+h1SloUsRY9gOrISPYIJT4FkYUzY00gexoSXhISPUULoLXOA8Xi+3h7vADB0vj/Us94F6BCp49uMd7AxPDo+HQwYaN/3XJeA68ug585xl4kC4Gp6HT51TdgAj89iE9F+8Gv9kDY0FJ8ZJm+AJ4S4R9SEMbKekIsAwh7KGLODLjkGRyUWMouj4nMXj2kaw19QVI+j4hMBj3YaA1FQ1IijEqOVcFRitGAX33hitHocFR8tPFrKeHy08Ngp4/HRwiOpjCfMRHxuBXy08BgrE4jRwudWIEYLn1uBGC18bgVitPC5FYnRwudWxEcLj9oyER8tnNzBEA4YHr9lCBcMDeaKR5vzTeapaBGgsVxnRqcATBSr8GChSOMC+SUwR+sY5DUCI7CJVmoeGM4MN7aENwmoUcc8McuzBZzqjt1RQEANu6WAgFp2TwEBdeymAgLq2V0FBDQw2woIYNy8r4Cgp807AAh63rwDgKD32x1sAD522x1sBN5sd4sReLvdLUbgHeUWW0DH40FyR7cYaWig3WIENdJuMYKaaLcYQc20W4yg9rRbDKDiUXdHtxhBNbRbjKBa3NQxOKrDbZJenlxeRQRy9AiQxgbaI0BQI+0RIKiJ9ggQ1Mx6BB1kR6eexH0D65dpRoB4ktnq6VaoRgCkw7LbrfCNgM7P228lXJ/Mb/B3Kl+L4y85rG1r/CWo24aJ21lU33JQ6xhSeo6si3DC69KcXtzkvZkak9lV7VZYU+pxjAevVB/H2FNT+OC3dqsMK8udH3zLUX8RaQi+uMl7HemZAwsAweeSYcxA+uUIZiTdcgQzkV45gplJpxzB7AmfHMA7p4UhfXII3Wz1ySF0u9Unh9DdZp8cgvebfXIIPmz2ySH4uNknh+AT45MjLjnBXXOwW6CG9qxPjqCajvXJIVTD+uQQqmV9cgjVsT45hOpZnxxCDaxPDqFG1ie36xv656Q5oE8OTS6TWZ8c6oKe9ckRVCJmBbedCK4dg1tP58w7mO/sEd/5nIgHdBy9xk895+sBnT0H+Xrn/D3gGZ0HdpgIOp+DN+SRXk/sGR2EmklPAApI7ElXAAHFA1pmXwACNaQzAIFa0huAQB3pDkCgnvAHIMCw1R+A0ONWfwBCT1v9AQg9b/YHIPh+sz+AwPtusz8AwZvN/gAEbxl/AIlcNXjxk4M/ADXUs/4AhBpYfwBCjaw/AKEm1h+AUDPrD0CoPesPQNHsHesPQKiGDV2FUC0bugqhOjZ0FUL1bOgqhBrY0FUIlbYgIdTEhq5CqJkNXYVQezZ0FUrl6NjQVQjVsKGrEKplnWII1bFOMYTqWacYQg2sUwyhRtabTII3eZ7+mruS/jpVhh6ubbm203Uo12P6qzmlyJafDymy5eezFNnhOk/Xpdh1303Pl+LWw7WdrkO5Xstr/bdTBiiS2Wr/UTJbr+8f74Zh/CYlo4l0UYIh5Bvkte6Y+G8c1LfPbN0RUfUEL1W3Ibd1DZTIVcAp2oi0CpwCgcgAIapXE9kqBN89kVlDkN8TWUBEsWsiY4mofU1kVxEs+X5TAusqKjFa+MwiMuyIytluU+rqKiqRuYjPLSbLEp9bTEYoweK8KXt1YV9lZ/otmauTcfb8IMcR7foteavHzaU1uh8ZPS7nry4zzrCpUPh+/66SkyPDZlp3eyqHdZXpLMEJRA5l83Ge61sn7Dd+vrr9effx5urT/fCOZSY/qO2Wtjtty5zWHRG7S9QRJ+KMXaBNT9syp3VHxG87YrL1OCrMl3WMJX3DRmXcclrr6nQzeGw8UY2ASA/whl7Tbcu81h2RdkHUNCdSRPBt/R2RzuIDvaYjqESBJWK0CMp3YrSIMjXEaBFkdN03yFvdmW+RuLozcUvm6pp6MU5Ejcupq8va0ByUoXmrDIm4kQDbkrNsvKL5DMtJraIt+aFGRgp1EG9KYkkNIbHAUBJNwIm4m0avn50NLOdo7NpG60cq42C3lHFwdmRQz5XYNcuViHCewa5pdsmL0wbwvW2Giko12i2ltZydQiBQ80LTrRS3X56H1WkoWoNn2bKQE5OPUrWikIhaFHj+RexZF6ZpuuwOj8pMhnVguGRZ0H9pmiu7k+Ny43Km7Ir3kmdxtciqkQLruyAxxERVCzyKOiXWc+ESZUHHBQHtWb/FUkmyoNuCgBrWa0FALeu0IKCO9VkQUM+6LAhoYD0WBDTiTkBCdUpGLVFzpK1+rVPCchbrijW+83BTe9rUP2AvZ6suf/jRZIVi8XvDbhIjEexEAQw8gJ0phpFgUHSNMrlFKsJZPipkaRkrfUhUZaXu8LicPrG2RmyZl7rDo52IohdEYFbXsQf1kctKBU/qI5eNCp7URy4LFZzJkUs+BU/qI5dzCp7URy7VFDypj1yGKXhSD6Fm9qQ+Nk0y3REBxURkCRH8/LrMRuVE2SYckc/yPmzARi7TdGWT0RBt9vyJtZy8EFcyTtespYyDRhT0ILkrCaao0bUzE2BGGpnpjp1kV65JZ3rS7DRyBTTb8V99qPf8dSWdFKtHZL6u5I9y3WWgwp0WnjuHKo4vUdNKsihWXkeuwmUD2Da5aWYlLxQtN/V1JRMUrCD0dSX1E9YysxjL08HSVZzkEo2OLQ1egTH09x0/b71GJhHfMfvx8tzHIzqWYfzWwbTQXHVsvWUraya3oZBfDYqcBjWYvFFMLFJG2LFzwsr6yJNzogbDFha3su7wZBGzGozjpXbev0PmKBF3MTdT1iR4pMUyTNy4nFpZ33o+YXnuPScrEc/W93NvDqgyQ+zg2clRaXdgq/4J7V5JmoSK/o2wujzJ5e8kS/7Nn4kPSOBZpRYFKrCrhpN1NJ4PuQyT2ObIWhRPeVyGocVf1qKRXBtqMOza4GQ1F1lhr8BgweWz/PVfV/ISFzCWIQJptHvInoqR89A8YmzERBeG9qFFeeazQIHliJzGr2VLJVdqwp9FD2A2s0esj2R4U9fLKz3OsO0XYRxX6LXWXZ7s9krh90Rs+C7iRCCYqjsgqKUOjwpYbjVZL7wGw86BStH7TFYLr8GwxcIrVdCzJafk6yLtooLMjlaQberXvzj2X3xx4/cGXgcNPSlCRU4HvR4QeR3MiRS7irhkVuxkGyj3ZHNkmL5jmyNr2t6QzanAWLI5ciF5QxzhT1ZLkG2qs1N7yPgZYNaXW5wrevkbI9tXsiLsWV+jhkP6GjUYUrArRec7VrCjl3EMudMQPeKx247dla21z5E7Cmj7PLejMMKKQOSWVO07I7ejUG8PqcdLe845VGLhUIkTP0osHCpx4keJhUMlTvwo03WYrn15PkzP+/J8mJ73Z88MP1+WHWcz3djxxk43Ybwpj41PXBZz3cx3dryz810Y78LpLk/w41+Md2a+s+Odne8OTy4TtfzrRGiCkLS4/w8kLejOaE+UmQaP8voNTC1LfIJEE/FDy9yepIXgEYAXR4LxANYcBDcDvGi6b0DQwvBdwOspQ80BW40Miwi8sjKEJ/CGxDfhZmFoZODZxDDewNOJIeeB5xPDIwRPqPAtaFkIbiaclYVgkcJJWQi+K5yThWDmsmxlH5KVBay5y9GygDV3EdC4jdjD40wnYAYDWy/awiWYmXLReEgOQfbi4O1yoli0Az3C1JFUL7ZRxraMjpZCqKe0G+KA1qEp7XJGu1tmaVkrK+CIfiEqV24haVkDzVs4WtZMb4KmB552DC8FfszrvwE5i/0W3CwMMYlj/ZmmzCwM3UtgPZqmvCzuW9CyMHw/+EpmtpCyLG9ULTApmWValrW1jCgyHGh7kWNlAe1FBJS2FxFQ2l5EQGl7EQGNVEKfyJzgFYwrdaIHs0y4ApzmLTFRvAg9WjyPbMzL0dHvbfJaKhRjkQ3EArEG7XhbHNPuRcIZD0boNKbMCeh4N2UIQolWUsfwHcXEuigYPVPMfPqPmMZul+lWwOx1gGwDjLetJ/G7ZbqVNU8k4U21pHnPsa1g1j2C6Unj3lJMK5htj2BG0rRvSrOC04zg0VU4HwoeaoUTt+BhVzjDDB6D5bYwrGBGPcKwgYazU/xC2ZMWPaJGcIYVnLQpR9KeRzBT+8LueGwVzteFx1kRhd07ypaXuTlWSFaWl7s2HCOW3AiGGF0cuQ/ckHuFZLQJ5OYy0lI6N33VrOoTCpnhooI9n4lIlCzse3DvmCAq6DaUhcxbiFYWwixkLohKFXdLrrZtOVYIeg2cYoVhAglkYEBbgpVvwq/CUMFkMjCgLbsKQbCDh4UQXEB4WAhBW4SHhRAMS3hYCEEGhYeFEEX6DGsXQqCsYQiBpq2p1kiuk+G3MGTaFllvG3ITw3RAm9dYV+o9YpBkPJyDZWdFVLuFkuVDlZLFIujfl5Fl9z0pWcC2xTVKFoxwJyCj8U7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8k7Q8s9B0LJSueib8bOA9APvBC3vBC3vBC3vBC3fj6BFzVfivxfXS/hOXC/vBC3vBC3vBC3vBC3vBC0MkYr/Rkwv/2QELYNLbS7jxJEyXh+IVYYbW36wh+sDycpwE8oP4XjtTtcH8pWCWH4w07Ut13a6Pv4BT9DiXhC0uBcELe4FQYtrSdDi/+8QtLw2t8+5WC6FB99aW6e/sDh7izItxYLu8eaklMvj9fCq49NnTyx+yd+er26H5g6/3t0//jpOw+v7Xx+uHq8GO2/4338Z/+O5DL2JL99VMQgZRHuG6GodRQD6MzwvOWgU1iAinx7vnx/KjBn+6IcPt/fXvwwP/Pp8+3TzcHszDu/LL1js/1k3EW1IwYt9/lJvEoDZiD1+vlHFjF+W+7ugXX++urnb1MbJaJ9RqwfknJidDeWff/j3uzJG81Inex7uu+R0+VYpXeEPzehqldCV6MSqJgld+bvkc/VMr6Vc7zXTNTvdpha9w6JfwbLfibfbfVva7vcl9rsusbb5EptjbrvERt9yibUv+ug/BpD9xx+uT11VmQXwRmHfN519AZx9g/J4n3/v8++fdv7FdsdwW9bkClb+Q8+seuBthwY3eJ/tvs/hyAsivT/ubOQsalp5rGTdFhGrYMELz2kFaNMdgV7x2rx3w0xP4omJ3TTTK1hbWFXK7t0y3x64g1V6+H1Jf1/S/6mWdMfT/IwqTq1h3Bain8pcdgTVz7SZr2z7FrKfWts9vU9DKqLKN/B8P40GPm7YIho77/yQq5wXTTUIxpOjbr60l1MxgvEAqZsvw+VUlWA8R+rGy7Emwfg3Y0WC8cGxHsF01DX82k8HXcOv/XTMNfzaj7/25YXTCVdfXjMdb/UFfD7bKhUSzARfGlGu7XQdyvX4zNjsND0ztjZNz4yNTNMzpR3DKmama1uu7XQdyvV0claeOZyblWcOp2blmel0rUBc2qk9BaJc2+k6lOvxGVeemdpTIMq1na5DuR6fGduTp2fG9uTpmbE9eXqmtGc+bywQl/MRY4G4nE8SC8Slm3qwQJRrO12Hcl2eKT9fuum7ys/l2k7XoVyPz7jTu8rPh3eVn6d3DRLzNOjBSSxfS9YxZfKgOvY/39yNLMR/v3r8uLu+v7t+3D/td4/lBHaM8Rb5AjQIvRphzs1UQRg9hNVDOD2E10MEPUTUQ+hl0+iF0+il0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ql0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ml0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ul0+ulM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+ilM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+qlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+mlM+ulM+ulM+ulM+ulM+ulM+ulM+ulMzfY7dRLZ9ZLZ6+Xzl4vnX0D3Xnk1FM2Iqsb0esb0asbMRIBKluhwkgnaj9tM4y+GXYd4nb/82IrFBBzI5y+EU7dCK9vhFc3IugbEdSNiPpGRHUjkr4RSd2IrG9EVjei1zei1zbCdupGaCDSib1P2QijboReY1q1xrR6jWnVGtPqNaZVa0yr15hWrTGtXmNatca0eo1p1RrT6jWmVWtMq9eYVq0xnV5jOrXGdHqN6dQa0+k1plNrTKfXmE6tMZ1eYzq1xnR6jenUGtPpNaZTa0yn15hOrTGdXmM6tcZ0eo3p1BrT6zWmV2tMr9eYXq0xvV5jerXG9HqN6dUa0+s1pldrTK/XmF6tMb1eY3q1xvR6jenVGtPrNaZXa0yv15hev5kZ9Coz6Pcyg15nBv1WZtArTQRirRV6rYlArLVCrzYRiLVW6PUmArHWCr3iRCDWWqHXnEF/DBT0qjPoz4GCXncGve6Met0Z9boz6nVn1OvOqNedUa87o153Rr3ujHrdGfW6M+p1Z9TrzqjXnVGvO6Ned0a97ox63Rn1ujPqdWfU686k151JrzuTXncmve5Met2Z9Loz6XVn0uvOpNedSa87k153Jr3uTHrdmfS6M+l1Z9LrzqTXnUmvO5Nedya97sx63Zn1ujPrdWfW686s151ZrzuzXndmve7Met2Z9boz63Vn1uvOrNedWa87s1535gahm3rdmfW6M+t1Z9brzl6vO3u97uz1urPX685eoTuzGqFXI8yMEioIo4eweginh/B6iKCHiHoIvWwavXAavXRavXRavXRavXRavXRavXRavXRavXRavXRavXRavXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXQ6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXR6vXQGvXQGXDrXKCV0GK4Bhm+AERpgxAYYqQFGboDR6zFi1wCjgZzGBnIaG8hpbCCnsYGcxgZyGhvIaWwgp7GBnKYGcpoayGlqIKepgZymBnKaGshpaiCnqYGcpgZymhrIaW4gp7mBnOYGcpobyGluIKe5gZzmBnKaG8hpbiCnuYGc9g3ktG8gpz0tpytFU8/J9NcLp8b3wqnNCqfqiiG6P7IYom9VDDG0qg8YW5UHTO2qA+ZW5ZH6htWRuj+0OpL5Y6sjmWblgkzDckHGt6qeY0K76jlc9a7l6jlc/a7l6h1Q/a6G1TtM3656h+1aFbOwx2IW8VjLwh5rWcRjKQt7LGUxF1M4FsKwx+oX9ljyotS5CMc6F+FY5yJM9d2HX6eSDwV3KvhQfkvHKhj5WAUjH6tgTIUe0rFGRjrWyEjHGhlj2fnpk8ZC89OXjOXk7amIhjsV0XCnIhpzSfjyYWYu8VE+zcyVPcpnmLmgRykAYcJcbL48E+ZS8+WZ6RsLxLEYhz8rxuHPinGUjrBzDZHSFXYuHVI6w3anYhyHgh3xrGBHPCvYUTrF9KdiHKY/FeMwU8+Un4/v6s/e1R/ehdprP3z5ZZC3p0G6EMMtSXbg7sP9/S9n4G+rBi2aXksWlWyDvah2/cr8urouNuBPp/pK1Y/6+r8mmL5d
Copy blueprint
Made improvements to the grid aligned city block rail book. Added a 4-way intersection, made it rotationally symmetric, and made it align with (0,0) instead of (1,-1). TPM on the 4 way and the 3 way is still around 70-80. Slight downside with this version is that the rail sections use 1 more tile of space. You could probably make some improvements around the signaling for the 3-way and for the corners but I'm pretty sure it won't matter since the trains will be bottlenecked by the 4 way intersections.
0eNrtfU1v5EiS5V8RdNmL1KCbf9dhL4PF3hezh0Wj0FBmRmUJpU5pJGX11g7qv2+QwZBYkjP0nhld1T0QuoEKpshHp7v5l7nZe/95/unm++7u/vrb498+3d7+cv7Dfz7/y8P5D39dXI5/+7J7+Hx/ffd4ffvt/Ifz/3P7/ezz1bezn64fz/5+e787+/7ty+7+6/3t/r9nn3Y3jw9n/7h+/Pns8efrh7Nfd/cP+8f+cvbv91dfdrc//XS2/8fHn68ez/ZPP179sns4+363/4fd2efb+2/7m89ufzpcXj/+dvbp5vbzL385vzh/+HZ1d/l4e/n1/vrLWKL/e/6DG4aL89+m//5+cX716eH25vvj7nK88+7629fzHx7vv+8uzu9uH67Hgl/e726uHq9/3b2AiQeUOIJcf779dvj8h+uv365uxlsef7vb7T/61+v7x+/7f7k4/3b19/EfHn6+uttdfr6/fXg4Hx/d18FYqN9/vDjffXvcv3J3QJoufvvbt+9//7S739/wBPDp+uvl7mb3+fH++vPl3e3N7vy5sH8s26X//feLV0jyXJTH+6vrrz8/Xu7/c/MaJfhDPbVAPAyS10HCE8j97afbu9v7x9VPGWv5fvcf33cPj3/76frmcd/g4w0P+2q4Ptb9c1W2XhbREscTn52eS7x/9nJu7dcQ8S/xAPKX2ILJcFlO1F4h27FpDBX7oHD8IN/+IDeQ9tAsjNMYeRtJyNZuo3iwucOidi7Ov1zfH8xy30Yt1EC2frtskWz+drslsixtlEyWJTdRClmWNkoly1KbY+RAdvTS7hfiyG9ql4YespsDhoDmHI7m7AbEnoW155XSsQbt2rPbiyH6/urvd+uzkgCflxHA46SBALJ2vvKhrKG7poV61tJdbJu6Z019pTy0rTeHAe/Z0rRhAluaZgf2kZxmxU09b7z5bzdXv40Y5/vp8Nerx92X89YLnq3+eNslNhFLe3mXaby5B6zgFdLK5gpYdCXXgn3uA5+/3/+6L+SEfrXayjK8AB1ay9IBRZ0bXYBeH5y6hZrdP4i6hdp4Xl2+Zj8OQV2+Nt5zF/r56uanyy/XV19v9za0hhWPWH9oGWkhJwo5zMjN8SI0+s1bNjTXYkIss6gbqV3cShf32EjpbZOPg9oEmqWNmu2BlCaUgAOyP67sX49HxPAcG52LsDXv3rbiGLSW55ExMUatpbyEb1pKgsfxNmizRrKu0uNTpbdA0YksrRpOZgzn5f78+13bTTIOt+Pb/NuTZsKnt9lApOkKcWBNuGNNSHvhmOi9enMCSx6sqtHYGlWVW5hvdKpP686WCHSqFG3DAjC5pcQ6Ztpt9GIT9Pnnq+tv66NmPTZ5fGn8gTD+VFjDaJe92saBtgdvoC0j5martcbD7KjqlmN1Z8sklYUca/LbY0327FgDrCtyYG26uZzI0Vi2Zp/OiZ+HS7s+W/05Z3amhApN97R2jVZj4VqtXQZ+5SHNCk0tdHQWy6t9jJnPi5CTVH57kiqKndvsOi9vTyBFPwVWwPJK3Ay+WXrwwOZ5xqqvmrcFS02HcVgFb42Zpainlgp0p7oVeqs7VX7Ll9q22ETnfSj+MLYGYL9Q4fnPHTCBXVltz3+fVtd0L0GbnaYGcuYKyBavRmrRUf5yLPFfgHVoTXBF1GZFtGy5ZhQ0OqJ2C9W53Wo9NE2YnSIDsH2eIhrAiohw7brBoZNVu8lSE5T3WyZp1kQbHvb7zxbxYhcYmqDwgtMToHhAAgEKb/cyAQof71YCFF5yOqal4EMxRzQVHt3giLZy8IGZIxprEfnwxgAjQxO12a3QSAj/NBq+CoXwxDLZOX7V6ZmqB8/j/HHVP26xLZ+T+M8h+pLLW8FLE76QcQOvG7850TpXqRXHemPUZgjQQM3jsoruYhPe0ZWenkayJqAYAP9Y4KaVvAz/OF0fab0+ImP6wvfkFJmvArtyKqvGyX0PfFSRS/szmn1M4Dm2ENMhHmpSiOkQjzwpxJjs4Um2ENMhHpVSiAEXD1KpRGvhMSuVaC08hKUyrQWvXivTWvDytTKtlbEh4mntEl7NAM0+iwa1HM+Qw+vTkCYsGJNbyOIGMNLLRRYY9KHKiQr2TWChIjPkWM3AgjYoT+S9a76j2ZCLEJjT+2c/d+fwYonZBFWeGfpIFDyhBc9EwWFnTWDquMCusNREXTFpPLiy4oWNeJR8aVZss6wRD7wkKjbip/LSLGuz20X4PDAGvDPHQAZlNAagdiVE2K/WNoMVWLR/pfbA0NyPaMNdEjFqvop+WS14JgquPJ9PFS/4IuYFgc4e7yhoHEwu68sAZgOSwNC1UslpPIE+npq49UwKpEs2I6CRdMlCoFDugBMCkY+jFqYW+HhQYeqj8vARh8/8yb4kAp4/LZRMwMOOVj80UdtzQ/Z0pazgt+HxowzCUDLeGxn7gF0tvm0Wzakgw54Wz1hDMZa1jQqfFgbCBsqgii4Lr6PLXBPewYWegROwyi14XlAiUL0qkCMkbEoteGpcaBa6acEFDlyLTxXcxEnUx+d1O2hu+AocqpaYAbLAPs1EjGAF7mkpEIWt8I4vEQNjddbCNq21wjNaKkRh+QktM/ZQ+USjTBhG5RMfMmUhfOZeZkyFX4BmYtqr/AI0VwK+IgvyUnAjl2FgHddAQWVwrOMaQgW3ev5pii7QvCSDYpE51wYQMipDYCYW/7RRrdDEIkNkPYlA5KIM1GwY3GqVt6sEp0g4VkablwBn/QhEg3EH8Wm1wZr57nj4TDz57XjAzBw9HYCYUnFCrYLKaru30T3rQUTCmsWBHs80rPct1wTmp7vjMqu0G43qVimsmxbhJJNFRAyQKnrpj1ROTawC0BQtyKBsNEWyCIoBin6y5IsIGABKykksKiXJH88Q48ARGYigc1794xveOH4S8eSkER0wQ0tQTRrRQecPQnCiHIHbjcft9Pyyapt4mRzR18pVyNHxZaOsVFtVDemNVhmaNDqU/+RpCH5tqLGJDp4npLxa7GalLGJWgMEgy6nBYBGpAmDNC+k1LIQF7sjZt8UAuwhdAQo/RZSfKH3iDjeiR5oqc4cbGGghDjcwxKo93IDgw6A93MDgnfZwA4MX7eFGBAKyRUHXMh9uYKUP2lMIrPSwB9O37bG9Kg6JPIbA6oI9MMBQ2QMDDLUaUZvNFQetuyAifGjRkaccWKFFdcoRBZqloyf34S9rol3moKJZiB5aAcSo8ve/rpHmAjsmcnf+skaaXTqyhwjYSBHZQwSo98Wq3Ty/rIv2whNnbpn9/hEJoZfkyEMKqDKSWAvbbLkEd7xEjMYJzqjNxBCUovboA6yLpD36wCola48+wOIX7dEHVvyqPfqA4POgPfrA4B1x9IHVdxby6AMrqCePPjDUwMXWRyzITTKYLuSedu1QkJvkRMbAtwrM+MkWYSxQbPzcotC3FFNsfET84rmawtihd5SBdflBqI6kDnxtQW1cIcNmYkC4hj0ZNhMDUtZARt1HyN1ZIhl1D5lzSWR8PIaaySCclxXbXuKVQgbIY4WtZBxSBBIPpA6s9xYaolssL0QgO1QhVUwx59g7PBdzToxsNZAx56/HoOautoKzYwnc7FjB2bE6EjeTIevoMqGCqX21kAWupLsYCBPxeEiLJ0AdR0+CgQpHT4KBeo6eBAMNJD0JhhpJehIMNZH0JBhqJulJMFSc9oVpLdjtKYKjuoEkPYmvw4IZmhDvHJcwGtPbY7p3oqVSiUA4vXdUBPUToUrMxqoKXIoqVlVRy6OCVVXaCr404bOKTeV1S+QmeiFzV2NCqqSqOFoa1tOUEhnIHNYI5Ax4caSWxethoY2r5n+JSOSrF78Z/tDER2PSTrQiw1fsX1G/vJFG+7J1fRM0aflqwFbIXAotVuhCkuA0Ziqu6uEJtwztymnOuAQHDLE+IjhgiPURzgFTiPURzgFTiPURwQFDrGYJDhimtRLJV4OhZtb3DaEW1vcNoVaOiDYC4e0+DCQTbWwrWQWnYomNBYp49EFIntiXH98cdIMniWLXPj6oqGEbH9+cQUMkaVyxj08cjSsGmrVUzGlArLVoacGTg8ysGvCbAm+sqEoa2jhOFQGSBoQS0aOyR0+Jrq9xm2SInuB18U0raBpZDFqu8gQEb/sYt4Jvlz5pmY6xysla2v8EhCJ5VOjoKXAqNXgzmSUlK3WUAP0en1hd4tTk5vTJaVU9EhKC42kNpLVyeq1YRgJO5X0KnHxFAuSofNKFpb22t0oJZiatUkEC4tZ8yuoJpi2LmopJK2oNtbLTVmjLhdL9rF2e7PjyvN0YWVQsD8kWouEzPSmuVG5gB4eVyo18eYDKTSZ5rYS4xnJWz9QQfCGnHkCVx+fKdom2AnEBTyGetlopI1m5vjhyLAfkvnxhdTVTsa0aik1ZM7X3eXh8y7GnFKTGo62nIPsyVPDoiQrxdQNQ02hRC97m9gYID4B5xgG21kWtdJuRxbhC9+hY/PZCrmq0brO0sdRS0WuF8xot5jWwoJFfzsi4ruBuObZKeyauapn13J6Sa1abJTI3K+hZjvAr5a3qCmgLUA9qjeg1QEeKVeSCuE6CQrfo+OW1XVCv/vIVQJQFd/3LGY6FMODLybkiSrvcMM3fvEMqwIgc8PCVuXTFtUuHn3vPpfNtnMqWp42Dk6kcyxPbOGw/KQFZVgYn7HeulM+z39keD1xgy7OCE9nytHupgzhm56GjtHvMy0iPNsY8WqxhFDKKYeQTbiPRlt2uGWEtu7Z7rLCWXR1k2cJa9lr5WMuu7ZFAWMtew2Etu7btQBJbnhWczJan3WPRoIhwtPAxSriNxG7lV0rkB8Wifg3LkU6hNRwhVw01Qb0FD2SIp+sssNbQHl18ZEeFgn1nYm1jpXyZbc8VnMLW+wpOBWhZZhN1g52WJQRN53DDfkz78eL8H/tWGt/yV3ex/9/+/z9e7H/K+FOmn3H8Gcef4x1xvmO8Jc63jPfEwz3jfy5G9qzni303GS9GYrH9/fspz81XMl3JfBWnq8OddbxzD+LmK5muZL56fsH034txxz9d7d+0f27ffdx8JdOVzFdxuopPV8/P+em5OD/np+fi/JyfnovTneMT7mIcjNx8JdOVzFdxuhrvnO65GFvGzVcyXcl8Faer+OO+Aa4fd38fW+7m++7u/vrbaCs3V592N/t/C2f/uPptf/3r3igOsbdJaqg1RonJy3iUOpvG5Ll5hti39Jfdw+f767tDw5//+8/XD2czzNmX293Dt//2ePZ49cvu7Pvd2ePPu7PPt/ff9n8+u/3pcLk3sLNPN7eff/nL/v0P367uLh9vL7/eX395QSt0MOCrTw+3N98fd5fjnXfX376e//B4/333bHuX97ubq8frX3cvYOKCnOj689He5xFmf8vjb3ejWf96ff/4fRpzjh3056u73eXn+9uHh/PnWnCjQU+943p3QHpJi6roKJfNuV/IsbUd+0AOgO1VET7a2MeaSA61zRIncv3s2osLdpvaLAu7R20aQyWXS779QY49CmyrYWqMfEVXk2ztNoonl0keWT3Qm9N22dgFfLvd2OV7G4VdvOc2NT1ZljZKZZeObcpddqO8Qpro2IVZmzKRHbLbzIueXA27AaL6Ze15pXSsQbv27Ma4WhzCVMX4XSBA1s5XPpQ1dNf27rOWPipFNoFYU18pD23r7RN0die6AsNuRF37bDmS06w4jkHXq8+opL28y9pzihU81vEoDkr2quRphCDnxmEgzyZEEB+5uoVWPHjqFmrjeXX52v6zoC5fGy9qjp8FODFehMoTZ9HS9lypIyMkIZZZ1I3ULq46QOJlcVsmH9XHvO3SRs32QJonIZENWfKvxyNieI62gCUPRJ7HoLU8j4yJMWot5SV801ISGXrlgdNgrTZqfKr0FmghQ61eG05mDIeMj/dA7HVis1Z8M8IIlUB9SogaBWuaQPRevTmBvVIyfSO00QOpBCloA7o9kvuVom1YACa3xJ5U+HYbZVWGkjep3qbCGka77NU2DrQ9eIM2ONkDW+rsVDTGPlsmqZcB82+ONUBsMB4NfzQ/ZBmEx8YfUZvrCTw0fqVwzaZL2qQhj1AJZJRJ4OgdBXKPc9HmD3mAAQWXMz32YqCWy8AODU0LwFVLV8rWNE80Hv4pq+l1v2XWCIWd+IBEhhK0eYYekB4rUT2tIkJZJW0G32xekH/ueRasCNlOKap8pdfgrXG4VPV0BfAM1GEr9FZfr06btOcBKThFnPyc0x6APUj1JAFDcIAF1kBOXAHZ4tVIsjC8LGuz8ZKKOSI4hD2pZhUzw2vwpmEUkj4Cazp2NgzA9tkNA8khgTSdG5w2lz0AdA8O54Wc6xdIVnY4L6QnQANHi4mBRo4WEwNNHC0mBppJWkwMtZC0mBhqJWkxIVQ8vMERjeXg1acMTdRmt3JCEliGV1ELDCmjc15LNYlVEqoJ8KRUL7bPUdNBvvycpty6ng4Sq61MHvG/bvzmtOVcUfFMvm6M2kTXMUIGgYhqnAxaEsSAEHk4cQb8JiDFXZDW64NJq3YarsjIVFMgCQtfGyf3PbB/J5f2ZzS7MJ7yUIjpEE+AKMR0iMeaFGJMxkNPCjEdEjyQxIiIh6VUorXwKJVKtBYetFKJ1iJ4IJnWiiQLIoYKBtg+rV0wan/nM6csFCBmf4eGtRS2uGBYroskcBhIxaIGsG8CO06Z6FjNwII2iEmZKCANGTxHwh7C2wS9rhUCQ8gdYQWPHCU6VvBEaihhRc2kflDATJrlKA8AiYILlVQlgqogDqQqEYbqSMbzAMg9uSikKBHUmaMn4ycaA1C7EgKpSxQwWJJu/GXVNvcjMZnEjrCKJinHsYIXk4ISVvDKKSh5vKOkgVRQCqb4BYeGyJRKTuNJSAkkcD2D66zOw1NGQAPpkoVAIyFsjyEmrbA9Bp+1wvYYfNEK22PwVStsD8ErZFVnbUsM3mmF7TF4eKZcQW1PPbjGqicMBY+d8YR94KE0njEL2NPiGWvIxrI2p61cSD17rKxVFQgWGiIrzYy7gZQfDYBWjiuOlB/FUHV8riFhU2rxpLTnvtBNnECqbgZAMskVHV1yww6aG74Cx18nZgQrsE8zESMYThY5a8yHDBkAvONLxMBYB2th27Dw0WEqRGFFK10Pltprpeux4gettDwGz6dAZKpNk1a6Hit+1krXY/CFkK7HeiSum1rxehBcOLVWAhXc6vmnKbpgorQD3yePiyEgElMGTsnxaaNaoYlFBko7J7jVymkXPrJ+SiCYUfAYmjkQHqtonCPhWMVtYgLuID6tNlgzNZ0grDxZSjxgZg5KDkCopqwEzJzw8SHhwuK4lWVZNdJ2oUGPZxrW+5ZrAvMZf8dlVmk3GrXITGHdtAgnmSwiYoCszkt/ZF1qYmWAUWjB22RjFJJFUAxQ9NMlrwyUlFNYL8lL3hjTnxRLB45zQMSRcrwrxUUD1uofC/rGKZaIV8090UEHDiKBnHwiIE8lBAvKsbjtSqXirqNfVm0TL5MTw1q5imqsbTTK0ISv5AwREeU48VSPehrJXxtqbKI7UtK23Y9QUs+UVyu1/fGeGZqynCxjYLDqyXFjSaqyOtgfyf62GO49NVNNoegnSp+5o5bokaYq3FELBlqJoxYIMQzaoxYM3mmPWjB40R61YPBee9QSgfBwUfCyzEctWOmj9qgFKz3sqPRte2zvAEImD0WwuijarXtEaMRCJc8xoBrGNU1XUJtVgYeoeMLY8BCVQNhY9KozlyjQZB8D6V2IgpQ5qvgZoodWADGRu/kIqCVKzKozjdf13Fz9x0IeaWAjRazaTffLOmkvYHHt0kRMWcmRpxBYZeDMLYkYNpO3FrYNC3e8RAxBKWqPTMAqhie8TAxximCUzJhb0R7EYPBVexCD1bkiGiUTJpOd9iAGgxfiIAasEE8exGAFDeRBDIYauUj/iIXcSUYzE542/1DIneRMRuRHm0CtLAJVoEj9uUWhb6mmSP2IuNPLYAqqx97hWNcehMpyDr62oDauJ4N4YkBIigMZrR8hr2mJZGxQDEgVJDJaHzJnPHwlOgK1kAFCEchXkFLJaH2orHj0SmybVnuRW9lzvAgN0VVMYfVYjXhTBDz2Dk4cNRMjW41kBPzrMai5q63g7FgCNztWcHasjsQtZAA9ukyoYOZeLVSBPR61Mg9FGQF1pLsYAhWOLAUD9RxZCgYaOLIUDDSSZCkYaiLJUjDUTJKlYKiFJEvBUHFiF6K1HDzBiRCojqRgia+DlBnSEu+ES1+N6e0x3euJXSIQMO8dFRr2RO8Ss7GqyIRZrKrUrC4vq6o04fNW8O2W0HG7vG6J3ESvZH5uBALiPa4bO+e8RiDHwItT8dA0bLKJLqQIxuthoV1qr6WfeWkezeW6l7AZfrv84KI0nahvhujYvwyOeTPgIr194OAla9lzwFoqXEIvVuhKUvI0Ziqq6j084ZahXTnNGRdneSnE+ghneSnE+ghneSnE+ghneSnE+ohgeSFWs7h8bmVaK5PsORhqYX3fEGplfd8IahhIttnYVqsKjmSCjRWYpoKoqGBjgeIxffAqMtgGfHMSDIGkg12r20hStWJ1m7QsxgmgavUhaxm1U1sO7K3QmJOAiDFUkiE5DW3dtkEVV5EGhPbQR1RCZVjFbRIeeoK7xTetoGlk0WtpvpND4MNW8E2TaCkYYWzGWOUkLWN+AgJ8fESJPY9r5NTgxmQWarFwaiAJkNPxsZLCHanJj+nToBXZSEisiE+OU9lIwMm0T6KV2cDgPSmJsVa3QRWW9dreKqVfGTkRiwQIXXkFpUtq98lml0/6WbEtfZqKSQ9qDZWeC4EDR59Zxe+V0mXHl66Jo6OHSLZoCo8LHB17HVS5ge3LK5Ub+dI1cZJJQishXqyc1dM/BM/OZ4BKjs/0fNZWGS4gMdnTpihlJJ3XF0eOqoCkl6fjWFKxLUWKTT0ztTdieIDLsW8UpMajracgm72SSA7F1w1Azc0lk0N0RuRmfClaxdLc3qwVtZptRlb4ddCK7+b2Sqtq9GyztLHUctBrhfMaveU1sKCRWM7IuF6julXac2ZNarNsT55VraW+VsKitnNk8VGrukbbItODWgd6DdCRKhe5IP6YMIj6y2u7oF795SuAoIRCXP9yhpwhDPgCcq6I0i43nMYw75AKMCIHPH5lLl1x7dLhFNJz6Xwbp7LlaePg7CnH8sQ2DttPSkCWlcEJ+50r5fPsd7bHAxfY8qzgRLY87V7qEpKCMQ8dpd1jXir5tDHm0WINo5ABByMRcRuJtux2zQhr2bXdY4W17OogyxbWstfKx1p2bY8Ewlr2Gg5r2bVtB7j2zbE8KziZLU+7xwpo4eFo4WNAbxuJ3cqvlGgR4IAv6tewHOkGWsMRctVQE9Rb8EiGeLrOAmsN7dHFR3ZUKNh3JtY2VsqX2fZcwSlsva/gVIBBZTZRN9gZVELQdA437Me0Hy/O/7FvpfEtf3UX+//t///jxf6njD9l+hnHn3H8Od4R5zvGW+J8y3hPPNwz/udipN16vtib83gxMpLt799Pnm6+kulK5qs4XR3uLNOddb6zTHfW+c6yeMH034txxz9d7d+0f25v9m6+kulK5qs4XcWnq+fnwvRcmp8L03Npfi5Mz6XpzvEJdzEORm6+kulK5qs4XY13TvdcjC3j5iuZrmS+itNV/HHfANePu7+PLXfzfXd3f/1ttJWbq0+7m/2/hbN/XP22v/51bxSHMNkkNdQao8TkZTyffTKNvV08Q4wG9O3q7vLx9vLr/fWXF6w9B6O7+vRwe/P9cXc53nl3/e3r+Q+P9993z/Zyeb+7uXq8/nX3AiYuuH+uPx9tdB4V9rc8/nY3muKv1/eP36dx4tipfr6622OdL0u9//7Jmq93B5SXZKXaA0mPBP+pTw49Ev/bVYw99BQeRw8NQ1uhuVVeNDQ0tjWwW6XM2+scl+1VjmsPjeMOEseug8Kx9BA49j30jUMPeePYQ9049RA3zu8rBly6ivXWnkrDnTVvt5a8/VMUb8X3EIjF9+yEPiy+gSfkYQklW3w0IYRs8dGE0LHFOyC+5SekYXEVW0IZlhCxxRuK0LDFG4qQsMUbyocuqrA+9hCFRSVsSU1YVMGWlYRFJWxZRVhfewnChqG7rGpw26uqBukhfxp8B53SEDrIlIbYQU80pO3lOVvJDhurc4bSS+My1HeVuIxDH4VLNDOCFLiMsr2+ZfTby1vGsLG6pSL5gRC3VOQ+ENqWMfeUtoylp/RkrD2kIRXpD4SeZXIddCdxqlBCdhJnCiWUHAm5WtwOUuygDplST3HIlHvqLabSU9AQT3lg9Azz0EHOMLseaoZZOogZ4rkOhOhgDl01B3PsKTmYU0/FwZx7CgLm0lMPMNet5QDL0EENEJeqJcQA0QQJVguw+J5SgCX0VAIsPaT6VmRrjXpwJfcRbFPkO5zUayv1T5Brq8Nmam2L9Id3EGtbJEgYtdqq30yqrYZ3UWqrsacSWk09Jb1QBlBS1aqWzUStat1M08otUiXeRdPKDW47TSs3yPaaVm7w22tauSFsrGnlhthT08oNqaemlRtyT00rN5SemlZuqD01rZwbempaOed6aFo5Jx00rZzzPTWtnAsddKKcix2Ushwe4RIYa8gd1aecKx3Up5yrHdWnnAwd1KccSfXJqU85kR7qU058V/Uph4euEOpTTmIP9SmHR68Q6lMOD18hZKKclK4yUU5qB5ko54eeMlHOu54yUc5LV5ko531PmSjnQ0+ZKPcy+MUuE+UIWk+mHnIHmSiHhr2QMlHO1y4yUS4M7ysT5RYhMBvLRLkg3WWiXPDdZaJcCB1kolyIXWSiXEgdlJdcyD1kolwoHQSdXKgdBJ1cHDoIOrnoOgg6uRViUKPykou+u/KSa9GDbqy85BZhMhsrL7mYuigvOZQYlFRecrF0UV5ysfZRXnJp6KK85PBwGJwB3RHhMASo3155yeHhMJkAjdsrL7mUOigvuZQ7KC+5VDooL7lUOygvOTzshVBecnjcC6G85LK8r/KSy3575SWXQ0/lJZfjn6G85HLaXnnJ5dxTecnl0lN5yeUe2kiu9NBGcsV1US9yRbqqF7niu6oXuRLeV73Ilbi9epErqat6kXsVVLOBepEr5X3VixyussuoF7k6dFAvctV1UC9yVTqoF7nqO6gXuRo6qBe5GjuoF7maOqgXuZo7qBe5WjqoF7lX0rlvsHlEIEJQhm0kkWToIYkkQ1dJJBn8JppFMoSe0koy9JBEkoFkcsFAc0+dJRnKtjpLMtSuOkvieuojieukjyROeioZifM9lYzEhZ5KRuJiTyUjcel9lYzE5e2VjMSVrgpE4mpPsSCR4U8Q+RFx24v8iEhPkR8Rv63Ij0joIPIjeIzNSRkdkdRBLEgk/xniPLKIutlOnEfwWJuTojrih+6iOuJdT1Ed8bK9qI7gFDInRXUEZY0hRXXEx+1FdQRljdlKVEd87iCqI750ENURX7uL6ggaYLORqI4Et636jRD8MoRKjwTfU1RHQthWVEcW4TNWUR1RqOqeFNWRRbSMWVRHSBIZQlRHQt1WVEfisK2ojkS3raiOROkpqiPRbyuqIzFsK6ojMXYR1RGNMO4pUR2JeVtRHUFDXTYS1RGcFOakqI6koYOojuDxLidFdQQPcTkpqiPJbyKqIylsIqojKXYR1ZGUNhHVkZQ3EdWRVDYR1RE8KOWkqI7kwSyqI9mZRXUEDTF5U1RHst9EVEdy2ERUR3LsIqojOW0iqiM5byKqI7lsIqojuW4iqiNEvEY+ieM2EdURWOD1LVEdKX4TUR1ZxFhYRXWkxE1EdQRWYeVEdaTkTUR1pJRNRHWk1C6iOlKHTUR1pLpNRHWkyiaiOrIIZXgXUR2pYQtRnTrKwOzrYFSBqaMIzP63HH7H8feoFTP++WL/fe7wW8bfcvgdx9/TPZN8zX6zOV2M+jj1II9TR3WcehDHqaM2Tq3HexYP1FHbZzhI94w3TxdyuIjTxSSEs799/89lFtDZX8l0JfNVnK6mO8skmVPnO8skmVPnO8skmVPDm/I2Hpa3kQ95G4u8zRsO1aGJGXhRG5tiTuiqmBN7Kuak7bVo8vZaNGV7LZraQYpm6CBF43pI0UgPKRrfQ4om9JCiiT2kaNL7StHknmIx/3RCN6e1Yt5N2uYdpWikixSN7yFFE3pI0cQeUjSphxRN7iFFUzpI0RD6Nr6Hvk3soW+Te+jbVI2+zaZSNKGLFE3sI0WTOknR5E5SNKWXFI02MIGRohk6SNG4LlI00kOKxveQogk9pGhiByma1F+KJneToinvKkWDKt/QUjRDHyka10GKRjpI0fitpWhCVyma2FWKJnWVosldpWhKT9GY7kI3G0rRuB5SNNJDNaazvs2GUjSxqxRN6ipFk7tK0ZQeUjR4UAUjRTP0EI3prW+zoRSN7ytFE7pK0cSuUjSpqxRN7ipFU7aWosEDPxgpmqGHFI3rJEUjXaVofFcpmtBDiiZ2kaJJnaRo8sZSNOVPkKIpdTspmuFdpWjcZlI0sp0UjX8fKZpAkkC1C/tfSdDmLfqedg2UPrI4dTNZnKWWjV0Xx723Lo5sqYvje+jihB66OHFzXZzUVxcn99XFKX11cWpXXRw39NXFcX11caSPLo7voosT+uri9Faw2VJtJ3fRxSlddXFqD10cGbrq4ryXgs2Wqju+jy5O6KyLE7vo4vQWsNlUbad00cWpfXVx/NBFF8f11cWRvro4vrMuTuirixP76uKk7XVxchddnNJFF6f20cVB6TVoXRz33ro40k8Xx7+DLk54B12c2EUXJ3XSxfnTFWwYuZ3aQxeHULBhdHF6K9hsqbbj++jihHfQxYnvoIuT+uni5E66OKWTLk7to4uThl66OK6TLo700MXxPXRxQg9dnNhDFyf10MXJXXRxShddnNpDF4dQsMkqBZstdXGkiy6Of29dnNBDFyf21cVJf44uTu6hi1P66uLUrro4eCwMpYvjuujiSCddnPfTremjuxPfWxcn9dDFyZ11cUoPXZz6zro4deiji+O66OJIF10c30UXJ3TRxYlddHFSF12c3EUXp3TRxakddHF6SNh0EZuRLgo5vq/0TNhIIae3hE0XtZncVxymp5pND7WZoZfajOsrB/P+YjZbqs2Evmoz8b3VZlIPtZncWW2mcAxckMbMO0vYbCMm4/4UXZwPCRulhA3w8WkjYZx/HQmbrURrAP2XDwmbDwmbDwmbDwmbTRVnZGtlnA8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jmw8Jm/8yEjZlFI+pB+2YMmrH1IN0TBmlY+pBOWb885PMjVvI3Lg/yNy8UqQZloo0w1KRZjje9vzMdPvFyCHh5iuZrmS+itPVP7eQjf+XEbL5fHv/bW9F/4RqNh2kZ3xX6ZnQU3oG9TkfWbeAw2n0rPXIueXeLmVXnY3SVbhiY5kNN/wJOhjO9dDBwAVwCB0MnEiE0MHABXAIHQwXO+hg4OQhhA6Gyx10MFzpoIOBM4YQOhgydNDBENdBB0Nke7Z78d3Z7heRCxuz3Ut8V7Z7SX3Y7iV3YbvHwxgYFmA8qIFgAfZDVxZgPXcIVHjpyQLsfU8WYA1vCM6E6+PWLMA+dWABJrhCiG8vPdl6fe1BfYsGM7DUt8FtS30b5E+gvg2+J0NpCF24RbmwhpPcoouoBiu16CKe4V2YRRchD2Zi0VB7kg4SrCA4A1x0XZnaovQgP4u+A/dZDF2pz2LswHymCIQgiM8UUREE75lC/4ahPYu1J+tZGnqSniW3NecZHjlBUJ7hYRQE4xlBDoLzCaXYg04ope5sQil3JxNKpReXUKpdqITy0IVJKLsuREJobAfLI4QyiJA0Qjn05KnIsQPjQ05dCB9y7srHkEtXOolc35ftoQzbkz0U15Xrocj2VA/Fvy/TQwk9iB7weBaC56GkDjQPeGQLwfKAh7kQJA+lduB4wANeCIoHPPqFYHio0oHgofoO/A6wIk5wTeaAdFofZzsuBk4Wh+WPqLkn0UMtHfgZauXCDxDMpWrOJqQJS+mcHiwPS6Wc7UkZ3OD7kDIs5XM6sCYshXQ6cD5oVHUIUoalqs67sCYsdXY2Y03QqOswrAlNeZ3tCA6W8jrvx0WwVN3ZjFbBaThEcIKDpviOmY+A0Nwh+AicS38GjwAhykPk/y9FeXrl/ztXe+b/Oxk2SdV/pcazUaq+E9k+VZ+Q4SFy3J2WFoTIcXdomM1GOe6Opg+BctyXIj2b5Lgv5Xk65Lg3dXosOe5LYR5rjrtGjudkjvtSgMec476U29k4x12jtHMyx12jrXMyJX2pptMhJd35vG1KuvNl25R0WE+HTElf6ulskpLugts2Jd0FedeU9KV6jiUlfamQs11K+lITx5KSvlTBsaSkL1VvLCnpjMzNqZT0pbDNlinpjLTNqZT0pZiNJSWdka/JJ3H8JinpS4UabUq6i9Gckr5UmLGlpC8FZSwp6UsBGUtKOiwYQ6akLwVjLCnpLrlNUtIJPZiTKemEBMzJlHRG9SWfxImbpKQvtV1sKemEoMvJlPSlhIs1JZ0QbjmZku7QYAsyJZ0QazmZkr6UZ7GkpMOCLGRKuiOINPLJ8sVNUtIdT5yxgpPfNyV9KaBiSEmf0rv3a7YxZ3tK7t7/lsPvOP6Ox9/jhni6SOMD5fBAGh8ohwfS+EA5pJf7Kb08He4ar2S6kvkqTlfTneM9F+O3uPlKpiuZr+J09VbS+L8dEqyRrPHwkTVuzhqHGJg9kvbRMxE9dE1Ejz0T0VPPFO+8bRL2e2WMv2OG99Alw9v1yPCWHhnevkeGd+iR4R17ZHinHhneuUeGd+mQ4U2kjeceaeNVkza+XYa39M/w9t0yvMP7ZnjHThneqU+Gd+6S4V06ZHhL7ZvhPXTN8HZdM7yla4a375rhHTbP8I49MrxTjwzv3DXDu/TI8EaPxugM72HjDG/3Z2R4CykK204Qft888bdyMNpljH2yzdN22eZ5u2zz8s7Z5nW7bHMFAT6Tbe56ZJtL32xz3yXbPPTINo99s81Tj2zz3DXbvHTNNq9ds801+eBZkw/eI9tcNs829z2yzUOPbPPYI9s8dck2z/2zzUv/bPPaK9scPalks81dn2xz6ZNt7jtlm4c+2eaxa7Z56pFtnvtkm79bOniPZPYyvHO2ueuQbS59s819h2zz8M7Z5rFLtnnqkW2ee2Sblx7Z5rVDtjmRGO56JIb7HonhsUdieNYkhm+YbR67JnGnHnnn/9KZ4X1yrjsmifdI4pZeSdy+b5b1++eIb5nEnd47iTv3SOIufZO4h8oFXmGp2++bGb5Njrb8KenmH5nhH5nhH5nhH5nh/8qZ4RulcOc+qeYfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeEfmeF/Wmb4lOidF4neeZHonY/J4IvM8Dw+UA8P5PGBenggjw/Uf/bM8PgqM/zL7uHz/fXdoa7O//fD7uzh+93u/uyn2/vPu7NP369vvuyR/2nzx+9vHx7+kD5+sXz41arn+U7BE803E8qGZbEuneBJt/B8fImnHcKj1CWeHwmPWJd4Iic8el3iGafw7H2Jp8bCa1UcEp7QiVxbfMmKY8ITe+6QEV47JIQ71yEh3PkOCeEudkgId1mTEP7GgCdDEzSdTgg3Eke8kRnegZZCeK/g5RyjA+VGOwV8xuFFAR9xeK+AVyWO4/BOozwOw3uiaRO4HLkMAw6aEcfQpW8jvpUq/tbXC1G5FV85FRjVg3vZS+fXk/vd6ezwk8CO4wzwoMdeNmE+8OAOuJAfAUYvu0jiggfPcqLS/elEceR4UHCODK9M7fH4kOoLl7/8kj3EIwnjqyNRHODMeUW2+GVocwgkIHl8taf7J2vOlr6Dnq0t3pdM8UPBoy9023wg2Isvn7tbgroxmoe+GJNtH7Jc997eX33dXX7+effQMucXNWdMCeepIgacMuMPp34nv2rbj+KjUHDKlcivnXHGlQh7e3BIBYkLDs6vlXEak8ivlI974qzLgQc3xwg6L8nlCDPh41kc0ah8cIsjWpXvnIK3qiIVXvBWTWj3FMEx+f4puKUkvoMKbikJjoHxBGVW4tkpPL7ES7CHyROGkRXrRmmzI6G58eiuvlJ58Th8huGzwt103F1UhXb66k7AJxxU4WQ6GkylUuVxeIfDK5xMgttLVjiZhLCXpIAn7CUr4ImmVfRVIZpW0Vcd3rRF0Vcd3rRF4Rp2eNPCquqXDh8KiqKvOtxeiqKvOtxeiqKvEuYC+4MLjqmYTInWLD3JEUtVLwSiA3bUdVAvBKKjkuwx9z4EKurVBQTv1asLCD6oFwIQfFQvBCD4pF4IQPBZvRCA4KngqkspJwgLa1UvKiKUHj6oVxUYvlMvKzB8Ua8rMHyUguZSBgI1qJcrGH5Ur1diJ+n249oCw8/wgkgI1KJesmD4VbtmgeAVCfnzAuMlfHojIR8ZtU6xrP4hD381nnUzgthlAj5Q9NMlDwzUyaF7mWKPnfVFKCIsqQ/7MPzMnr5FbzlDWqbZoy8UI11ARc/f4kZvlIE98WtUqiUx/zJv9SVCH/nNrzR2cvHKM78IcahIYA/9NvqsqDz1gzqzJOWxH4aeqXM/DLMoD/4w9Ko8+YPQFaoZx/UFBO+0Z38YvGgP/zB4rz39w+CD9vgPg4/a8z8MPmkPADH4zJ0AYqBFewSIwVftGSAEr4iZ8jjt+5Jw4C1UwUnCl7QDHfQLliwDbIQ1QmS9ZB9gQ6wx/KiOscbwkzrIGsPP6ihrDF9/IIvhV9YRi6DGgQm0hojhCcaDJ3cUVFRhQ60RmvYlHwK4yoeoxF/xI7wVpRyNPG0RjE90A/kdiQxfNn9I5uKaiTEsFlNgM2ZPlc2lhFipCdaGS5zul+BwuMwEqpAZlRiqJ3MqMdRAZlViqJHLq8RAE5dZiYFmLrUSAy1cbiUGWrnkSgg0D2R2JYbqyPRKDFXI/EoM1ZMJlhgqnmDKtBbMrCpCoCZSTC+9rdPicu6pJeJy2Qq+OYvlypEMxFe66ksyizqRSew70EgmUScuif2FHC7idDGRTox3XIxHDm6+kulK5qs4XR3u9NOdYb7TT3eG+U4/3RnepqcYORrOLv/72f84rkcQpor0iqniz+OgaDXRknMCZpLokvTbNefXd035DV0zfmPXhN/UNd83d0j3Lfpg48jwUdCxxpGipqDDgiPFUkGHBUeKsIIOC44Ud8Vbgdi4tbigjzWOFIsFHWscKT4LOtY4UswWdKwxAl/0scaRIrnAQoKgecgQwNyJ28LFrtwWznfltnCuK7dF7UptkTXMFjB61FBc4AM7jq7ppxrWC/hAUE9+sTYG4COA4nQXr2rF2S7Bk+C1uboIeNDm6iLgUZ2ri6Anda4ugp7Vuboc9wWbq4ugV3WubtTRYYC5ugg6nE2L9/0g6vxfBN2rc3UR9KDO1UXQFXEXhKXwPZTYtyhOc4lNl+Isl9gxasgo8FZVsFEQu//Iz6SE5yKiyXqEb0FBSMF4chRCKrilKBgpCA+agpGC8P7F3IGNKZaubEwo4/5lGDbh+EkD/T4bG1NCQ5rX2Z888zohYyusn+fVeaIIeVEK6i0bwhgR1Vs2juSC3LIpyS42o1dKfJ9PcI9PYI9/ylawdXhUpOD5dbYOkZ1WHRXqEFk4cVSkubPvS5yiIcLwfYkwfF8iDK8iwtiQOKX0JU6pXYlTNPQXBHGKhv6CIE4p0pU4RUOEISoijLeOA0JX+guCjaWkvmwsuS8bS+nLxqIgw3ACw1fUdXw8Yyhvs8rCBBhtyAjSX7xRC46Y4RT0F0QTKtgvCPuraF4vwdajYLwgOqSC8IIYTWpRey8R9Kr2XtY+BBjE1KbhvyAmZg39BbGsWLJfsB7M2ocGwzNNG9U+zMqRYLwRkZkI0Kz2jFYlBcZbey0h4CvFIfEcObgV3wVDSuVUYUsMYYd0oKVakl304KVymsglgpjKaUKXCGYqp4ldIqipnCp4ibGa0pWcakl+YWancpqwJYaeShO3xNBTaQKXGHoqVeQSYSwSetBTaUKWGHoqTdASQ08lWb2Dg6iSpGxHlbQIU3oPqqRF4JKVKsk77Q4Rm54NfBSuLx+F68tH4fryUTiOjwIKcsFAs5rkwvXlo3B9+Sicko8C2yhi8G47XrOg3nRiRVVvOjF49aYTg1dvOjH4pN0fYvCZC27BQNWbTmg2DlWhZb1i2nHoQdkXXV/KvihsiIaVBQ4mpHh+o40kEGWquFwnJXTeRFXxhpv+Jb9OtPBUPPN4GGtNzUmOkebFog02wey6aqNNIHiF6g6D7noS+yVRBpxg6J46T3pp+/4NDgssrMRo+ymy7zOOiSlp41iwzpYyF8iCtXTpy/il0ehhGL80Ij0M41d2fRm/NII9DOOXSrGHaN8cejB+GQKUMHx9hBKGn/U+bgi/6H3cEH7V+7ihBN2BTLnGUPVhShi+Pk4Jw9cHKmH4Qe/shvCj3tkN4SfW2Q2h6oOVMHx9tBKGX/VaDFC2+6BXTYDwnVo1AYIXbfo1Bu+1+dcYvDqaH4NXh/Nj8Np4fgw9UznYGGbRbtog9KplY4cYJAYtczqE7rTM6RC6qJnTIXivZk6H4IP6pAqCj+qTKgheHXqIwatjDzH4Qp5UQaBVfVIFkbEM6pMqCN6pT6ogeFGfVEHwXn26BMEH9ekSBB/Vp0sQfFKfLkHw6uhDDL5oE7Mx+EoeXkHMRoM2NRuDd9rcbAxetMnZGLzXZme/hl9ycY6BpCN1Zj1QZ+6vZLqS+SpOVweSzelOKTPJ5nTn/krmqzhdTXfKRPDph8OdMjF87q9kvorT1XTneM/FeGTu5iuZrmS+itPVdGeYyEDDXM4wkYGGuZxhIgMN9U2KzyOzJ83ymf85WT7/wO55sUYFOrH4P98pOA8olhLsGfJPLBHYM4yfGL2SZ2g+MVIlz3B7YlRKniH0BAmUPEPjCdImeYbGE0w38gx551vxb6WJmU5Tdp48vvLHJGxMKcGRqA2dhNMMnZj+wuvSOn+amvMtKu3QJP1wb3BzntAT8aEnGydB36JY8xH0LYolH0HfolnxqZg4N6OJkIGcFDLFvnnC4I7pk1nHt4lxzSN8EwIG90ha5ZuIxMG5gIEBQbbhm2hFt2/INyFpe74JWGjxmPkIJPgKH5U3h4VCCb4K+k0iM1GhtEgkJmqoOPG8REVcO5GW6P32WYmKWHYiKdHHnjmJi0h2a67GUkWxf6qGL1tlaviq7elQokYYNgstD65nZLkmbh0PLNeEreNx5ZqodTysXBO0jkeVh7R9UHnIPWPKQ9kspJyLTs9yAipSHa3mU1AOGMqOnqMNBrNFhDpQ9Il3YL3snpQt8xRF5mYxui8jyE+u+iHApF31Q+jkGhMJ+o2F3Ek0YnAdsbRHuTGfthK2GOM0dI34TW77gF+U7dJTApzJk6iYWwkOGV+X9fSnSSwxrxIkKZsS4VVCTlcUhJXEyZMi8Js4eFKEfRPnToqgbyJmPbvtZTGzbK+Kmf32opg5bK+JmeP2kpg5dVDEzLmDIGYuHfQwM3vi8Bp0edy63yO7C384Qt3/lvG3HH7H8fd41Dn++SIcDk/HP4+/5fA7jr/He8Y/X4QDzvjn8bccfsfx93TPhHM4MA0TzuG4NEw4h0Pd8c8X8fCu8c/jbzn8juPv8Z7xzxf7ZaU7/Jbxtxx+x/E3c+j6P+9vv3/DjlzLv8CR61YHqZdx+5PUyw5HqZdu+7NUt/1Zqt/+LDVuf5Satz9JrYqD1O0Okd3Q4RTZuQ7HyE5IkWMI1JMaxxAo3I+EaCi4JwnRUHBfEqKh4N4kREPB/UmIhoJ7lCfCZvAjUryhBO5RnpiW8GU33lAC9yiPN5TAPSoQDQX3qEA0FNyjAtFQcI8KREPBPSoQDQX3qIg3lId7VCTWT3CPinhDebhHRbyhPL6TxRvKwz0qEQ0F96hENBTcoxLRUHCPSkRDwT0qEQ0F96hMLPThHpXxhgpwj8pEeCfcozLeUAHuURlvqAD3qEI0FNyjCtFQcI8qREPBPaoQDQX3qEI0FNyjKrHPhXtUxRsqwj2q4g0V4R5ViZBpuEdVvKFQVqvnSDvs4CRGFhc65kHpq2Ihi5tZXKy44OljFbK4lcXFDtEG1jGHCJM51jOXqUPEDcXf/PbBvClsH8ybIumd44TvMPccp3eH+ec4mTvQQZeps0LQQZepI0LQQZc3PRnE2wk/GnRVI1AHOug2PRwUoqEi66Db9HhQiIbKrINu0+NBTzRUZR10mdKYAx10mVKWAx10mdKTAx10mVKRAx10mdKOAx10mdKOAx10mVKMAx10mdKJAx10mVKHAx10mdKEAx10mVKCAx10CKhjHXQIqLAOOgTUsw66TCm/gQ66TAm+gQ66TCm+gQ66TAm9gQ66TOm7gQ66TMm6gQ66zKm5gR66zIm4gS66zGm3gT66zEm2gU66zCm1gV66zAm0gW66zOmygX66zAmzgY66zOmxgZ66zMmwga46BBUPpKhEa+GRFJVoLTyUohKttYilMOv+LJPQ30H3ZxFcYdX9cWk7KZFFJIVZu8GVzTJtSJG0k6k2S420d8m1WYqmmZNtHB5CceS19Jwu2oZ6AXgQBSMTgEdRMKBp+4Qjh0dRME1VyJBwCLSSMeFQpNvABoVDqI6NCodQhQ0L95ymGUgQ6TkpM5AX0nMKZiAdpOeEy0DCRs8pl4E8jZ4TLAPpGT2nUwayMnpOngxMyPacKhmYiA2hCumpxFA96arEUAPpq8RQI+msxFAT6a3EUDPprsRQC+mvxFAr6bDEZI4G0mPJio5hLktWagzzWWKonnRaYqiB9FpiqJF0W2KoifRbYqiZdFxiqIX0XLJiX5jrktX4wnyXrLYX5rxkNb0w5yWr5YU5LzHUQDovMdRIOi8x1EQ6LzHUTDovWT0uzHmJoVbSeQmh4jEWlWgtPMiiEq2FR1lUorXwMItKtBYeZ1GZ1mJjAkGShqWYFgiMUZVmNioQLnBhgcECs3GBaIHLwAJjBS5sKjCSm+4KmwyMobLpwBhq2J7rwZW4PdmDK2l7tgdX8vZ0D66U7fkeXKkdCB9cHTowPrjqOlA+uMpmB2OobHowhsrmB2OobIIwhspmCGOobIowhsrmCGOobJJwzJwcFejby5wMFejby5z8FOjby5zqFOjby5zYFOjby5zGFOjby5y0FOjby5yiFOjby5yQFOjby5ySFOjby5yAFOjby5xuFOjby5xcFOjby5xKFOjby5w4FOjby5wmFOjby5wUFOjby5wCFOjby5zwE+jby5zeE+jby5zgE+jby5zOE+jby5y8E+jby5yqE+jbg1DZ7GEMlU0fxlDZ/GEMlU0gxlDZDGIMlU0hhlA9m0OMobJJxBgqm0WMobJpxKeZ+8aQxFEoLc7yZ34SSouz/JmfhNLiLJQWpzvTfGec7kzznXG6M813punOPN+ZpjvzfGea7szznXm68yi+lqc7j+JrebpzFl9zZSno5spS0M2VhqCb+4Ogm/uDoJt7k93vwOhHcvvVDbn9TvH1HYMA35JJe3i8vb/6urv8/PPu4fEPUmmtu1+H+j0/4dsybLufrr/tvlz+fPX/ru6/XO5L/Pl+97h8LjBcgsvCNtb3s2vycphck7YQR4Ffm4+vdRu81sOvTVu+NqCvjX7L10b4tbLlaxP82rClSVGByDOtejNittBdYoviU/HK87a4HfA70Ea+Ras7R3fpTV4rQGz2HHa+QWQ2lT8wb93brcSPCZtUFz8mbPJafkzYok9xyQm5nGguKjXhYG4iv58mdIRi+09hCdzVxxF2yWRinL3hvr7ta+FVQ62bvhdeNuyba9MXw4PEpfujkp/xvZF/b9rivYnvZSH//hYd5ekm27TiCv3aTeqtwh2jbPm5fuDfu8X3eqcZQ9uW4gXv3JvaiveKF29Se++auLjIEnmX5Dmf6LFr1hAyvjfz75Ut3qtYmUT/+1s0ntDgtckHhIF+7RbtFRw9dm3zXuHfu0k1e82Y2baUEPiha5uPiIoXb9JqiV5pz7GBxvdmdqW9zWsLvdLe5r2VX2lv8mJOmfHQN3J5Q5iR6GcrWEK7osb2sNeGp30542Blf2+gXVfbvJf3imzz3kQ7gbZ5b6bdMdvYVVH4aMdzmtMcrmjfmMYMu3t74B2dwyZ+dcc7drd5sSh80yvNthSafMtfezihM5Zd4WfdptIUntZtXpwUPuq11uIHio06WVF4bqePWB6uj4fbhwPr6Zi7zD/l4nBuPZ12l/lnvDgcX0+H3ocz7+kc208PTYfYfrp1OsH2h6Pu6ex+PmafTu7nQ/bp3H4+Yp9ePR+bT2+cD82nF81H5uPZuswH++PJuszH+uO5usyH+mNp/HyoPhbHz0fqY3m8m+6RhQygLGQAZSkD6Eb5vsNXjRDjbzn8juPvJ6nAuJAKjAupwFm+b4S4iIfyjBDjbzn8juPvZ4m/spD4KwuJv0N5RoiLNN8zlifN94zlSfM9Y3nSLBU4lifNUoFjeZJM94x/vkiHOhz/PP6Ww+84/p7uSc/vGv98fNf458O79tbzeH0zH5W3o/LHVK3T5++XN7ufHie54baWowWhWhFkMJdhpvEy10MDYRHCsPbt5FPz9xpKeyRYNiCIGcFbEXIxI1QrQjG3RTG3xRyUZTDewYzgzAjZjFDMCKs1CXRH9imnekpUT3lrzRxFxw0I0Yow5vQaEcw2ls02llU2VlQ2Vsy9spi/t5hHp2oenQ5FSOYBMpGzuzO/V8wI3owQzAjRjJDMCNmMUMwIVWNForI9caqnRPWUVz0VVE+ZbUnMtiRmWxKzLWVzv87mfp3NbZHNbZGzxopyUT2l6r9F1X+Lee4o5rmjmG2smG2smG2smG2smPt7Mff3orK9Oljfe3htNi+dsmrpxD4l5tJ6M0JQlTyqnkrm0mYzQlGVvGqeEpUticqWRFRPedVTKpsRlc1IUj2VVU8Vq3WJefzxgxnBmRHM45I3j0s+mBGiGcE8XnnzeOXNNunNNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnMNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNhnNNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnMNpnNNpnNNpnNNpnNNplVe5as2rNk1Z4lq/YsWbWfzar9bFHtZ4tqP1vMNlPMNlNUNlNUNlPM41Uxj1dFZUtFZUvVPC4dXltIR86geaqo3lVV75qDvQ1zhhUgWwHKGsDJ2tI8NDdnVTVnVTUn+5RTPSXWNpjJvywIwYpwDEe22nIL4eTspnqqqJ6quqcG3WNO95joHvO6x4K52WfDcWbDcdZRsIWAVLXTVbUzd9cNKk3MlWZAOFagmIc+C8RcE95cE95eE95eE95cE8FcE0HXkYKuIwXzF0fzF0fdF0fdF0fzFyfzFye7tSe7tSdzTWRzTWR7TWR7TWT7dGKBiHYIe4PM31HMq5FiNqtiNquiG1KKbkgpdvMpdvNhC2+v7Lns9p0PuetLqqey6qmjaVSdaVTdnoB9TFePNZkb8FBeMe9hZNCYgKg2vKLbFopuWyi6bSH9WDS3RE1miLnszmwO5t2ZOJVp6LaxotvG0o8F3WNxq1Yx7xRbCECriK5VRNcqomsV0bWKmFvFvGsV8/69hYC0kNe1kNe1kDcvsjaoa7OHQHQeAtF5COjHgvkz54oyOxZE51gQnWPBUt5jpZl9E2L2TYjdNyFJV4H2stu9CZJ1ZTd7QqTYy17MnhAxb72l2r/DfCbrB3MhLBBzIZy9EOZzGW8/YvDmcw5v9+578xLFB3shzHO3j/ZCmOdFbx/ivXms9vax2psHXW8fdL15xPT2EdObR8xgHzGDecQM9hEzmEfMYB8xg3nEDPYRM5hHzGAfMYN5xAz2ETOYR8xgHzGDecQM9hEzmEfMYB8xg3nEDPYRM5hHzGgfMaN5xIz2ETOaR8xoHzGjecSM9hEzmkfMaB8xo3nEjPYRM5pHzGgfMaN5xIz2ETOaR8xoHzGjecSM9hEzmkfMZB8xk3nETPYRM5lHzGQfMZN5xEz2ETOZR8xkHzGTecRM9hEzmUfMZB8xk3nETPYRM5lHzGQfMZN5xEz2ETOZR8xsHzGzOasgm4e7bB9zszkgIJsHzKw7hs7mU/NsHmaz7nw222OqLRBzgqD5KDGbZ4isO3PNujNXS3nnOjOfJOaoidTIuiPXrDtytXzlnLKazDVtjqLOSVXTSVfTurNZy1dWe1XPCNncWFkTZcg+lVVPHRtIdwBNP2av0nCUA7M2SlE1SlE1ii4wPOsCw+nH7FVaoxliLrs5KDib48KzKi48q+LCsy4uPOviwrMuLjzr4sItLXEobzHHBJdBk95fVGHhRRUWXnRh4UUXFl50YeFFFxZuab+5vM5sAU5lAeaNXzHvX4suKrzoosKLPbnZBGGv9/k7xGwx5tjoYt57F7PboNidvcWe5b1BTZi9EMXucS52j0Qxx3AXsz+h6PwJRedPKGYPSjG7t4vOM1B0noFi9n8Usy+92B36xZ7lXcz+iWJ26Bf7qUKxZ3kXs/ugmFObi/lcouh2sEW3gy321OZidhAUM8lXUW0J2aeK6qmqe2rQPeZ0j4nuMa97LJibfSaHM599VXO8gQWhrCIABHGDjiFu0FHE6Xi9qo7Xq+p26pamONLEDXaeuMFK5VidrmmdrmmdrmmdymrFrEhTRSVJQz8m9gJ7O0TQFT7qHkv2Amc7RNEVvqoeE51Vic6qRHSPed1jOusRnfWI3XrEbj1S7BD2scoPdghnh7CPYd4+hvlgh4h2CLt1ert1ert1ert1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Brt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Rrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Jrt1Zrt1Zrt1Zt0uJ+t2OVm3y8m6XU5Ousey7jHdXjjr9sJFtxcuur1wsY9hxT6GFZ31FJ31FPtYVexjVdFZVdFZVbWPSfOLvd156HXOQ8ubxQ7h7RDBDhHtEMkOke0QxQ5RVeYkOisUp3tMdI/ZrU3s1iZ2axO7tWV7/8/2/p/tLZLtLZKjypxy0j2WdY8V3WO6/lx0/bnYrarYrarYrarYrarY+3mx9/Nin1WKfVYpOiusg/nN84uDfYFlgXB2iGKHWK8LZGoPuqndUODjNG+B8GaI4wQT7BOMBSLZIbKqIXPRPaaztqKztmK3tmK3tmLvpMU+YNVhs9Em2kcbA8Rx5LFAODPEsedFe8+zQNhbJNtbpKy3CNI7o86PtsE3J/s3WyCcHUJIiB8vzq8fd3/f3/fp5vvu7v762+P5xfnN1afdzf7f/u368bezTze3n3/Z/+Ovu/uH6U0xSQ21xigx+Ul14/rbl93/PWg9/OcCaF+mh29Xd5ePt5df76+/PK2UjqKnY6Tg1aeH25vv+/KMd95df/t6/sPj/ffdHnNf0ofzH/66x7j++u3qZnz6+Em3n27vbu/HGji+2o1vfnXjp+uvl7ub3efH++vPl3e3N7vFEzJ+++7b4776dof3TBe//e3b979/2t3vIS/WYS5WFiHD72M5XgAJAzQfYzeB/MWrGrhYOT0eq/Z+9x/fdw+Pf/vp+uZx33ZTc+zffX2s16eq+7H1ssCUej7qbZY6MkDzANYESgzQcFQfaQBlBuhorm2owpcp5BZQ1ZSpDTVuRd60k+GZodNmJ84BbzsWeIv3CV/l0TeRvKbOV7ACX6pcmkhRU6oVrKQYw8ZxuYWVFcPYGlbBR7LDNGG0maoYzFbKLoNiPJuw9vPNP67vp8nmr+7CXciF+/Fi+pXmXzL+b/6V5l9x/zvOv9L0a//cRZieGO8P0337e/a/xr/u/7L/7aZf47/K9CuO/9v/2v/lIk9/HXHz9Nfxb3n6674cF2X66/7t+18y/Yr7X+Nf989d1Omv++f2v2T6Ffe/xr/un7twh08q46cdvqSMZTl8QB1v8NMNdbzBTzfU8QZ/+MLxw9zhy8bHx99y+B3H39M9frzn8H0jwvhbDr/j+Hu6Z6wCN9fpWAlursuxGtyhDkeIi31TusNvGX/L4Xccf0/3jNXhDrU1Qoy/5fA7jr+ne8ZKcYdaGf88/pbD7zj+nu6pi3fVxbvq8V3oKuzs4Ze9vT3urQtajvnW8u7y0+3tLwv0/3V1fbP7cvZ5udQ7sfY6taRqL8Lu9y+4fPh+92LFNq2/rvZd+Nfd3+Z/8ie+6vf/D2kMVTQ=
Copy blueprint
screenshot-tick-205740633.png
Hey, so I looked at the 4 way. atm the ramps doesnt really help its throughput as it barly beats the Christmas interesction, which scores 73 in set 1. The double roundabouts are very costly to its throughput.
01-03-2025, 22-30-17.png (1.88 MiB) Viewed 1020 times
Re: 3 and 4 way intersections
Posted: Fri Jan 03, 2025 9:31 pm
by hansjoachim
Re: 3 and 4 way intersections
Posted: Fri Jan 03, 2025 9:31 pm
by hansjoachim
Vinyl_Scratch wrote: Wed Dec 18, 2024 11:29 am
When I was working on a grid aligned rail system I came up with the following design for a T intersection that both seems more compact than anything (other than the bottle) posted so far and seems to be a unique design as far as I can tell (you can trim it down a bit if you didn't want to fit it to a 32x32 grid)
I'm currently referring to this design as a compact half trumpet seeing as it looks like two halves of a trumpet intersection superimposed on top of each other but I'm open to better names if anyone has them.
Compact Half Trumpet L variant
0eNqlms1yqzgQhV8lxRpS6F/ydjazuMvZ3UqlsM11qMKGwTgzqVt59wEj2xm7iU8nKzsOfLRa3a2jRr+TZX0o267a9cnid7LfFW3WN9mmq9bj3/8mCyXT5G38eE+TYrlv6kNfZuN1bbXbJIu+O5RpUq2a3T5Z/BwI1WZX1OO9u2JbJoukK6o6Ge6tdutywIn39ONF/Vs7XvRadf1h+CU93bV/Kdoy6z/cKMEbj1dkPz7cqd6f0qTc9VVflZORxz/enneH7bLsBpvOd68O3Wu5zkabs2KAts1+uKvZRV/I/OgLM7DXVVeupn+Jo2lXTAkzNcW0BFKdkS9F/StbV8WmGcd69PANV5gj1/2fqwmuTj/OVRZ9TAz+MSIfr4wdAOOdz3XxNvKSsi5fi75cJ8TDDOmXJfG4QNlP+cXy/CKO3HDfL+7MPQ0ouzOXwlNsMj78LXzfD9zNSz9juIQND3y2Qtki58MNDBdXoXho26brCaSFkZI9i5KcRSryhMJSR8mYOv4RyHMBJqSKUCGuqYqiGlaauIgGPGwxc/2suST1TvYRFUMo0mYy/YQHIy2WUZEDHibyDnG1ou2mQkPmaPm8QCmMACPMzs6ZYdR8KcHHhfkQ4TwOzEqrWBEpL2l5p+BNhVoogGlQpsKZFpYeONOhdhqc6VGmw5kBZQaYqXJ43vGJVwKG4jOvJAzFp0ldZVNXbNtZFQsBNVtBKIYPDJ/OcIbl0/HoVY5PZ8SxZysh5Um6IPEBiRM9Q6TWaA0nnsF9rOHEM7hrNZx4Fi8RWsFQPD20Zoo1fb00CsZKrA1bxEWnXz2UDI9LLi6rTTY8YNV31Sprm7q85U47d2EpOaQvedc1y4YWguoEGMZf/n0o9/3zr6ruy25/bJxMlk7thXOr44l8mufYHdsvM4YHdKk/1TgSY3Jg/KfI/b4DjOA4wOrPLJdMTQbsGI1i6idgo2g0U+chdhqmJkOYlqnJEKZjajKE6bmaDIEGriYDoDbnajIEiqtHfJ6shISexYHqy1IMoWtIb2gSSOoNiycUY/7hjDKMsTuuMkKgnquMECi8QhmPz5TLuXoLafcKrt5CoGDr49RbH5vsiAMUr0VIYKkOltPsLYKL/Pt6zcGt/8gE+mEO7D06pnsd6F7zCZehk51n6rhrf4/tyVtqYHV8Y1GTQMvX55h/jJ33j6C4gr1ixFhRlDr0kjuN8trMQGFhgRj3zxLZ7XpYImpBUsmJgpc0rXAovKRpg0Md6lTtcahHS06UidKQcRSYXXdpgPQM+XepVBgFbmtfaig1g2S+6pI3r4lpL8BdDjVt4aW/v9QEjQZTVPIqp+Y9wNkTXxkqYBkMFtGt7nTogiI45j5FkdUxsPoQwn5mEbxzkvZymuSOo0Sec8dJZq/IYWEXu9hKI9ZJrnWOtk7BJyLEiQNYhx7qOCnEsR4A6Spywx12oIdtmRwtaA68bkwppa8iz5NQzzVO0cbBux8RSOvIuRXcvNB0Xgi8ixA+5UiWzowsOhuE4o5thqO5Y5vhGCyPxlfIEyc8zniJHfB04gjHHdkMx3/l2JShs1BwW2czHJkzBzfHEcwzbeZmg0IWBskt+oYuDFJxxznD0czwNLdqz5Bgbpk3dNRLyx3oDIereQydz9IzlaGxNCdwx0Xbo7i13NDZrLi1fI7DDXBLJ+DHUwOzr5SiprTi26+UhOLW+zm7uXFv6cRU3Lif4zhmIRsPNQGFTH1F/Fv9Ph6l/mdgj5PyU9vUpMN23Dyl0/cQvw8fqRGX7/H38SMdH22eBkzVl9vx8efz52lSF8uyHn77o9m2xap/+HNYmB7+6g7btuwffgwXvA6hMR0/szLoEIwO0ls97N7+A1wZUDc=
Copy blueprint
Compact Half Trumpet R variant
0eNqtmk1vo0gQhv9KxBki+rvb173seTS3KIqwwzhI2DAYZzca+b9vY4OTtYv4rcyc7DjwUF1db3V1Nb+SZb0v267a9sniV7LbFm3WN9m6q56Hv/9NFkqmydvwcUiTYrlr6n1fZsN1bbVdJ4u+25dpUq2a7S5ZPERCtd4W9XDvttiUySLpiqpO4r3V9rmMOHFIP17Uv7XDRa9V1+/jL+l01+6laMus/3CjBG88XpF9+3CnOjymSbntq74qT0Ye/3h72u43y7KLNp3vXu271/I5G2zOightm128q9mOvtD50Rcmsp+rrlyd/iWOpl0wJczUFNMSSEUil9dIZY5IB5ipz8yXov6RPVfFuhn8d5y1a1sDBaZsNWduWZevRR+tveEHZY/sABhtr+G7PnLXL/2M4SpQcE2wXfoxcLPdvm2brieIHiV6trVaoOzAZyuULXL2HGpyDqn4EIIVeEbBYHkxgaeMcUWU+v6kEiHuL7QXNTHc+lQXbwPxPPqEepwCH+dmH6c4j9PXc4L4T4nx4cC0GzjN0FBKscKCshozjMj/zzQU030en4TFhraYjCOPTawx83FEYQMv7h1ssMwxg20+azDlZSlArGL5Qb7L9EbCGqdMAUyFMhXO1CjT4EyDMh3OvBBYV2xawpcWBzr20iIZLuAvipLhjMBeuSTuGZXzbQ84XfCLG1wiSiJhMpa5l0CyFlOw6DTDCbjqGGOHZWfw/KAsDMXVoRwMxUWhPAxlTFRAoRafKJ2jeycr6UAlqQI2FZ9+Lfk1yBgH5kDx3tW0rNZZZK76rlplbVOX16hRppYkvUuoa5bNzCZmAsQStPy5L3f904+q7stud2wGnEZ+2jKft++P5NMMOmVTKrS3i0ZtOc4Y+xQz3nCAN6YQ/QPu8BzLrf7M8sAslICdncmZhRLCFMxCCWFKZqGEMBWcXEgm2eyAl6uA2wmvVoIx8VCVKHMc6L5cCyF0j5g7dmIE0jkysJo0HlI255ZACFRwSyAEKrklEAJV3BIIgWpuCYRADbcEQqCWWwIhUMctgaC+qeeWQIipAWsQTG0Hmd8j/XMHtjPcPFZRWF7fccytEui/OMksgeRFj8tTULS96D/xLqO/6DR75zzqL46G4hmwi2aZ0WHRJuVknkCojtlCI6wVFNejoTE2aCSyoXF4ZRhIKnlYAa9lUuBQeC2TCofieqOdSonYs/UmryKA6qJ6za6TpsBVlK68YR47DMcdQHr0ltn8l8C5pXe/CaUyo/dwBlAklEoAHlzLlJjc6q7cSh7T4Ruu015Q+ttuDbCqxqNVlQNQWFVj2XkJpdwa8Ma8f3/Z4JalmrPH1mcwhTLMWluRogzQ7mrU9YwlcOdv7NEqDXjKc4dH9qYCKA49rY7KQuIQeY5KeTy8Vu5AcrhbpjkOeIRs5OxAPclVXPsCbR+3O64FzYGbdvo0Ti1pjuXao2gOvOkZNaQv0sRwakxg4fCfhmlo8wJ3mDRH5Fx76DAV3HCf40jekfTZqNun/kJxh0pHvGBH/AzHMJWtA6Tsq9cb5lLjdEhuho0DSXJMjxla24Kb8+c44Svv6RjklRDJ1YGh04bk6mCOg6b98yRe1f6B5HJFYOjQkFwRzHEM1x46b0jLLBWNRaLCcUc5Yx036xs6ZUhu1p/hKG60W1qQH94PmD/JGqtdK377JEsoyRz/nN1cFVhapexXA+Y43KVgeMEJWAqU/cK2xOrD8I7yP5E9TMpDrHNNqm1qHtOH4SON152/x43P8bt//z58pMOjzWPEVH25GR5/frE7TepiWdbxt7+aTVus+ru/Yy6/+97tN23Z332LF7zG0Di9A2Zl0CEYHaS3Oj8c/gMHchjk
Copy blueprint
They look good, added them=)
Re: 3 and 4 way intersections
Posted: Fri Jan 10, 2025 10:05 pm
by Emjas
Hello,
I modified the "Compact 4 Way v.2" (4-way, 4-lane, elevated) to do the following:
* RHT
* Removed rails that crossed
To accomplish this, it's slightly larger, but seems to have slightly better throughput than the original:
TPM: 145
Train 2-4-0
0eNqtnetuXEeuhd9Fv62gbqxLXmUwGNiJMCNAkQ1fghMEefcj2b1bcje5e63V+hVMJvq6dhXJqiJZ5N83Hx6+3X36fP/49ebXv2/uf/v4+OXm13/9ffPl/r+P7x+e/93j+z/ubn69+fz+/uHmn3c394+/3/3fza/5n3+/u7l7/Hr/9f7ux198/x9//efx2x8f7j4//Qfvtr/88vXpb//7v6+33xHvbj59/PL0Vx8fn+FPpNv17uavp3/09c8/784wBcXsUio9mOFhGjsYl2L0YMzDdHYwLmXQg6keZrKDcSmLHkz2MDm9ey21T4w/PjmMemCUJ6n+/f7z3W8//s/pETNCZIC0XPtfSgu2ufqRWckOMLRom6shmZXtAEMLt7k6klnpDjDrZyE6mNjzweT0ix1A9RcXVRL9Za7ClRe5vnu4+/P917vfby8B6y6w0MB9XmWn3sc0bOpPZv6iGhfjlzSdgrMH7vQCuwaivKjAb98+//m0Gt/H+X6Hc2K9cvKwE/zudvzs/P2zn//r/zy8/+sZcpSQG+8XTpXl26dPHz9/3ZHH4m78SRdwd0JrBse1PyxdTfxRVWw9TpfjtXgTi1MbKlWBUHm6VI1VdX8qOq3qZxo5PC69mTT/KEqrTptnFoNZq3UuapdMwSZrCTAFTdcwf4JapgccjNeTsiZrXjBaVvPOV3MQq9nYg1owanMV+IO3c+UDaCDC0HVh8G9cQ14unzfRD4++2xWqxe6yrV+mWqItReM2Wbugap48bD9lgDhY0cXBPfdalcXB5zV6AoLvdxfQWNvQrtmVrZO78qkQ+ms4QCksL59RTj+jeeCJ26ANXAEsestax+GeHfWzef6WKzY691LSsyzMPq9gX77z4cvDVthkBsuUvXXq4JWsFE6susG2+PkW8x2cT8ZbPC5+Iyvmc93h4sfKUgnsxGchEdjFbxgLx48rVMy9DAxdxXxeob8/+HxXJ0ZFVy1aNB8LHxoZERvwfY3RhwFvYpH2do864L2mHqagLsAojMlfrp5dO/gPLF4jSvAF3nRPQeNKJviCgzEvgi+cMJ/dwjC/om6o3Alq48Xm2UUP8/E98DAXLblRHf06V91755SvcwEP3uZevvOn2fN0bvIek2hxXHO8eJ1jRHahHkpGYhevZ4waL/5ex1ih1Xg8YUSX0QITbQLe5rU6unlFe5dLHfxRrm5zPoCtaxFH0MZwBYfmdlyCfiCnRB+eT8Hd5eYrNqtxWQ5zKlfsK9AX4PHml3G7oKbvLAHR5K0lAMIXvgufOvTtBBPXqe8nkFTxCkepRU7srQebl1dJG5e4jA5k/g4Y2U2fX/G7yraMdvlUkzPocLmtR0detVOPSyH8kTkbHMOtzIfA++FtWT43EBhhSyxG/QLv8zwF+zIDR8u3sEY98f2am6SUZHcPNOyS6e3Ez6wpeqAhIsqRhgjY2O0k4JjqgsJEtHT0+hBIUnWpg3Uig6Od9GwURrHKQsddGMGvCc0iqQw1wxeFfRmrRbgbbNNaARNeYbdKGQy20fak+hNguj0JiF22JwFwsPYk4ExwKaKV8EWRDxS8EiA3QzXxLtwMyEzL6LHomDBUz5Kn3MhpboIaHc0INPaKxmb73tiZMx2egHL7fFD+/pMFEJhmtOr6GdGts1kTlUxNzG3IaRPRoKdubwIimz9Zi5/RnWS75Q/MyATKaFxFzdyANMvYtK56VUJlNvp0GMwurEaRdvrTASrVrp1p1ITwOvbKdLpEMPFy1867DhJbtIPWH2LHHY91+1ggoJE7usfN7dPL8h8e5FdJJuBNsPhPRTrtSoxAqF/Dfvq4k4QfRja7fjqMvkE+HUZA9nQYcWCHxctqA/II5mjNeMXcR1UD1p9X6uOCcMfERirBEyTBJb/dzsoE5nJUNt+tDCjfLQ/6NhXNwRX6EhB1fQmAg9zvzydxMSZkTFY/g3HzvvlX0uW+dYOfll2Q/IluOu244T6nkPqswutjQKqCLI59ZMN37e1DO6DZ0wTTkZkf6LSCBzNwoj2//e/9/SNw8ypkvnqeU37M8jQjLnHptil45ZnU9yvQoi05pTEab2FN31VZ6nlV1vQF427sIcKQdOcsZHO80jqXCOc0vrIPLkhIn7owiZO29gEIPNKdGPvLL2xT4k2//wZYSb84Tl+AJPYl2ycp+1LeRzbKKr/oSYkendM+umhknc1PLM0HDTL/74lz0cSWRB/Ogs+krzkFUoks+OT2RSXD950LYpyLbqECYqUtVABqV6i//7ieqHdxnLeA1K9Q/wA5aG0NQLQ6BJyli61PxMtgXJh+oQ7GBdEohXblFeS5dSlXXGCyX2KpNF34IiS9VUQgNgsv4gxZ+CLilGUmIi7WfVWAF+9FqoGxjXT4VVkyfeXNExlquUISg6HSfuYIxIZoIo7pkhgQ6fvF6WL4pqbq141opHj+W9u+2aCh4uHObYTdLxSUYFDeB2WmCFkEKUTdsYiB5tpc+qCGci7MMFx7IhIB13R4pSdQR3tuiIw1/hFhrsjIp+7nOx25/wOLvW5BWEvk5QubZsuy/wX8gcKGa0+XMeBW2RePzTcc6MzbhTIn5Ml8QQtVfC9eE5GrS8ZztdtGzsiIYV2MsNnngkkCexNhLhj0BdBr13H/WD+QF4LFI6C9EljcYdYzgcUPebYILB4BtUFg8cuRMUuGh3OMWTLcj2DMksFehdvGLBm+11nCsXhmwW3rLra7WDhGWjezsCBzM5QMbn+a/c0OTjsox7yDCdmz0ejXPcij6zJMT8ZdwO480LzT58wBainhAkyFnOnJxAdoOrjhFQu57oliJjkxEBLsmdkXH4j9mGCQldWWWfk8e0KoJ3jk3DFP/iLCBSoCa+q+Bip4QgOzpUx4A2T2P7x0RbBP+WZuwjXUmTPAgg+ZzIFlwWdM5nS14CMmcxTEsxaYc+uCD5jMIXvB50vmRoBnMdy2g8QORGIXfr7crssDGe6kY3MQFu9RsHkPAGxlshwygcVvcdtuBmHxW1wZBLbSJfYgbKNL7EFYo+ubIPpQU4ccx7kRQ8WrwG+nD7+YuvBMiVkoQrc2qluiXS8jiAwzK2VcCLxQaomgy+/aITqsavsLyIfICDHL8EZ2VIaLOUM1D0RrA6XNPnKyZRuhr19sVRSEimdiMJYbrw/BbDMF3r2YPRHvVMJs4HjVCOa0gWdnVGa14NtXZVYL3ruCU6dPhbswvFRLPruQM10YClqWuvXwByvzgxWuHl/e5gurUEy+bZ0bgCWrBfWD2Rt9UNXLASHvRmtFA3rl6F45S2E36ovgdkXzjaaQCElsE+dyBnsyDDiTPJ8EGNzJsoc5zTXZd8C+1ZqgBS9KfhtD1ArrCL7y+6pcEggxQw11ib6RWW183CKwqr4RQutl7OxLlA1q6EvLN9p424Su03aoJl4RERDejG0OZ4Qv1Ny4bYPg8xk2t42YHytoDt2WnNEuxwyq0PvlyIdGLWRBb5oG8YVX0FsGHMRXnhAwUjn0NGKIP+HMS0YWlfedhNRIXWEIqelZz4iG+ELGdSGkpgtaWwip6YLWFmZ97YoGDAi/X9GAAeGPK6plI+eHPq/o8IB8wLqiaDbAH3DCdybMzlB8xIRYDqXvBSGWQ1DbTIjlENSWEBql4ggjM12Og0D4wd6a3RePdVxRVQ4ZJh2u8Yep9KAhRE1oQcPQ0bNuIph67WGEzsZoglWTYzTQIDvpYQkGyZ9ZCTMwef0ibJhQmYSxwEoXGkLKhDIlzP6n9KMhVlboR8OcaRb6lIo5cizTe+gg+K53gUDwQ2/Rg+B5VWVuCYvXVeKS0xKvq8QdrQmFUYgrZktCTYhK4IXd0gh8kx/BQnjhNTCztGg1f8Kn0hKvq42RF15XGyMvvK4SbsSW0ftk4Ps0F8prKOEQbkLKEeHPbpl/GBm4m7PPb4iLP/Dwu7k3jajssj3Xc9vN587ekQLOIA/tAWaSx+oAs8jZ8TElkZMTYDI3NwGlcFMTUCoTbUKURynOclBOCG9yLAjoA9FKl0NZ0OiHHBOC8FMOCUH4JUeEELxU9wWXnKqX04PwhQwHQdAqR4MgfJODQRDe5FgQhO9yKAjCDzkSBOGnHAiC8HojbgTf9D7cED7LUSDouNSKHASChl/lGBCEb2QICIKaHAGC8F0OAEH4Icd/IPxUwz8QfanRH4SuZOfg62qZPFq7ju9mckNEaJCVPLgHg2xq4AcapIlxHwjeqbAPhBxi1AeCk4mvwYItMeaDDBEvZLMn+EK+DK76QrIMbrWETBnC4gp5MsR2IWTJEHudkCND7P59qLEeiD65UA/EXGqkB6GPpAZ6EIeAkBhDHKOFtBjiDiAkxRAXGCElhrh9DbnqKETvaogHog81wgPR5Tq+EH2p8R2EPhMX3oGYWY3uQPSiBncgelVjOxC9qVEYiG5qEAaidzUGAzkA5iBCMBiRfqF59k7kOawFPxRpk36hef6DzMOothL5TAKJFC79FSbQYryhzYJeXpVeuSqrsq8+r/3BJr/6RDrWt4W+wTy+vzv/oEx9UKfawByfGV47j2wSq/tGsjFlfPYwi7v/uhRL5BU1oIAPMN9oJSyhDzC3V8Z2lV2zVMkHn9d+X1MffAIWz5L8/hIxB5Y6+Zz02skaXHoK8DLP0iSfkF5n0Qztq/RGJwPLia18htR3sZzZwmdAZQvLdEsyiFrZsmcQtbFVzyCqsUXPIGpna55B1MGWPIOok614BlEXW/AMUoOSmHpnyECFbk63+OSWQp5I3BpXJvVxwgcph1YguhpageBqb2cITubRBWs3xTgINMRFVBKDNKwmspAYMky8BZRvDNzDVi1kGTFopJWsIgZBG1lEDIIaWUMMgnayhBgEHWQFMQg6yQJiEHSR9cMQOW100w2gwq41uucGRKVbbkBUuuMGRKUbbkBUut8GRKXbbUBUutsGRKWbbUBUutcG0BPDjG61gYzV6E4b6/yS6oL1ThtuF0izKjeqWJcLlRrcRerYimD+AnkyzNjGHQvCdtYBPMGFG5Rf9Nj/Ap2OSdZcRloymi2udi3QdNM6WCmSnYGOFpoboca57qZe1A4gvsK9SrxBMZetWG9kww90Uk1t+IEYh97Jfh/okg2y3wfS68LwFlLEptYX2e0DgeLto/yN0peFkcleH9BQC9nqA4JWstMHBG1kow8IamSfDwjayTYfEHSQXT4g6GR7TJ63KQyEdbE9Jh2ya1xmYntMnvaCdC043ggqoPrzgHaC2psG9zwzK9lhEl252di+t6f9Un2skW1Ys5vxa7OzPaWzH5edQ+4g/LQ/uUS9s+9pR1h/CtnGvhB1kX19g49fch/fCFjU/rrYZ1eyL/VpW2qf2uRXkn4PdTtLILnU6tzvw22ry68Jo5ENsnd6NDLcW7E/U4towf40lotXpZ4S3o8dA8JHuL0v7UqJlbwLJJvG+yvZ9eIp0biMa0IfjavrWrl8It5i6eARz0Bbma50XNqWJBjoYpXL5+RESm6AkWsPRcCCLsTLOricKotuMLCGS8iP+0pJPshk4S3ZJ3Y2ZyQCDVlcIyK7F0ScxYlrgClJFdcImMlAWsQpqrhGwArr0VFaL9uzQmT8HLDVH94VShAQeSUIQFcoQUBEb+XbnfHZVeuTWOsfjKiS1j/CZMYH/9PXXT5bVflQFI22sroacORTUQTE8wZ2laqisZaWtqVogaAxHXsOYwpAU1f0gLhYbTpPiPa4RFLA7vhaJm/1pQGho97gpxuv15bIk+1NTmmLZqKJqWARzxhzczIPr80NNSudNJXB2AfnlTkVCtdENvntYzTKxVoin2NgTPJnQ3T5g4nyGtsA/YuoFfa+VxB/gFXZY4jxG2ujgs831piMMxvKKJHU3Gb3AxRnrzvPvrU13vVbiWVcqmH0Z6Ozx7kAA0b8VygUw8UW1ZOMrVWvpMsAxDbWFgazanJcogD5Hx0N+r+ch1Zw6AvC/B/Cak5lQRNJ+wB8D4zSSqbuAUdS1TDggfpjrxfiZ/1hjCoe6t+d1gEHTvxFd4VygPkzM5wKH2tqDKkg+Vl9dNbJVxMy7MGGYGtGsKhfoW7HrJp/AR5Ndq/qBZgUCA18os2NS48HzqjKzKQJqr5XbQrZoubOiy9/aBLA8Vx2mBdiJppcWS6YElPrngW8Tk+xEZKHti8N5Y66PM7JmehoTkCXx466MC9m+0pqiiYm5gvcKHfsluueXoXMSQGHy/rSTzeFACuUqtgKI1VA1vFMg63MFVABrC/cz/4cy3vGFmTpBmuhfR/okpumRcAFZ0VsX+tgRlLPmv6wxlkVijCSvjsq8ggZDQb2rAci0V0qWtc3EN/iQoUEbF/nXKUeCU9n28qQAQffkfDcnOpS/Rme7JuPijQlH2nJRXiwH8h4zmj2uT5WqL60CHxhbZx7Tx9ZdtRHQNVRH/GMNCsBhj8KMlKa4VtZpmRzqvVsMCFa5HMXiFrgSoS+eXFtbUGPecfT9nmkLhHn1lHw859ve32bXtBbWd3e1dR+9iGN+hDlaHio4jgQIS3GFgMBubgDZas6OxDx1Ntgg+OeeosC6AMW/wG54fyKt8E+iEm/XBlqVNpt4rrAR9XL2QdAtcVuxGvkhhVg0BtXsAjmQvnSn5lRWaGxCyP5dcr1qCE8/IaCsgctkeVRoME2/nwZWHUfX2g384ImQ4hql878QNO78yxkYkxvzwPxu94/B+IPfXeC+BPePTpBvWLPA95oD6WTy1FoXGBWd5WAV2TLjTwgHlZly42sn8FtrgmhUNq6EJoiJJowim5ym2sML+yVzNwv1j2OUDte8KX8KCDeMrIp9MzWVjzl+tjCFlfEsJW9+DTgFfPoTfVIYXgjc1UbEtkYXU73am4AbHS1uVLEm1w2ZgOi/KMv0V3VkJfnAy9CEQhYgM1kdUFIHQZbCRCjwkoWWBqfCpdUOhZxLtDT+zGMdVM3IAQ3BprxdSygXJEM+DGGrLZ+XEjpzbLLW1yC4vl3ewmKA69AEaySv/oTLaDUSLGa7FOARj4FGLOqeS7Nd+XraScRUE07iXidSwxpV70qGJeKVYRZLg1xvE88rnfwRDXfoUVUqDhsZR0Y3pIvbsEwl3pxi3jw64DjV7sYOLPyZRWA2cPfABxG599OF/sGoJ3XODNG5pd+Kgy+QD4VBrxJ2oCzCVnUfMCPbfbWcSY0mTJv2VR2XjnIXHImJc2yP0J2vzIyq3EmOSIeDbmp70ss+UATH5QY8C57JrXoevT5ZJqkXZUmOdPkNCEaNXg83FGE5XEzr2HVf2IxcyY3VCs+p7CqWX2OrjgBsHHpctH3qce7aFidSpeLRjVIOQ0GM7njhQEJlDPTwl+RJxezJFbSfMnHK2XsY2jBHz6nksMJMOxhzPxNvBg5nADTyeF035IWUtAjzGSH4ytMYSqBdV93K1H7K0KQIhx8TWVFuPuqUEkRjjCsCHdfFSopwhGGFmFfFSorwk+Yf7+7uf9698fTn3x4+Hb36fP94/MO8fD+w93Ds61++Pjn3ec/y9O/evrnlx8ZG72stpZZsV6fS/H8P7Tp1LQ=
Copy blueprint
Re: 3 and 4 way intersections
Posted: Wed Jan 15, 2025 10:34 am
by SavageVector
Hi! I have literally no idea what I'm doing, but I made a 4-lane 4-way RHT intersection. I run 2-8 trains which locks up a lot of elevated 4-lanes I've seen, and my city block size is only 256, which removes most of the rest. I really wanted an intersection with no crossings, so just did my best. Looks pretty messy, and I have no idea how to do rail signals on an intersection without crossings; but I think it works okay?
I call this one the Vector V2 (you don't want to see the first) because I'm uncreative and vain. I don't like that it's taller than wide, and it could use a little cleaning up on some curves; but since this is my first ever 4-lane 4-way in general, I'm just gonna call it good enough.
Edit: I just noticed that my 2-way symmetrical intersection has 225 rail signals. Okay, it is no longer good enough...
2-4-0: 197.37 TPM
2-8-0: 128.96 TPM
01-15-2025, 05-19-49.png (1009.93 KiB) Viewed 555 times
0eNqtXd2OnDeOfZVFXzuBKImimAeZm8VgYE96swYcO3CcwQ4Gefftbpe+6ukiq85RzVWQxD7FjyIp/utfDx8+/fH429ePn789/PSvh98/v//th29ffvjl68efn//9/x5+ktnfPfzz6Z8+/nz38PHvXz7//vDTfz/90Y+/fH7/6fkPfX7/6+PDTw9f33/89PD8Rz7//Pj89/7867uHx8/fPn77+Pj9b7z8yz//9vmPXz88fn36A+9e/80fTnjvHn778vvT3/ny+fT7U37UFwLKj/rnn+8uYOoB8/u3J6Bf/vfbDy+UXAK1798RgTSQFrtOS4dp8ZwWRUFcc5CBfZCPVx/07uHnj18f//79f88A1FDKpEhO2sRIk1IZ2pwUgxaRJoU8wBhFWD7FMKxkhyIprGjrW25LhMpKekzbWdT//sfXfzz+/ILxw/sUpb+hrESgAwU96Q8EaveBRhIrk9TRi5OxCNVZ4YutaiGFz0IUIcUkRqnsJ8UwZ0343/ef/ueHnz++/+XLE8cziuwFyv+d5TUCZpXBQ/KU/coYZpDXqgii8BVWgHXNFkCt6iSNk2ROgLM3b+wGFFjN46+MxKMJDGoLNIKhtSD5xsayKrydGiz0i1UxjIJGsC8JaIg30AZMnV2jjvd4YpzJmZ4TlgLC5aAGtcU/TVxXWPTnCajfpq6z9l9i2ip7mjFMo08zxqHd/PA+6sp+VQwz6K+KcYz9qvD+6ZP9qhiGdmNiHC1stCETMTAKG3X7zq0K3BRaySOocQDZyCNIYDpomueJc1UgztF+TkIe7OcfOAWgzlh5ufzqyC1X0NOx5enUGttphRVjCV54I403evH1/a+/pVd3rbcZN4QVupgu2stJcBrLppDbo7NqDgR+QxHen65ZCHCQcTQEauyBxhyc9IHGOE65UFLaFTArrDZarI0mrJiFd69V0Is7TO24CNo0wqVvgpi8zn5leBeb7njBCRbr4CcwRn5ZC+8iQ+PYcjq/VrDzczh0PCUSw9BxnsX98dPjP95/ewLCgrb4c6eQQdvl5z4x7Pmv/u3T+38+Ix50PUQ/x7r/CdUNdxj0GjdZbWjhDTWVjNxafWEizrb4VviQp8Tb7VthGi1Kp4ss4QIeLsg1GN+W8BDPCytyMQxRCbjGJa+syIW3lTdW5C6LAYQAet+WlZh8vcTDchUNyfH7YEUxptK2RTHGYwPqBMbJaK51JJqTAgUSR6ELqYsUXmvi8lKh1cZinAZbUruK01kJS3DYzFGGM2hGJ0C0G+UxztzW8IkIlrP8j8mUQpO5VBwhU9hQOiOz0sebADU0KbJKlQ1Kool0Mg7rEsdhIkpKYJcYZ/AS+P1oO5DgEwHTS3N5zj0IFIgrWC6KzH/89tuXr9+CXxyLLbdLzIIWHfz1V4QtDoXUyOTYKhqR6GtB+vcvZdhaK8hW7zhbKxutZ8zorN5nQLRSJY0sgyzz9pbJi7EdIzXGYcOO7MucPbIYp/ER+nKpMkRhE9m93hOkS6Nvm4xyNnXbk8anzpvy0yH1GFDJ8kxGGBtoZDjGuyF69QPnvhQmJDpN4oEI9WX1QktdTGlnM7k9doVf1arhoNeuArL9GhkOG3xkOEq2s/QBeIJ97IteQiddyet2lwHskxbFhHK2xNdjt13LtigmgGw7R4ZTWVFMcNq2AZyIcdHgBkEqF358/e2IQHVf8BOu0FF9BsRG9Rq7kW9r30m989TEXGIM35XlhKi3BfBbHrwK0BU90DBkBUZ6Ed45Y3JG3RaejC0NZMuBE5/XoGOQjCA2BtHYqxxjW4ASQDYUUaCLQl6Vy7GKH4bqm4asLQ7cNmRoTf0oCmq9S/Zfld65bzLimyp8GscZhziN1oZY6IxNmGnS7ilG61WCM9AE04nvcehhhprjsai5bY4Nj/Kvf+N+FKPQIAjcpLj6BxQrzkxhE7coMFtZ0djVnW03RteBeHBz14OTRfVtIzG5tpYzdAg2OLB2Fcw2v16Jr6d1LKHVWVOLhJXOa5ZhU1bCNpNg9NJ6FbvucKX/uIz9nkq/eGelIKFb9yR2tftlsINk64idUTeyHXQU5NAnOVuFoW76fKeC6hBg8K2Uzd9w4jfQmGo1rQyst66WepdTjBHfSL2IBa++6hzA1EGuoilqFVe5bNxVLqtlwFFlD5lrISqbnxgtZgfavbkShaOCEuaobzwXfbcHMQWNs9aA50iKaVWEnHYcNcap5HB0hkM0aNpVoL7TaDwSLm1eSctWA0N8VTivb5nohOBNr+/kWGMET7JhffR7gv0qfpcfD30T0YvQrvEfH3r3q+f4qseAcYEytLYRw66zixGJFJ9dJU1ZrwqJ/WpFL53nIOEZ1QDrW40VkmSlwWSFJMHxjQzwVcRW6GNNgEDHzVbuYTi0iaBt+m3LzCMbHRq5K6It6BCs3+eJQwTrznKLjOAbTXAfco/eEc1sYGnWV1A+5l23R5us0iZ8cVZpY5xe9pU2QRRaaROgirY623ccE+TEO5iPsOUvmNyTj6i9o553ib8iBFVSjCwOv/CJfderOAbN8J426wA5g9onm9WyEpPmrDwm36iFNkUnJ8EaIpgqvKlrDP5GO9D3CodVwOzrvlf3Fj+hv6OpgkNzK1JBqPgaAPueErCO8AOuRp0WRSGBgdq2jEDwk5zKsqSmV9XJHS4We/ajkP26KUVDyCJ5RlElUxUG1N3qaGTiAkPtbHbN7guOh9JWG/qOwRYPDdpQV/HOieNygOgF9WgcUntR6mkhrsMu0cmovAkke7hPDe0/Mg1BQ1MS9UTcsq6n22Yg8JUcc7/k8HP2Epdsa/ztWYjv6fdVm7Az4SKzcZJ4R2SI72lal+lEKOcnWW0S8JO/ViVkTuy6mJMNSeZYWn8W1CCsa8MB8zUFRjUCtbIFcJv3dEHXiTcQ1vgwQ9SOMue4MiDuKA7rBCx4c+qSvHkR7Yb6/qqfAzIl7QSOQPOjH/b9/CYw91g39jOcLiYI3uHL1EOWxKDCd5d7SHNsn7zu3j5CfAQ6uiuruDkvyucjBEa93OUczgbJuIO16dZJXFAnm5O4sDOrJ315mzeIzw1OWaqGsDGxcICoI0Qd4dJceHWoTpjWhvZ9jJIemIa4lQwT5kVCoxEXYiuNdnOGE2zqfIKshfDhelm0VcQ85Rbl8rcydp3OWZHvwet3MWqsAcToVyFg8SyqELAC+68vmx8imxWKoqDdxtJTYQlVVlAntk7KeDd4sUVvJDB6O6qTwHiu53ukNxW4bprgM2MWwsbE4uuznUCFla0KgQrrWm04Kt5TUpVAhat9lTgt/JmFSpwWvtSiEaeF95405rTgmkRjTgvWrcacFux3thGihlcD3pbSGBmAdasTMoA3qnRCBtCulX64hxdJ7874Ow2ubPRBfAVfF9RB3BeNX+2nhMA0fih6MJLDtVsm0KECbezkGJ2gHF3ndEojz367wNHQNyTscILuqle1DmdraiySIeh26WMCheXWK7GzewLlqva2JSZBdAKx3zURO5HnRrrSkU4H1KYPPBEbG/M4JOlGhzoYLvqI3Tn9pVCo0+EMzctqN5hgxbs6Ga8Z3wgijNuMLwgRxm/GH8YQxnFWvBGa8ZyJhzIY15lYD8L4zviyEGGcZ8UzK4z3jL+iIYyjO3AtYzxd/G0NYVxd4q2NThwZ/vTGy44mGBbXss4cGa5lyhwZrmXKHBmuZcocGa5lyhwZrmVMdGC4ljFRAf6WhwziyAzXskEcGbFSZBBHZvCDNy8LX9CwyMAywlHLMSgbauS2hBM2goxuj3OSYtBxbCPHZWIt457NWbeSAWeKbi3pR2V5QC7w5OvuKzViSO5iort7+8TlZWORiRYCHlbLkbAihsUn7wohGPz4kMVyFzZOtI03SE5tbxPoCmxzcquIJjA32KZvN5MgNPN7TuZdyy6b0+uFL39QwmyUVzoVAMm6E9Plk8HFb0ypuBK50okAjNxBJwIQA+VGJwIg2EknAiBYpxMBAGwvhU4EQLBCJwIgWLjy8LJKGxTcXtCautp/xMXp7G4UU+Jj0E0px+Di5cdoCIwOVxxTP5iD2fEGl5OoOAIKzwV2AhRPdc4QVeInp6EHierECRW+tLByURA8PyK4clIQPO+Z9kLA85XATkieKBtkOKQmwreZrdQaRDbvoq4UGwTPvSefQIcWT/hO7U4Ie+VH3zsh7G/fgYmVXxl7grfFDIYPjY28kMOrna3kzru6NXvV7bEBYESoVy6/Y4ScVyM3ElwalvBir/wghR8CHgI6Hbc4EAj0Vui4BeEr/O6MXJHBFiLjgaEYQTC36kWSuzfGRttAu6TMYJrNe+OfyHx5GAS2hm3jnQ7mfmjoHmhZOT8IdeNhG+baaRtbmJTwgnYWxijhrmw0zxz1JQh/450CJaSmb6zB0EGI/dt9Mskrp4PCxCuPxvCaaOVmWIzHlUZoDvFozmQUhogtC3FpEm00k9C/V2002B30Au2CQMNZnjZD1Fh48VaaU7SHEQvnUk+X1lvU8BZWbgL/ZPgxaL7UcYoSMH5sVDq+i7MDY7NdJ7zZQgmeoO2ka/2JF8izftVcAwUDxDEO2X1ICuLzAOeXfBV9HZoH76PtxhoebtvqA12btmBKDKNsDHApAnEMAO+kkSusZBzqYWzQgQkc2j9acyWhAoOx8YRJZS4E23BRG3E1mKCBQSsE6oZj2ojbd2OBzWqPxPA7zJVBoG5EkYn3EONzaZ3V1AhpFty403MLEV4/aOeOaPnPqOytV4c+5EElprLws0Mq3L00YV09Balvb9HQ9sOrbEYlyW1cc5o3DBZM/mgKG7NBN3revCEEwwvfSEaAKtkOMasYJ7gqyLLbECt8K2QAtmV059xYbQT05pN4g+CMo+szeiokwqzy7d64kTcH1lp056uW43TBVQReyZWeJ4knuDLgxZo9ZEuc33A+4JzrmMNQwCe5SpTnBNzLMw0Wc8VbeaYTqHye9QwfArIvKWNkNnLRNYbaybXXGCpfgXS9ytLBBuv1nk5KJTbSMPK7XYbM2OLkS1YQmVizzipsYpBwAdLyGypG3ggWhTgz2QgWhWE2MadYwstuhLAb0WKtBNmDzpW0e3I+KnAIybnuKvh6/T7xW1sFr3achg4cWUKn+PaaI/BEDhRfXyNK3C94o86qXWKwjZ2Nw2A7OxuHwSo7G4fBDnY2DoM1djYOg53sbBwG6+xsHBK1aUPTMJaHVBoCC9tjjAX02irXY+wQKL4oigCFtUwJUOW6oTFQ/IlaAhT3LQlQXLuY4ycm8nHUTtxgBKqQ2/Iw1Epuy8NQG7ktD0Pt5LY8DFXJbXkYKpwqWQUvCNV22+od2bClfe42qGPk+26DOgSvZbeLHINHCwynJkEMtO62pmPwfHSnhEbqxkY2Ql7IHpoEOvR/lG8pVUYU4Qq+GkH05Oe9CeuC9tAc62Ndka3tOtDVays4APbH6UA3dWtKLFUS0FH5ritCYpJnofKn5hxKH42+nVsPH9dStM1mjpTvMaFjO0udEGrbOdoEcD+7mQCib8U4x0ordL/SXetElVhis3J8wH4+JZbYrNQeBLvRt1074UUZ1rfdKExiBTcRANrOZMUMeR2TjWY1rZIyjmc1bRD20pztOIf4PAvbGo6JxRS2kx0jt7Id5xhs22sVWM1phvxGJ2d3/WJB0HPJBTd+k69ELA016IjHdlQD8cu2AxAIfm4HIBC8g67lKkEgoF62oxoIXrZDDwiejyiVkBdvbGQDrLxQ7/wGa+ZElW1cQdbaqI9t59pCjxBfaDOZI5tsWwmE6tsOe/jxA+9+cdxCDHyPjTcCtW4HF8nHN7ZPBSKzs20eEKpuB0LJxw+2zQMi06g2DwiST8CsRVkYvtMRz7htXYcQK6I6AYuW+trR9HLX0qUhfApmLRGG2A+/zHTuTR/3dNsP6RsjxITzON5usslGiCnMgYdenWA+8UD3d1SHqJ3QZqYYMiaUn2pqBHwFszftCGD8rsTmqGhdY/Wyz9vp2VF5VT3tuMCOtaIN2msSGCIajR2PvNm8K3YceOPM8nYnYJfr4J3pwfAeuliNgsRdVCVUybf983AtzsBff1r+OUJmE9Y/h1Drtn+efHxj/XOIzM765xDqfoN28vGD9c8hMuk2bAh1v1CRfDyxDSq+6UI7FS2YQRPxkFUhWmYWLmJfdxbLVOL8OpxiyWAlxu0bdBMWp+v+NDaEP/bnpiF825+bhvAnPDfdCdSNNVCNkEYt7DqxS4eUivJUNtaJEQ62VnjbF+Hw6mZtY638wkiHJ++VcHuJN59eQKUIQuvgWmtBVON6a0FUctUwiApfmzNGDW+fAVf3f1wsuNxzEl6Xr1pqsKbCC4ITXOgZQy0Ea/HnnsaCLQhvt8sQINl4vFcZssFhpWHXRIKx0WN7ZPeZUSEiOrPbabHeLlRktG6snfHrX29gKtWN/fqNZTN+4+tx97QoYdgM3VsqM2cClX69tXLmQz77CJo+g8cIr4l1aEvMNqKnQRE/2TjkEjgm3bcDEczOzv29UOAPsLsThVCEub8fCqR+f0EU+AN9OyYBf2An1KQkaMCx2mRgN0LMTgnm3N7FDP4AMfZLWRsv7GwqRrALO5wK4lZ2OhXEbex4Kojb2flUEJcY/qXOjVgpTJ0bsVOYOrfJblYGcZ1drQzhGvFulDmDS7ekgriVbaHFDI/hrTer2RUkuHMb3l5erYMIBkcw/ApwC4Hxyv66MpBVEUY8D2Uxbgw7ydlVENbJ4VUMFm/CqY2BFXJ8FYSFb7fKHJngg8HMkeFLZhp1ZPDV1qgjg9WsdQaW9y3b8tCA/XKGL5I5YIFNFCbgFFSbV8xZ9PypoZ00eg2ZSYtZ5UsXR6IPWY5jxLtQNT7a8AwqHxAOxprge2dGZ8jmo8DBWKuK5lVHLkAx4UwHDSoacz8lG25fs+pkUw7GVXT1zDznOhu3ntGIjhpGHvZbajIW4z01k7kPiaYa5j5sSvbqgLBjP52esNXIbh2Q0EluaVySu7mm0fD9NM7I8cbLTn5djruwT4Hfy5pe2Z4kzB3paGOpZLFKaJ07XNy4ErU1ikG62ZBARTUdzpMeUU293ZJgr1pxuPw6dMSTBFcGnFvivRo1MG7DvThaczWLnWVFNfh4xhPOV7xquGHeygZZ0tjHsuH4QTu7yg5nCZjCqecmjg4igz5rO9N832IUU+Nb/ZctUOSEJzkQgfMKDT3tCnJov8hno44SDxI8bLwb1UeMH7NlbO+kwg50wLMbk0Htu5PmIL7uToWD+OhNqp1B5bsEdDD4k86x3GluhtO5BGArjKFLc8Y1W0Ali0zQ9oojaYE0hpiBj2VYyY9EQ+C2n2EINyAZ2vIzjTXtxq2OO3cqIRbYBt4B5dTRoetyyjV1Cm8kmxu9TsZcGztdPTJiFQ1/YJZNvx050yl47aswZ0rs0unMfTEbTjBj0V/17mDeOnOJTrrV3BBUutUcQqVbzSFUutXcEOl1bpEzRivekuMMqkAz6ZOB5D3WSjGCv/kqxRK+77xS/FF0xHup3QCSNBvrbxqj1hvvQjVGwZ2vmDRG1Tc25DRCKmdB96q2yaDK7o5pEL+SC9qeYO+KGOarBh8oGFfc8M7SaSceWS010R6fV068IU78xHt8rFIEw+s7jrImxN87qprhsqFZ0JVxB84IcYSfXj5qeG+sq5TwB+Caih4yMKBgYAqZkS1OHBm8RUeuyC4TSU/ZaDc/OtjG7chjCr59VTqjNYI3uQpzNQi2+6oOBnPeMTUA/YDfMTWA/EAtd0wNQD/AjoUwelUrO4gd2YNQvjf6f85jCRBjNjS0N+YHNgZCOiOcG0t1zoMVBh3CzmwIJf7QKqzz2AZGNT4PMhhr0wrf7g0R3IRv94YIrmy798SUszXuSe8IOPQCWt941PvJFwBsVUPrm+MaNxgfoMF+7TFojixNmXgr0VHtcURa4N51VQYWzgOpEbD4i1bqDCysisdkFgSLN8kyR9bhhOth6BBV6Z0OyCDB7UoHZBC5YH/BlFyzw8C0w0/mTGHoneSr6Ite3PR0OKKcyQFGqFo2CjaJPIf3ispG1LREcCI/UPmoCRJtxUsfMglZ0Y11rC2jPGaJwmPFgzBNuuGctsn8gPGxh2NeiJLdeL0xJ+oo3fafckTg/Tyjs57gkM1GOuSIR+W73VC6GztXKMgeiTk6O1cognBC2blCDHawc4UYrLFzhRjsZOcKMVhn5wohWCvsXCEGK+xcIQZb2blCDBZ/zJg5MsOHK6kjw4crqSODtaxTRwZrWaeODNayTh0ZrGWdObIJa1lnjgx/xEqZI8Mbb5Q5stnYyB2D7WzkjsEqG7ljsION3DFYYyN3DHayvZ1SMOcV34azcgICbICaXuDHQIWBFTbExmArXwk9+IxUQn1zt+pMNCV0Un2niFjiz4h/QOm66PMOzzcMYkIRh4ezVlx/4XeHsDub50ryAzGrNkqNlHfr5JRWBh7pg5eNMiPjRPtGi46sfjHsB9BYsI0rFpMJm73gMWKbhCw5/gaWMB6hF6X7ejFcvCWgU0KDL+FhnEIv+EusfRLRvROPYTHuphOvYTH+puObeIRxOB1fxSOMx+n4Lh5hXE7Hl/GIUuem9CI/DHfQi/wwXKMX+WG4k17kh+HilXwrBC66hue8AlewKVqvYIdcLzQyeAGq0shgNX8cewCkQbGI104HDcBAu+NvVM2VvK0I7ECaUfzg7p8hCNTmtnZXZCAT7bPs+ZFQvs7Gu1TrmcoL5oZC1nZqh4lQhCGZN9n4BU1+If4G1AeVcUVTmHjJG737Q4BlFt7QPQK1XbEmMTTemLp6PUHu45fikVEH1jV4w195PCIWZMekN9wNbZUhGK4g0tdXh1/WcRoa7R1/lfJCodHx4qMSLApttPcOO6S2bhpgstujZ6+g7NFy9hSwuJ2/JSHaYTWcg4E11NAVZZiwkbYpCd3xD7BpG4mpD8UPXq5Tz+qITaO7wonXVbKXcHjFk5aaCMiuAzW2LUqMa4ty+LGqWQ9SbyYfXXU/2QyMerjCs/3zBofxfja/DrQxuV9azNL4k+9xRxGejrLfaYb9ANkYIxazJ7QL0Toc6P5YxseRLwD10c+36kV/lYXAqPNZzpo+74puNhblnG+BifAKLmusuTXsCOyOAhBEN/6ezmrkFKSr0IfzodKEdqA5uhbHDj+yXhYCNEQGXdTz3rZ6VzXM0b045+2dl58yQ+BGL79EkfuG6ZfFLSSON7ghdV0pFSimum081Vr64g3yA7Z/Z2E/AGaF7MgAPkfv4QVucGJ1OW01zlRNeCZqvdiRAcHLbuYNILjFey0azoDg8t9KCdYKKNCEhyvcGVi9Qy+BdbE+x8YPKPMDeHFi3XEVyTxOuDhxyHqsNNNpP/8QeiSUxHfbHCoQE4q/L3WoQAK08VLjZL640fsE6kV868yN6/BzxYftVyAEdMXXr1mMGzNo0LIbR2wbi2sO2U0QJ235B2DH3JH6yYqfa7gI48mr4VXJEiRelzIk1Nk7op5q93iXT7/YaJN9XGVAlP70A+S4rt3g0OZ+cHeK6EFuGrl1rra51fxwXzGy4ZrgOe652LXgMbTTVsZjXkjZNzMZpNCqnCFVWpUzJLQq5/0AunmJPMF29hyaJARyu0ZXXiiFG+wZpEjGnkGKNDeNRTtwAa1Dn4Lyw0Fpcp/RjjbCMMYV+y5yLYzfONZad22gUFQ30nS3G2R3/MWOdbwFIlS3Q4UGRHtPPwDOvPuxsq5VJL/zhIwW4vyUIG0NsW14S8uRTm4NSSc/QeNdmccptlgg8BUvhwXuCFMbnVlsl3U8pezIRbNKWus6BdMNYnbjVHBVrJsmDO/sg14pkrIJJPDoUE07MqlNMbnFG0+OuxCjePdmlFgQYhPXfPNXlPmVXu4LCcBfEd6CJGLY7yzNtSTKwDtRDkXJkMDymx89BW3ck3N5+kW8JezwB5LAHu8+OZ9UxgfjL/+MKnqjS5tQSeoJmn7xsCVBi26q0mEuHVElJR1LuUF0vdPLx4jmLrVX4DFc54U0g1K22Pm87iTBGmzGrpcEyVh5v0IVnEdcAp5SRatKT+KCUcj1SV0QH3jjmaQV1XUo7BiVFryUBXBq/qhN94JFGPiOlEMOE3d9bHRenXS31wRy3DfY2xt0UKgCHXdwb/elFcadTiH4XXzfltv1MzZUFw+g5GSNd/JSmiotwYn123nAqN2ARF8wOrrDu94nW6a0CYcCGUO7qrwcLAHMsOFxVzvIjZEm2yKQIt2hOIkc4KtRzvKeQQkt74nTPeu+vGeQaDL+AEq8+Lnbla8HgYCJnPSL1emHD/ZJ6RTJ9qUvg8Q2O694rw/EIEw+05fRhzdbHCKduOgu7PrRTq7zfPqNO9QmI7ttPxbRJyLo3mlBz0hVWtAzpLEv6Bmk8TKZQU1WJjXx3jfe+VnykkBKgVPjyxXWkiAJKxgpTZUVjBSp0aeYQtHhjbYESVnLoo20LFLGdgilQPedSLF9Ucz4AuvJIYoZkm8bQUXqdIJv9vAbHy37yQOQVLoZXbGSosiGcmVc4JVLEySlhShDQvePH8U9vbO4J2JkZKRIRUrwPR6HtGY8QfsmjiBUFROmWtiYSzuEKyhLJ8PSyqfkMp5WPiV3KWjJx3c2zaz2Y0am0ipqCdKgVTRDMlqwM6TJLzpbQY4ij6yJbPQzZNQ2OspRT5CEPosMid/NuJKQOhPIRh9vRhy8scbPnwkoWOMz1auEnX40XwpNv9pYMRmJ89vQSujRLzeyypDgL8cskcuo6nxb6hK5FJIOYlKkjSGLG6fQ+fG/Ue6q8Uvna54p9fQFMhJvsUMbnVa4MWqCYrQcZvTMfTnMIJ2WwwRJy7aJGlAkuPG6i984YK28oF8U0iYl6MlLL9fm61LqN3Qmg6KjmZFYXR1saXIom3RQ29eDjOxJLxUYWJ+eKO+PZVQOelx2IIlxGbR3NhKPcVS2OAZSuNm6ndK5oTsZFK87iR81BjstMByTwcFnmVMiJx1GjomFkcO3xk4scQTwJ1TWFZ4i0fqRIvHxfArV6M9LrD/+HsrxeRmSstkVS7wmG8wizBSFb9JMoSZ/chmXnFYha5gKzcLm/K1jraSCV/EPeUuusVnZKO+FyBir0bKbIXVI4pbR6QkKXWxM6aHfpbQ0qTZhPTjObiRIk5aC5N6cdHyeIeHF+IPnGZLw9gLLynml+ZZcwM5LfIbUab5lSMp+3UxuNaeTtimSsV+XIk06TJxYM6uwz3aUM/tuh8y10B7QjK+sWmgPKEWqbIA4a2LWKl52X2Y7pYpWhRRJ2QU9syIWpOLPaByHmbGN14wMabJF34nV6WqBfaRjRHV2aF9BFV4r4uuiirBNLROJdqvQS6gmdAtVvJR+nHz26Xu7OybS5FiFn/iaAwLmdciT7+d1KEMiAgu5AeXs53l85VX0iYt5VHQd25L4BC0s51Ii6ZaTSyJjE1EbfSYpkZ0+k+RmqfSIstcEaWwgAepVaaVIv5VujQcpdP5gExIbHWo/5+0SLDq29gyp0oqbU9XYvS0pVbR7lSIprfOgx8EUxOUGkUY7LxGVf3338PHb469PKB8+/fH429ePn5/7iT69//D46em//eXpD375+l9/qU//7R+PX39/+Us6qnd31aqj1SeT9P/E79Ye
Copy blueprint
Re: 3 and 4 way intersections
Posted: Wed Jan 15, 2025 2:36 pm
by solublefish
Hi! Love the test bench; love the designs here. Thanks to everyone for participating. I wanted to share my first useful 2.0 interchange - I see I'm not the only one to have joined recently for this.
It's a 4-lane 4-way grade-separated RHT interchange in 154x154. I can't claim any expertise. I've
literally pasted Bocian's excellent Celtic Knot as the inner part - it's better than anything I've got. Then I wrapped another 2-lane interchange around it - a Turbine, if I understand the prevailing terminology. My tests give ~180 TPM total with 2-4 trains on nuclear (standard quality) fuel. (I wouldn't mind confirmation since I'm new at this. For the same reason, I imagine improvements can be made and would welcome design pointers.)
Note SavageVector's impressive "Vector V2" tests better at every train length, with bounding box a little larger and arguably a friendlier footprint. If they'd posted it a week ago, I'd probably be using that, but here we are anyway.
01-16-2025, 00-55-29.png (824.03 KiB) Viewed 444 times
0eNqlnV9vXEdyxb8KwZdkAY10+3+3Hr3AJkESJHD8liwWI3rWGixNEiTlxDGUzx6OdPsORVbP/M71m02bh3Wrq7qqT1dX/Xb54frT7u5+f/N4+f63yx93D1f3+7vH/e3N5fvL/3PFX/zw7//6Xzf/dHOzu7+43t7sHi6297uL726v9tubv3u48JvDDy/+uLt+3F9d/PPN7eP7i4+Pj3cP79+9+2n/+PHTh7dXtz+/+7e7/c0T5vZx9+Pmu/4HH965afPd7e3fHjZ/+nR9vbn96+b77f764d397nq3fdg9vHvc/vTuF//Wu7f+8s3l/ur25uHy/X/+dvmw/+lme30Q+PHXu92TpL/s7x8/Pf3kzeXN9ufDD77+H5t4+fnp925+3P3P5Xv3+Y3wm98/+00v/ebD4/bqb5uH/f/unkEECPFxe7fbXN3fPjw8++X4+c9vLnc3j/vH/e6rAr78y69/ufn084fd/dOnLQD3TwrczH/nzeXd7cP+61r+dvmEs3HT2/Tm8tenfyrpbfp8kOkFkj+K8viE9dPHx80B0sBqHciCCRgmnYKJFCacQkkUpZxCybJmggVTZM2YMFXVjInSVM2YKG6SVeNMHCfrxsbxqnJsmKBqx4Y5GvHVp/tfnjbALz66HcM8bTeXP+7vd1df/1u1QBPz+Lr4+5PnfwtbLFjZyHMzv1m28gGOauYDGNXObRgv23kuJo5s5wMc1c4HMKqdD2BsO//wGuaonLN27lU7z/mlnZuwWV4BO1oWdQVsmEq3iMWwIvjIJn+kub2HSf1IG8aJ++DLb3STheqp1bmjdN/CRgs2MLtzeTE8/9LwkoUbv8W9+rjd34zR2xjdlBp6y+YotbPTwKA7iBn8guwgNszRQT5ur/+6+XG//en2kGvbWK4sYN/oLFvQjZrlIRhZqKYBxYnCHnZxKmyUI0cyI1lUI8cAJlDnO4S8Gef8R0o+4kO35VRf+oiJnrDMRZA5M8/zTZS2QI/2cQHOZKuIPOR0NVTTBOQgk8zsIalBZgADT8LphLbefPnVv1xvfz0gXu6ud78ceItL6895qsVl1b/9Y94CDXhpDnnMF9gX3+BM3Bd+db/9+c7iCAaYlhUlfLRerMg+oR/dp6t7wwHPiykfRwZiVl3MJIjZdPjA4fOkwzsB3snwCrqX0RXVBHX3sSmiKAspmEfGznbSiHMm28CBtcA7Sy442RnAWrEvVxypB1o0M7PcpPRiOVmmSBL8wuPY1CPQeVUUJ+W/m9A9K5w3q+LlPdwmNmXOd4Cjkr4DmKRmAv73ZAIlq85pS12wzTd7iU3z4TSa78YOUJtolP3L3XmjrJOeAzmwU1Wn5UBEVL8+dyHwuluZR+ga1+cuRMy0Pnch8Hl97kLgy+rchaDX1bkLQW/qfmnaR5tW5y5AyOakpIO4cvNy0gEYlsYzwY7qASrmxjdh3tdjIzpI6/KCl+DmkmWZIZgAYdvks1g0uaemXg0NYJp6gp/A7dw0qWE8ApLJTU6O4xOB5WxgVmAhh74JCx0dy8scLJjIcV3mEct5s3eTTKLHVxySM4FlTj0W+7odH7cWoAo8002ySw3ka0yDZaxA83L6WZ3BSdzgx/ZkWiovPOib/kuF2rAeyptVeXmQqoq8kckb3XjhbGBOE0bfkc8Tpc5lPawSPsM5fAzbjHBND+P1DIvnJrtSRk36BjgeB6pif6cZ/ryjqOGMeHJkioBNcbziIU4KbORm3veRCMzc6xHJvx0olHtMX/BADNvrWZ1dSublGDTAafIWCSgPx2shlo0MwdICzrjQkYdNGNhO4Oxe7C7kCW7Qt3SEG2kp63KTGidy4ekCvvjd9FKR6AguT+ucpAm1dCIOqhixR7nJFs82WY39W1LwQY3kJO/IREheL7FsyAhWcKq+u0xgyWPQAwjCjfJJLDR0EhtUU1hHkZ46B0JsuMi9qpMaAZAaLvJA1Y/mDJdndr2uhOHy+gqfBFxeb7HxQcHlFUpeWTdeabHpdVoMl7ucU1wuccbPDfRg4yYxKgS7IjrBgqU43hDsunTsX0swJFxSqnLehWCxdy3JEYHNE03nliQmZJTOZaEAcA6UoRJcPU1kuEFk6vqeS5i6jHPFJWsOhamZExZOUkdWvddm2HjBRbClM30380wx2rC2N4iZYjn56QUzFjGdBsIkRWyngbjvJN+9HRiLUFDRs0yGK7LnsdsQOWUVwXMkoTP19WPEioiWf1ZygdThBuqwxVbpjGDzNgUHqmU/IoxVpYx6GyvVpOorJDRiUYEFZ+ubFOHYatBDtkexpEY9ZCOJOZ8R+5YayNGr8qOXlwQuqPYm2ZBmxKqye9lsYW1qPCXSNRyqkr0+NqpTM3ePPKt58dbuNa65x/CKiiUgEMq0aVHsmQuYaFohRXKn0YSb3r5dE0pQqZ3wCq5AXki4YoWg65blzoP7SX0xEpz9qBcfqZbdDnCEfoLudHy/FCbiT37Cz0OWw5S3P5wen/LSNcI3EvL8xJPA1H1+IrhZKd3+8rZnlruSVNBP/No3LRohcleO6xRcgRyMgp6dGrheSms+R+ZVFgObMN2BN3tYti4Ey0ss2qIDE0iMU2fQxDgVTqPx2+Dc7bIQ+xFI9tw9lOBWmfDxqDbLOzVSFUEdfhKzSw/YGu/VPNCjKivPay76faEHLJDnNRd9q2KwUfbTQS8NfpxKffFJzY8Xek342leKWFVRq0J8+mIA+E2L58UYA8HtJWvqFQGC5aUZy56DYJ1sYHaPj+Cl5OVZ0hVQ0hX4s+HFgCPBjRw3KLi0qulYzkk1IdwdT4rEKlPYDSIQcBrbjqEN9QTxwXhVDMuGPenA4p/VbqCcZFGKCebk6APYAs8rNvrVBoPlQa0qsHpQG2gTl2cs545oA0H6PfmxdZpZTMQ3WSmdlhD6z7NDIZQQc4Ob3Pc/QI74NOnJN+FFhAqM/kqEyStUYEy2vM4GDuoDZA/q8nyKakkqg+UVT96GNV0+ZTkpIixUgkni8dbMO8RC8YKMfiHF5IVPR54d8Ji8WX6Xj+TNenZos5BZzA6X9TrUwdqI3K16aZ4n5BCuujgym66ivC3zI1ivHXONZCgZXx7nb9R6tv7R57KO4XagNs3nejpzO1G1D/XS8DsNG9b0iaLlg0eJTTAnJ26E3iu8bWAbaNRcMl6zscReJK6cEI7UiZ+SHDcYxqCVLKdJjrxK9Gp9xoJOqDlen7HpL4wcYSpL4+WfzZbXTpZeVWx8uru7vX8cP0xDaqDlGsftET1U9BVegrWxsZkcZcWNBztR62zWr2rsvB/Ylv3x0Nd8Hn99MoGz+lzVESq1wlwxlLG8NjA8msVpbF7m0Yy3vtj0V16OUKtt0lOciFKc5uQbOyaxpxmOH0vsFG74WVkHTk56pbtDqsIxL9uKMm1RLPRoi8AmGMwrj2/VHKpy802Lef1FiSPeKDTOkBTb1LKEl7DV7D0tsCRdx+TFaphYJ6hOlbtIhPUMMyiYQhXwZON6EzfKd7QMN8m1RAw3q/y4Yz2zedFHW+zLxBF7VJ9BE4vmnW37Zsdr3EcjjlVpNjcX+mhUe+lteZFbdQYbeZULCDIpkFF+Ee0A7xqE5hn9koHhZj0VQbi8O02nMh3hiYOrMgENgZs618MBpjj4idjYpCA6+SpvpAnT0bxX2WL3qmYxCUlk8GHVI3L2MVF9Uu48gcUkZXS2tObu4Wl4K0sCXwlDGTyvacyzdTdiivS6OtehvDZwk9/AO0BbB14eshQFMFyn51EI18u1boiyDiGsK3UjVhGEV8/JhLV36JD0Gob+TotpG7OXyxl2MvO2UORj8UAT5u4TcCVxaAJqU19XO8BahwjzzJK0LUKYglL6TDUCKzTCTgIsr8sqUYDl6WYJAqww0cEJsDzZ7FEIwfJcM2cT1jbcKrdjQo0rQ2zymz2ihkT5yuOJDr2DDytqSSqB9fKRBsGKkc0LBpz0vlSZqRg7nFvENXHkCFZtHFox4offaSa4qcKLK1e4oyZMOvqTH00bdnjxo7NTmxUUMpwu41KsbEcUO8viFSNZ2Jwy5/GFnZ936FDCFO/PocTUjJ/DKHlFpkEqHUeYaPX/IQulj32aCbFfPiRl4d9JXljcihEHC76JSA9hKa7VsTI2JQm6WDPuIZzUBS987I+PkaCU+HjWdRidEvgoleNkEgJb5VwrotxQKBlZxvsAeSu+y66avFWcSeQFJQtdPpapnCDXqvqddb+mQfsab/WxzMO0p53SypE0dgllD6q0GZzXXLBiF4xBUTOtJ8lDcc3rK94FJCnRbs1klZPmwYtIUuA+17DPKXHIKhPB8CYgfo7WWwsgMaHHZTEICZ1AOlUVCGyRqSoEW2VOCcE2mVMCsJE3AFk4JQTLOY9cBFge0nISYHn6mIMAy9nFrCyZ0BhEWbIsnycQbFl/njCrOuJU5WQfCSoMYRaMwE3rzxD29zuhfalgVk7oXiqYlRNKrwSzUgpFBCNQhqwoRsB9KypLxiNYUJaM14j0W38EKxQaC5bghTtpwRIG41e2Jx41IFjuZUEwMM/vx4KwZD7Kj8nAM/3ok3rEs3dCn+Ub7aWFEzh0RI+aLYYBpP3pvAe3svz87llwAWFOi+CvATvW0pCXrBWf0aJELz6hRQm1Ia4+zNqOEJJ6mEViZvUwi1DL6sPs4OOxSyl5Ky/nUJJsPqJFORHwWg7l+MJLOZSzVpTvxxCqfD+GUOX7MYQq348hVPl+DKHW9ac3841+jG39echGTOupwQGgW71DDQD9ai0OAMNqJQ4AIxvp/hVjsjGSWEdAJh3HlNeu7uBLV4efAd56D7HDWVrvIDZgnnizla844IVCzGwYubMAqwno1y704LNXk+YDvKiy0IDbjsKQlHnfRqhZ5aARalEpaIRaVQYaoTaVgCaoQs1F5qtVnEo/I1Svss8INajkM0KNqzdR84IrChNUkrD8WWWeEWpZveEPPr6qTDYSs6m0M0Gtk8o6I1RO3s230ODRdxQKKiI3qhpUJhuhsoRupi4R4ornIz5z5WZ1lqJt/Lxcwpn2ZGehFVPic601mZAeeeuNwD2q8SZt3Pl5tUTgNtpwBe5MsSKl8lEpgTtpU3tHIVB8YAqCUfFqiSgYVRFpawRaRdYagTaRtAagiVdJ8CCVJrf2wGPufIkXR/D4nHhpBE8l0hTXHs0GX55EohoJmUVaGYEWkVVGoFUklRFoEzllAuomkVJGoE5klBGoFwllBBpEPhmBRpFORqC4xWFv3vW6waE3gbP6GqIg2PVVRuZLsOSqeoAsRK1NPUASVL++xMj+eKH2YX6lAN6ZJdoY4/gg9LVNBRMYj52MmrEK5Q8xcT1Q3/JlLK5QmZ68fLQamIX+LL+XhSC91DVtJJGDNLGJ5GuFW+1aU8B91Xzje1nA7x1DEFCh9y2DQqgOgjj9Fvre+hoJ23hDEt8lMK2qIx1e9+RUPDkUMRsn3hHq2mx8oOkmZuNESNoGY5lM8fsUHZ34QIJscEpvjK85RSOaCeoNEkKVO2MgVLkxBkKV+2IgVLktBkKtavOKRiyr0ZSiZ0DVHniQEm6N7RoWLzl17vxQPOFNYzdLEwdGLVeeCXSeJ058Xso80QO05EgprWmKSawxZTEpaFANRWzZQBpYpaQ+WWwsheENMOZOEGSKQeLDUjLf7PmoFGGny16kJRBoEGkJBIrfLRbP7SrTA1npu8Hrjo0DZD4bdibjXzXbtPVQ1JKel73Gqgm7YlbK3GkGys17YThB7oLPYR0VNApNRXubP3egY9C0R2jfyZxjWxkvz5ivZkljvyRMTpkEVNwENA9szIaFMS1n0ZkLbOpUpjGwvWhCTjjbr1milorc9pN0a01Vm0XUX2+RNtqpOnWq1Os22gen5ke76uU9CJQvpnNtMU60bnbkgUuCFR0DSNOiK69vN1FtOTHDXwXQojdtdubi2Qkrr++Ye0EzqZs4rpv0Bk+8wGOuRWGoTmxfylC92s+dNLNPjTL+Ydk1IrtLaFHc6+YtIhGp06rWivbclNR4bumcKaS5j7WiTbEyFGtbAr5Q87Yh2KhNzXcAahbKPSYBFfP62TYqG9UrI1hc/myCBGXmyggkqkNWyEycPKle8/XgS6aLZTwPxfeWNcYgv2QiqzMtXZfaRNMPZrYWzOiXJzowdhpqoQkpWKazU05p3fwQXgribQs0XYzXgvQwjlCDOOeFoUZhzMvAkV8Wf5yc6zLCwB0JO7U4msGbhVkonUSpNhDuOtjvKl/P3DVz8+zkGXpkmGD2cttBQ+BgIq/rO0hG12bv1bGdL2GrCUtzPufGyjD3ah/FqViv5xrbZsH7XGwUq8jwiqaYyjW3DT7gxNmo9vfLOV8lsjZx9h5CDRrJMVdSIuUGOhjWDw23mbhe7Spkz03PIagDfMnA5Rzk7jHeEVgxIWwnP52fopIpou35KyaY2PC2QYlT8oIJbQvexOlVnjHTOU7iuxykiejETNJPLJPktRrz2xQ/EXFxm6Z5f2GoL+LX1cft/ub8LvN65cy4K9Rs9F3GZKezUKbRdQrY6RwLTZL66eUwcJg4MZ5gsnDTGJnni3OdAFJFwi/9p75QQFg+vySYqDYof6wigAaNemag/PLLm0tl+mzCl1/zQxBPBvJmWtBxnGdwqAgy3TUV2e8HQFWdf+MjMfamtjdHsLxsY+OiACseuMopjWavcbSecbQ5a7N/3CLkeXvP6hWyJ5QqrdwIy9afWPjPWQmpR2ei8EXNAyKC5Y07Zz7Yg/HhWajamBliBCs00+gbjM2OCv0zunER4llooNGDNILlh635fpjBRvmG1F4r09EKdLTlVPC7yq8zb7QxX3Gyj8BeN/OjL1FtryvY62bKFMLiUSYdtgAdVN3pzAraXJ06fs4TcksZWhIFWMHpJgGWModLJIaUZE1ras88YaPonBI3ltlko2oRr2I9oeVqVfPkRpzrWWUGSsd6ZzCbRGpigVTvWzZAc6qLjoC8OlU5EFqvyQGMwXK2sJz8amHEVpfOxMnirV8gXE3jlfGtfyWw58bdJCiwTUqDe/QPE9kxykTfdPX0OjiUXpeJFhUus5+CR8RNEQaQdKsAxE2Z5PDEYHlFxqwGk7krYgnGzDcH0Aq+8C4b8xVR8ASVv5PMAmoVt/lZD8lWqhiC+n5go7lJvSQP8fwZrQizRvr6ADakONoKoF/Eh8j80wUxITOAkwksR6fBOiXVJQc4Wax0CYBPKU59txVAM5FC6y5iGS+Kuc/zsoskKIEPFElRQKUxKS42z0rNCu+r4VRkHpa6lQGqong5LJm8T/FyppdtnIzGfJyE0Mr95mq/UIjhVHGW+OvVNbMvXkYx0+cBcCxFLKOItiLMbSTwCnVFYH4R5QXUwMsKZhWAGqgiVFTMr8cZrFhRMfc4DCYzVPjYkH4xEwDXUnjvi+7tA/Gq+EQ7VLLgTWRVAntKXaLmUMFedtOhaPHEMS5XKDOfxSOomDe66NEeoUaV5Y+AzSgxiYnoITib9iqUTXQkG6eI0TJONg6mGloXh5gMj0bRXAVzcXlBRF9b8sS08IoIZ+vAdEdeEjFXyzFU/iI4CKh8SHcSUPlcuCKg8qOSslrYneaiBoYKk70Qn28b58vvCq+WiIJ/8WKJOSVjqAIBPsMSNix79XU0gw2rXkdHm2oTpow4RUiVdhiJh8tl5yNOJA+RC58sMt8oRMLX5So2+Yke1ckUPlwkCuLyeog5a2KoTmyaEwNL8oTyiC4voQaF8oiuXAQb1UsrBiv7lZ3k8YKHcBKmaGUaMZIS4MIbVCwfCQyTZ3yTuSAmalWf7jJUp0ZPhKoHJEKvKQNFJgGWcw/zDIhYgG1VXAg7P+SINhlY5WPSAKeInjiAwS5TTF3ZBoNLgoKNauacvJ9E33AJA9Yw3907iEf22LLoPSUi4Zd4T4l+HR0bFDiqr0OZwJRiOB4WqMBZvJ6LrKypNJXDizaHx5tJhJMwTQyXqBKqTiJlt8h41lcrrWw4teTOBPZq3ATkWp3kUJQAuVaFuoY+4ArB8lDU5zGRx4B1UkNTMhm8OnHKwfxoe4lEVxrJplUzzExLApxIdZMY9RiqUzflBA7alfeK6I/cGGzgDR9niydvu6qDc39tTBuS38qWrgATRx/82wGRmGooSsEWc838X0HMFdOAA4dfMzrECfD6iCsFXZ8YrKgmiBujbR9+xRwDQUg+1cDcbMyQwOohZvoxEYKvehy6fBS+vq5JtBh0k1MMwBdVPjFkSTFIxl55bUTfI00CqdIpIZtOmab4u2bTVKH1RDopeBS9dQCTtGfJI5i8KhsCxXRVKIPoCUYmhlmVSu/N8qAysRlNNTTeC2S2UNDArcZJzosK8afopLwI0CxVmf7RUU2csDovQmKqxXkjMdPqvAiJmVfnRQi+rM6LEHxdmxch9LY2LyLoaRJ3Wts+klubFyEhxfYSIyGDkgmRiVE1RTUTQt+b1B4LCVCMFbeTWNKB+vvSgSSfypq9cCqrMYChg+P8ie+3gDPt7Bd6zXaeEHdbs+OB9mvakRGJ9bLnxJkEYXlZheXmFbNzoRKUO4p0RJ7A7XeVCyqyzZtl8eJ3BFO0c2AGYzWq0E5i3qsyIp2EfhLzs4IMRgnUIr7CnWvzGLZTl9tmA3jRRDgJEzRnXDYR1gimFvqu3dUxsnkO4EM/NvOj9pzI+qgUe7YPbkW8/R3BcM+ZjRBcqVZhvMf8kXZWU8UMbgSDZySW/o0mjFf72Gc7WFfcILYfXvNgzFyt/BDUTookR4kBjholBjBFm/cxgqmidoodtKpqzwOcJtrzCMZp2hnBeNUMi0e351VovDDr3Y4eTT3ij3CSqPcBTBb1PoApqnZs32/q3l2ijSNbtylPm1TrHsCo1j2A8aqWi42j8r4jHJH3HcGIk5BGMPC83LOm8rpN1uc/v7ncP+5+foL4cP1pd3e/vzm09r7efthdP/3sj7vrx/3VxQ+f7j/sb3YXfx//5eL7f/zh4h/+4yJu/nv76x+e/tdfdvcPX7BS9i22lpJPORz6H/8/3clKjQ==
Copy blueprint
Re: 3 and 4 way intersections
Posted: Wed Jan 15, 2025 2:38 pm
by solublefish
hansjoachim wrote: Sat Dec 07, 2024 9:29 am
What do all of you think about quality fuel when testing intersections?
I'm glad you added the fuel quality. Sure, it's not a huge feature compared to the overall excellent work on display here, but it makes the tool feel more "complete". Without the feature it would have been ages before I bothered testing higher quality fuel, and I'm shocked to see how much difference it makes in some cases.
Re: 3 and 4 way intersections
Posted: Wed Jan 15, 2025 7:40 pm
by Hovedgade
I'm loving the intersections that I see here although the spacing between signals does seem inconsistent at times.
Today I have three intersection designs to share but I have been unable to log into the factorio forums from my desktop pc so there wont be any pictures this time.
Spaghetti Knot
RHT, 2-4-2 tile spacing, 160x160, space age required
0eNqtnVtvHEeSRv+KwGe1UXnP9PNise/7uDMYUBYtE0NTgi7GGIb/+zbFqiLFjug+X0qPtqTTUZkReYn8MvKvqzd3X24+fLy9/3z1819Xb28+/fLx9sPn2/f3Vz9f/feXu7s/X737eP325tWnmw83H68/37z9x/2vt58/vbq9f1X+U1798tuX+39/+sf9f918un13f/P21Zs/X/3P+z9u3r47/qOr11e3v7y//3T18//9dfXw59d3Dz9yf/37zZH+8fr27urv41+5f3vzn6ufw9+vnb90+Hj9+4dnfzP+/c/XVzf3n28/3948sr/+x5//uv/y+5ubj0fU6+2ff/p8BLz77fPh64+9vvrw/tPt48f9dXUkjddXf179fKjp74cff0GJlBLSOUzCmLPW5NffNMnaUCeQ9lNZKctP5dhkb28/3vzy+OfBoBa1pYJlW90pv3z5eOz7r4zDtU+JLyxbDGiTm9+0rVPbdswL47oBHXKfmraFhXVqXPZeDS971TIvBPrRUfjoEKG12ffBZnGT6IRlmI0JIySEzbzSj+ZZpKK6nmMRjovdTRbQDU11Pse6p8j47fru18Pb2+t3748t5sDaymrfWhgt8lA7tJnj7yJ3g80J0oeGchYWzT59Y4RBsVvM6tOYxNG9FNt1Y1ab3sboEWBzKozJ/M2HfTs5FAvc1NAqFXRDx50b9s++TB1w3Ex7I+SXjVCthQWcPZ6wkSwJkhYuGztdHhdSVJ3TXlAl2TltDpwwYvAb0JrPUsFeNOzGC9nC4tlktxZ0SVO7xFzIpC53ic0ZOKzb/pHWYnmRAzlcDuQc5LE/gI7NUQq4lGy2NURkOK+kp/H3ZIFpDb85ayY/svO47JAZzzxlh1qYKvq1g5E3IQ6Hx0c7yxlSu8dhN7zlKoXOJvteJA/iKkWbTlITTI7iBJibvWoqSXU6c21Y1MWXg5EXXw6nyk5nc5o67OUGhr3Sp4a9l2zTMbQwyYGj66JtJlZyuTzy1aA6oenLVV1kORh5keVwsuyENqfMjXxgHV3hJiXFfRzJZOSrbW7kIybjjUouAnWoHmiuq9uieqCNCbIH2pwoe6DNgWupWHY3SS/dJFncjJN1fbfv2+HVGk5amRte02U/aXgn8rDjw1Q8zezjNaHiSDls1ECS03Ko2MlpOVRsjB4qNkcPFZuT8IohOY1uuXTPFJuajbU8pOPlVt7iLwIqnFTK03I6kKRPb6LjJXMj0bvoeA5mqI5nc8aiOp7DCeq86HBwlreEsxy+sVhWL1gu+8DAa6pDXq3rl9efQ915J3O3MNSdt4ORd94OR955O5xBPSI8fdflk5IF7rpD/2lvdZLEDUtQZ1P7u8MCN9l5P5tIFZ36LTw2ou3F1cTCrO4h7GmBdLKczyYZ53UPmyshbFXjzj60XNRUrseRc7keCJ57hH3BnJxTrRD0+cEB4bAo51ubHoaXbz/ucliERBfXh7CuRxLZD4TAZ43tCPQl2PTfULjBUeHKcZHsnpLjwuHoceGAhuzMNigutOXzBso2COtFSjoPolGxnzekiAQtzw7IyW72sO0rUgCeFuGUUXejT3QtR8LDP/3X3fWfD8irm7ubPx7Eclfm76mqq2Srh/DpevjGcBOlL7ccm/T1lgOSjwITOO8MicdM2rEmCO+58/kP5afi5XzTJzVGVrviADGSsjwtveTa01Iq8rTEDH4RHF81pKfMqiCfgmSL78MFm5OC7+IBf1pApio8O1OnVivtnBdRuhQ91d2z43VqqOLBWT0YiY7MMMlmDsXMLONDUPhF5ytezE/en2FNkB5t0gDx7Ewe8yV/k5d5TkM8O5nHhioe9+yE/jGCv3z48P7jZ0uGrFDjqdWXzjeizTf3+QUex+R9qRkHWmryU/x8od+KOrF7IK78avvMYIK0E8lD2gaWRjq8w8TLkz48NnJAFsTj/H3xj8yuC80X7Zn6WL9r+V/V6ynRzsxV+YKKB0rySOWA8vmYtw6Amt1XZszXoi7eYydLpFrlkHcaoKk7cmhgl4cSx0B+bnn+SxsNm7TvmmNB0d6COEjteBDtLU7ukRA8yVPenhJ7+QP2Zqnpi8PDUL5AXxwepBaqOl/qXn3NeEgKv8Ol0nbwxqj6Dm0TKyB+p4dMe6RmdMbUw4wKOAItXOgTq0cbb04kXVa3RXvP2mV5mwcq8hTkgKo8VTigJk8VDqiLA/o2YpFTgj4ml7QEPhZ5PXPY+xkdygy693pKfmUwh44IsQ60mNAkt4bTFmZMjizeIn5ptL104rKGZz1ngqr8+c+czSTKircTp7I/WVaHQi480M37mWc8Od0Z5kXPRR787Bv7S4AW7nKKmEhSIC5ykt6zMMmjqgPCYrjDvhkiIru4lMn1NzhqiwtOZRxilaxuHBxtcDW5fWJNv0iWD/0XqvAFYerGwku0aTqvM7Avo0jlhxhkHWoM9s1vev9t1wLF05IFQm4nnhQh8Cbe5DhhM6l6JtFpjyqPPg4IT137ci6Q48AY+tx6LoCcdAwTG6096b2AgIgLV5s323AzhmOYWIgWpd2pcuOwz5zhJJ3+ELY8VE5qHrhL32T3gFkXIOaJllJ6osxUzQiDOI++wAxPppvEpo6jHgjnH1NXwgVnI3MUsGlRh0vns7nGo5xvvxT5Ym0jNfKliQ/Dxebaw0GaSDRu66rQieWFHrvs+eNwcuxi3iuNz5QfaAoJSoNrJ2hBYsMDtCfh8mmLSIuVJAt0v/6gWXZGFugGu7xODvJqeLu6dvQ7k4gXk6kKDpzxRi4vCjbLY5fTkEUeuxxQ5bdNthGgki+dyNXHrPxAn0ird+UHBl/tbZ3llFvSE40XgFNFfAJIzccib848G3UhVbrw1Th4kuJIXMiRFPcpcqbe+2w5U++BxM1X3rZ2iXwuj5YtLYm4FU89h717MuGGifGpKj9Ak/SHrUgRa480v8lldmdxi64YX+Tpfx9as12BTq6CEuyEa23zw5VD5LuqqPTPkBc8BPtS8WELqvftSwZZ9abvr+yWbML+aoslkuCkNR+OI8u+RD65xm3nOBu9p/hUcOkULSVcWsHjzVDaaELTsVWyCJH8QPuOvSj6AXHaC08uZOLGjCwCtXVfxDNS9P09TEvCnSbQC0l4ILzLSovyxXl+LHcMLfLSExla1Zt5AZ2w6OIO77vVJeOKIwnRPvRc7nYeQPhj+Y4dKElEjiAWqOtfB3g+pA9dJlV2+02gWovbzncOWlp1bF8+2KzJ1Rz7FIM6qk6PB04DNHlph+yEKcKS3HY1BRhDlgWbn50WPD8dtsIpICmWqKzja0nKtZI6KnW8RH2E2STBjRie5DsRp+U9FmFESAu/p1mEDqDZ+kVs/zqjTUAtr976b7ZDd/UWcr+870nLUCtqkk8Oi1p3GlGDWgqpgYE8cYnHPlKYOasU0lzOqpBv58G0aawqwfKKGdu7EPan88x8OduETX194CcHpFYVczBDXT0UMsslXi9jm+XAmwEp0smp7PVDk9N+UV/OHfbCjaT+flIdxi6cL78y4WBwQaW9hMJlkU+6JKM4cxkrk+5ussT0ew5pU6RLvuH/nskVhfPbKAzSFCnpy0Cya00pyOMxeNcopThxa2jbbtsvVEzcBNsmZfJqg1CNYwjtUNThwfl6LvINwjerKzrHuE7S2Lte1WYM9fUZm5MX9Z0u0lCZv/7VBCpOsedkjhTBxmIFUxkm1vTkTJPr+0Y5oP1KVlPoi93vsHDToT6zzgQ1MWLtmODPU6wB62AGCa1ypmGKWA/ZtqME8YU0B4O3KGt0Ohi86FrD0cFk0rjrtOS0bpGzHXlroMsx51SpeGNG3VcquXSU+OsT29FeIsb26ZU2WqmUMb0AIDO1+ArFekfbXoXzchTrGOJgojiGOBgxAe1QsjgCOJgijgAOpoojgIPBkZCGFQjm/Mtfkqh20NpPlQ2s7X88TyGTLy45seUpMnpKMDU1AOy5uKkB4GDEAHAoagA4GDUAHIwaAA4Gbr3T8BzATAs1XSe6VqTO4JHGRkOhJCsSTCaXAdRuhpcZtPwViRYsqg3FUdESh+IYaYVDcci0xqE4gNrgULy/7pH7VKN7km3L1H5CxtKyYHXxuMnkcjnpms0F1cDSoHNMqVIr8IcpDsm01g7ZQW/tpaaZmyaUF8W021weDyx+c53NnMpHmT7PBa80p0H37TFqza1u4+3DyqFu4x0MPX5xv1HIb+dF3PI3+71X9QUkBxPF96orqR6RqQwgtGdYE6Qu65zPVJd1DkZd1jmYJr48+p0ON7Hce9ykVPDgLn30okgDcg5wXupFw2rXhLo5VJrtQN/H6N2LJPPd4cBPMNf96iDNwJ/GqIFT+TF/jZwqHPoPThVmoMapfEJan1tB1MGp3AfiogpSEJXnFjLvrchTDZn3lqAOyLy3ovBYmdBb/KgyC73FYysJvcVjKwm9xWMrCb3FYyvx3krCFT3eW4IaIJnja7CxPLgid4LEgytyJ0g8uCJ3AkEHEAUnYA9yhMyJ6rbJFC1n/u7Giuk2ZszWtiXfmpfZyraIHsSdo92SOc4WskVG6hdbBXiefNsFwalsgC8Dc5181QXBxUdmHW/ok++5IBPH5CssBK7KEOzvL2H2JRdkY5y9tIfoaoFkpwny7BsuyMgy+4ILolcYtKFyZpt9ygXRu5gdcjpND63I/bbqE5mwyOBihnjOb6seXML6aqJCg7Am5NqHHWpi9OASlsN14sKd4GONVuFcOLPPXhFEdF6z4ZzfNj24hM1ho9dZt+x4R9nxpgebsE9u+D3dFQruw+WGxHjZnBiCTeTluoQOU8u9Iqg+h5VqtayZN278pRs+2jQcXUJ6t+NFopCJ5hqMyt2AazAqdwOuwai8owQNhtBRRZSgIGgVJSgI2kQJCoJ2UYKCoDiiOu+ogSOq844aOKI676iBI6rzjuK1FzrvqMGv6gkdxR+wFjoKq5qGkM3l0oohdH9XtVKnpZts8KCFDooPFg7Dy0L1Tnk7fA8nBfKT9INBraj1vV84UeJhPdwJ4EWLwks8pB/0QRMVzrcLKgGETMHFHsJwv6hIX6TeY7drERVe82G7xuRwupb+9DAwmOuP8Yug3p2yrQ6qksrjRPUSlsNJ6i0sh6OmRTwOjI4Uf1C3VjEz4NnNKxKd/356H/0Hjd9BLwJWhjDaRTgD1vhjBjtaLqJHaelQBE3Iuh8NiWATOrVdFXIMOfG2wCo4YfyJR0yz0iR6gYlDVtpnot7lKnJh/Im66NuKCPEnDsK3MYfw08xRuOA/Cb/JuNbPZdT5IhOMP1H2OQleM/UiiOA1aSJqo+I1M2VqFa+ZqVKr9O9E1Ealf2ceIRb6Ny8TD+l1k29P5HmiXnsQHGhK3CI4UMbvYQVh2JnQtWyPVTD+RNgGwS0ndC4HxSvb7IPnDN9nNWEMP9SNs3mzvJRpcRkys4RZWRjDqxevvVaY1ZcxK2cFZoyuKcwYc1ZixuiixszrtFmRGTNyVmWG6FXN2NhNUKd1ZszKaaEZw6tKM68VpqVmzMxprRnDi2IzBp1WmzG8Kjfzem5ab4bMbNOCM4ZXFWdOK7RpyRkzEx5T7IWoQyTindLyrJaNmV3UrK3TunVWzcbMbLNyNobvmp6NQcesoA3huTwmnY2LicdJlGRPnxafMXxSs+5OK0ysHgX/7frspmQcux59SkK269Gn5JO7vsTMiovocZiFrp145KQIXTtosrQIQ9PQg7II/jL0jV4R/GXosVoEfxl6rBbFX/RYrYq/6LGqHFcNPVar0rV6WceaeQ6zLuiNveYgo4kMoqiONERdoqiqY9QkyuoYNYu6OkYtorCOUauorGNUVQTHqF3NPppFbeoy1PydzaE1UnYdlvOMReUSmLPfxRUw4yxGTpA4HLV2kMdRiwd5HLV6kMdp6kbD4XR1qe5w5KS8WRapCgVJwlmO6s0ORvVmByN7s8ORvdnhyN7scGRvdjiwGFbc5VWoBFnl5ULS+e8capTYHKEkyLb+A8rsmoJayYlho1p0iWGTWnWJYbNadolhi1p3iWGrWniJYRsSruUoIPu8hAfxJ4rGJ9t+625dnaohIjT5jAIjCuEyo8CIQtxMFBjZJUKIn+clQohf5iVCiF/nJUKI3+YVPIjfscKmC9Qxrwsi/BlxRhC8ZkqdIXjNRKGSg+A0E6qNg+AzE7KNg9K56pNbwbz4Xye0GgfFR9q0ggfh5feHnFYYswoeYuVE5RKhiWvQFDyIGWcVPIiexI2l3WkTwg0hfmvR3jZ9uNNmm1lnpUDITPFxO68t+7QUCFk5pqVABN8WNTdgt0IL01IgZGaclgIhfBKlQAiap6VACF/UbIzTc3VaCoTMbNNSIITvai7JaYUxLQUiZvZlWrKD8EHNhNmtMKHMUDaTPU1LdhA+i5IdBC3Tkh2El6+aOj3XpiU7yMw+LdlBeDnDabfChPAiCf47wrRkB+HjtGQH4dO0ZAfh87RkB+HLtGQH4akYOAtpignhhZJuHfqDmmXhqcsxphVBwPq2LNOKIIQP04oghI/TiiCET9OKIITP04oghC/TiiCEn5BLKV07IZdSupZmRGsXoHqsNsFfgh6rTfCXoMdqE/wl6LHaBH8JSR6Gm72NNNVkLaDCl11CFlWchBqCPtVWtsJW8aSwlWMvfSgxnSErNbNa6NOv2sVweXJtgVYdi/VMWylfpDy2s32HyaHVxJYfZbh619QzXMydepispQ09TBETbx6nimkgj9PERIrHgbWKYvlR7jHE3IdjeFIvz3icIO5lPQ58za2EHzTkJXhdrfyonkt6Vb1S+BCb9IdJWzDx9qSU4HTXftRAmOAs2LYyVvGkjNXDSkv4QRjLrf2oL4Sz4ijiAiLL0rcI5Ngty9I3hpWlbwyb+OOIi4k14yxnVVHHrC2qoo5hq6qoY9imKuoYtqtvGTLsUB8zRFj+hs9WXI5hg/qcIcNG9T1Dhk3qg4YMm9UXDRm2qE8aMmxV3zRk2KY+asiwXX1+kGGH+v4gwvISJptSkmGD+gIhw0blCUKGTLP6MIbPdGu+LUKSrV9pEwVMDkrTVnVjnGwzp5VmzMw+qRBj9DGpEEP0tkgKMcYMkwoxRo9ilsP2iZYmFWLMyDwp7GL0ImZonCaos8IuZmWbFXYxfFfzS04rjFlhFzJzQhgTBEfrQRN2MWicFXYxfFIzenbPTdQviYL/TghjlHUDF8bEs/47IYxRVk0Twhhlrdfl5KbdChPCGGWlOyGMUdbnI2rCLgZNs8Iuhs9qOtnpuTIr7GJm1llhF8OrLyB4rdCFx/8iKdLRxhBf/yMf3JdFfP6PUYP4Qh+jRvGJPkZN4ht9jJrFR/oYtdCMaM04Idp5QZGq+EATH/9j1C6+/seoQ3z+D1H5aztN8AFeeaQJvcULkTSht3hdki70Fq9S0pXeKmK5IkatYrkiRm1iuSJG7WK5IkYdYrkiROXqkCH01jOtyKX3BTOfunuMVGi0i2fK6dm4SX4KsN+u7349vL29fvf+yL508lTAtBBpXrFs1ZIeCsOi9qCvxz2JLih55gWPtSszaZOGjySLSQ2LiYUH1+FMcwjn1p1rUHZ/sTBJLE7uYdTn5DwODLOQ3SjrJhcKTUJ7zjVJakUi70vVikQeB0pC4vhBjpfUQlye4WohLo8zxJffX8az6TAZVpkrWRzerOop7KE75/szDJl6ZiA2J6acZEtrM+cmuyGy2W9v/M0FmfEynJfqUPutUnO7ba6DhQKr3lV74Xw0og8OJlgWTEGLn0k5Lk7Ma9KtgWqrXdFyNJNrY6OsPEHYJCtPEDbLyhOELbLyBGHxI+Hb43wvsebgMFPfJK7HrJXwceWhGASrqW5/X7u0k4CzuFzUsbuviQniCtLBRHUF6XDUh4Q9jpxMdzhFXeY4HLjOS8P1gmZyG70bZgea7VqdTpa7aApcD+0TwotDXKeKDvhtwWY302p7a9jE0qzRvGnem1ia1cOopVk9TlYDzeEUNdAcTlUDzeE0KR+Tzjc2DoR2/uMGXn0W0zPNFVdf9BtnqxQimTdIehdd3cOIru5hVFf3OKqrexzV1T2O6uoeB24+0rb5SAvKtnS9SsB63JcW29CJBxk2i0EcDLjZ78Vth2FyA55PVi1FMs+i+zM1wsX4DBvo8jJ7sFffV2IEPT/kSHE+uBDLtkZDlskx41iG10t7s5mY6RdMPLuGNG31ZLqJFR5jWWiuf9uBpNMtfzHJ9GJvqGfIQvZyLEIkrb9IkhdjwRedtu8AK8exZHyYpVCxBGGbFkHGdCyVhGwYAlG9H5zMDOlYOs4QJ6UZ1QpSjnkB573WzMzRPJMTpmdd9L0hUjtbOWsnDpVud4cZgAEedfYtYZ/QydEIZeJB+/UXqv399MRmMxSlc0aQo6XZ5nXxCdFT++yGlMPFti8u02vBStz8mYAATaRhM/ayj/KyEv1sF0V+q3YVFqdugzKfDdeBe5DvLBSbTKjTMfgEpilUOWyG3ZRdSxsEoTlhAjjtI0Yn25OR5ImngzhPcE23C2UeMpYvWkFZ0aU4e6DKHCQlddrrCEvnqyB2alGvamYzOTCosOAQNwtzQBNVmr7751natQn11E4z7LiwYJ3vs5m8GLwQxDrCOJ+Zg/hmVD7N1iiBlaMorMgLcfwZWcHeLoSfpYF41cK+ZJsekYu4coUtUuWQTbaHzEeWA8QancdTlhxJK+KFYOZQXgcinG3CiWdS1pWRB4zycnVNa2WQ1hpFU4/G3VbQpFogrWoErxkmnjOuQvdXLSvHGgCmx+s+saSTCXBRRtzSxfJOpz9of8gQT6FeNo89bulVIbKdAamB72fW/iMpgYl3Ubbh0LGTa3OiYCbPmQvQoo6HzidjJc62eEG5pCoesu42gi+nIpy11hKDThSmzry3mn5Xdi2XxfD4HGq9b5QL6cRnggQhU4LauyV5aLFTJVylsA8tDqiws7LVGjv1xzUKh7xxQGPNL/ucb1WXfcjKoY5ItnFdz/9tK7QKFlRdS/9tazWS/ut6pmJbrzVieaJRnotA1Us6lMi9YqKkQ+kCHgdcE1y5N3l0spOGvcujkwPidb/WVXUH3zkWdb2DqEEdCOxvHvSu0JZozB0dVAx6V6i7XO1MemgbrSdPAG1dtHVWEtAwP5j9Zqomd+IFk0Xwvj69EUV4vNVa78pkUOY+LLzGQ8vY2COWLwyHaa25MDxyozpAFjPneSQldYR0SXwl+DjBlAU1YRGXdBBbJ46dTX63+U0chN1m1V8teOooYqima3pyJ9DIQde/riPkS36wwzbAlH3eEjrl5GgiCzPJ8Qf1JeZ65+nlFzkfxNeYQ2qoPLu/ZuEUtHmwJqVN+Ll0ULDyIrMkO0SDvMp0SXyZGR7n5BJJ9wgPhVQFi+WFW/jF71rJHX+Rlg1btna+eEPnCE3qWO10X8wzGoWSUFsXWjCtmD1YbKo+DaZuWu0MPLHJP5Cj+QMOv89un6GL40Pqbbxk7cK1IaULzZG07Mq6RoZsLO1tRcHKqchS7PBLci7SJRVVN12cehZHllDS+cL3Na4mSxsJ+DjVdxyp29dmokQ5kvFu7TAEg7O+rgwm3l4SZzWB4nUYV3isGdSS0efrCo+nyCGDU9Zf8cl2/zn8udUiY1dNnhIUtr5kbI5n6EtGjzTk4cUhyRIPFxTEEj4uKIqHo6WS+CmJVoBvJtVeSolyjrh/OrEYzkf7W4kP4s/LYsYjeGL9t5iGO0PJREmILQXQSEiWPltLF/LHbDFdxq/0NYK1DgekhtlH0yE/zr6aDvn6+6s5K/xMnwa3R4BkU7VprUgtXqcW9oxNdVjbSUNpqJTRkdzlCXPYU0Ed8oTpkNoiT5geaaLU2AYkYycvSHHJUPX5ARekXj92QXBCy5v0r/Tvqqp3/EUtgIrdU05HNfFKRhkwgFqfWikzq+WQqs4ZRZdDyiVxpeJGQvnpTsvLhs3havA29J3fDluLBUAbsy68WbbWJOPJhBZkzSNUlFHvVCQcokJts6/VQH4XR1nXd8fsuzfM0IkHP9bhHPLVbZvXECPOvlIDDU2zz9RAvjrLuQ1RZh+qgYZW8SpxRfVljuA2+wQONLzPvl0D+YOISdeTjEqehg6BS0Sy0BRhwTNeWRRsnNmLQLZ8PbqCqzZHrpy/r/ZBXBBEI9ug7pGqOjt4oKaOrh6I3sbcckE1oqAPvN7GNuw5FgZYz2YvXX9qoba4DwEH0TZMkcO/EOLMnqGSY68QEr3+u69Is7MiDSHLK9JMPCKol1yqZ2AVr/pWcsvlyJWDyjOwq77vgdTX3TxQ5MUD8gYi01gM6jRGjkZCjOo0xrCJV3hbO6YRz8YPd8TtyLM2VHLriC7qZbtakclV3hozrqpUrM3x2C7qxWtjExN/imOLcsfCpFYKcEFBjXIPhDUVaZju7UQ5fY8j71Nw/YmNH7SuxtEJN3SHkZOKqBaog7hPwvrBLduBRNghwazfrpqoAx3KhSRnJIbjXXLgOCC5xIYLkgPHA0W1slIjcuiQBTXS40TWlsuXLo7crGp3oL3qEq0Fp0Gr6CsuSC345IK66CsuiFdGq2aX2iNhoWU794tM7bR+gb3sEZ7UCI9JjBaJFxYeNZvFzF68TBsm1qFm1bedDSl/RSOM8yD1BWsX1FTf9kC4AHpKZtM7vi2oitaYycQB6yJO8Y0FTNV0r+tVnlaQzXhrs0gm4yxaNrEOFS7PtjV4K+wkMsgFL5qzsa3yROOB5InGA8kTjQca8iSPVFThmWaBvWFpwm33bvQSx5ZPbBW9b3Yka+mzpBitXtlozgasqc8NuiD1vUEXVFVv9EBt5jZKI4LEIOoStsF8oL4dU2M5YvdFq3EKqapgvDm7Gv4uRxjnQeorTS4oq97ogYpYXbENlh3qdWZs7AF1bNMene0BDo29TwyN0Ga1Dkx3tk28OsXqjC4oiM7ogqLojC5oqqpfJ5eew8Cp5c1pEnQasdjEOjD2RLxmiMWfIRXfWAq7sTaoq77ogdRDTgcUl0Wrwd3JXiPSBzvCthjr7CWQIzmKR3CdHBHGRZWW9uK0pyq6cUFlpsBUJxfP4lLFc+aOzjHj0sTJ8bTbhw2GZzI7t7IMVVyGGtn2KjVSscD+cnhH7y4ewaqczbUwqp7pgZIo1+rsgCyGLA7ewzFQfbimdwekrcnCBbPUU34XpJ7yu6Cpoil9kDGG12pYO2HYi5wY1QBwQVFUHA0mM4xR3aW4FsI11zaGjAhnzQh3LWHbAYzkiHQiP7/f+jU6oKY6iLOEieqiygWpiyoPlBZxhDztSHseTEF76Gtkx0D1FeXheENS100uKIt3zN1PUxNYrkVqSeNxcuv9n6+vbj/f/H4kvLn7cvPh4+39wy2Cu+s3N3fH//e/H67f/Xbz+fPtq3/fv3/4gz9uPn56vJlb48hjlBJLTfE4WPw/RGBaSA==
Copy blueprint
Simple 4 way (elevated)
RHT, 4 tile spacing, 36x36 (does fit into chunk aligned blueprints), space age required
0eNqtW9tOI0kM/RXUT7tSGLVdd35jHlejUYDWTEshRElgFyH+fdO5LSSujX06TwhITtmn7KryKdd7cz976RbLfr5u7t6b/uF5vmru/npvVv2v+XQ2/G0+feqau2Y57WfNx6Tp54/dP80dfUwqH7pdvSwWz8v1pw/zx49J083X/brvdvDbX95+zl+e7rvlBm1yQOhm3et03T3ertYbsF+/17fbgSfN4nm1+frzfBhtGN9NmrfBjMGOEzSeiPbUMFoJw9ktKnWLvNaiUrcooBw5CS2eoz28LF83P7YWTqtovJnWx37ZPez+lQXsdCVsagXwjE6MSEOxm1rUplJ7JXSJZIJzJkhEEKO8ynDuJOJ3K8UZRv4WtiDpW/jq8sac4Ys/Z9O3Ae9oVCMN5v+f53vBdtoNq5lFOPGSyEz8yszD72k/r/JDvkbQYJaeoWRnKEgMiZGYdXNNqeZLsbhS7K4k9WRzi6aBONlMZmOZtLwzmyKJ9uznLftqvtmh4V9ERjxKsAwXdLHH7RfvPzNr4SIqR/O10aJlNHvS7gKd6OugXgLPtgV6CJ8TVIsrBT7giecp15pCPxycaM9W0dbghQO2XL8f+GR3k9Bt6ZyuMjHOmQaNdSJNo8KLQCUcgC06ixMTJfRoO72fpp+ImSy8s7vOZGf7bhREl0haUhyQ5Dt0d3m98q1yElo9pD2dnR6czWd/1oO7K4FLoentyRn0ltszNenBoxm86MGTPboN4Z21a4yMKW0oHt90FRaHdgS6hAdsrvug5stcBKC81Ud1AM7I+rAOavUo6jEDvANr0OMIdAnPnnusz71gl5S4FSNPWk6DPQtZn4XRnoWsj+toz0nWx3W05yTrYzDac9LpYyZ68w7s5JMJSctVDFeDF63Xnmid/kwSk66gPNYt/vQoaxG0YkZr43A5ZWOBhJW9R2ofkq2IPSgYQzU7oohNwD67Dy1/eZ9NDJ8KRB054fcwMp431V1U59xSeCX7bsssci6FazIpykdt6jwBncWlBNeSQbEApmzx6bimnKvkZPGpoItKurw+ZjDb4xgJMeMXq6KenY1XqxRFFDypZauM16sVq4IpjdpqzFkU5Ryx9SiOuS/LyShjC3llWSsyrjslxWkmw7pTuZy2xag7aSBh3UkDDutOGnB3JXBpGyuw7qSxHNadNOCw7qQBx3UnDXqGT4NZMaW4AiXe9lHbjgC8SAa1BKtEKniGZSIVvDPqRCpQ/KpGBR9GwIuAEZaKVPYmJccVUBZBMywRqWwucPWRFdYTLkFprCdcg1LB4yKUCh5XoVTwuAxVFFUYUbgavmy/VYhSkYL2TbDi4pbIVJke2if4/MLc1OFG8E7KJLf7teh1CyuuzOlT45OqUFRRb2x48lfinh3UbMI0pnIn9lBnxvmoNl/h/bgWZxG9XGFFzwyxtpR11woGuJY9DXF5xeVik9EHx0Yok3TaSXVR5d4PaBgB1qDYya3FjLZhseK+jpxDm4lYcRFNeO9TjQ5MtzoPnGya1Yj2XHOlYTzBYVIB1LYlH/eJM0GcTIwUtMeagyJufAu1B547lUyd9YR2W1dmxcPvDGqADm2x1tHurRuMH3U9Rx5+bsDyewMPN2PUAPFMlWt2D7/pqQHCp2Unn2JCiz5pcppTTKAR8CIgnGU1Ahz6lElHgB8BLwIGW/3hWIYxtv4OMD8mTb/unjZf+e9p5aSZTe+72eZv3/unxay78Td/T99u/jg4++fmE6/dcrXrg4hcfCkhcIhuOFb/C2MWGe8=
Copy blueprint
Simple 3 way (elevated)
RHT, 4 tile spacing, 36x24 (does fit into chunk aligned blueprints), space age required
0eNqtmdFu4jAQRX+l8tOulFbxOLZjfmMfV1UVwGojhYBC6C5C/PsmQNotccpct0+I4JwZj2c81+Yg5tXOb5qybsXsIMrFut6K2e+D2JbPdVH1z+pi5cVMNEVZiWMiynrp/4qZPCYTg+63u81m3bT/DabjYyJ83ZZt6c/405f9U71bzX3T0ZKPhDM3EZv1tntnXfcmOk7+oBOx74bLB93Rl2XjF+efs+T05lNV7Hue8JV/LVq/FL2bV8bozdgw6n7bdm8/v7T3p1mO7MqzVXVlM8BWSTAUI2LKJmawt4rN1mP2Yte8dh8n74sxm4JsE2Ab2G/N9tvCbMtm5zDbsdkOzzx+6skUp/NTRUqczl9QGVGT/CWV3KqUhs/E61LyE0VqmE5ApuC1SUCm4NVJQKbg9UlApuAVSvxVJbxCFX9VScK7uQq3IUkhPDGLSBHfZcXr+3bo+9l139dI388+D9B8sm3o2+2ONAwfsl5zom8+RmrxUpT1ZLxkOgTMXAfMIAGziFGSk0YJMZrHyjPHSDiH6TMGUqWxAo0Dl7EKzd1OWUWxEo3juYrVaBx4FivSOHAdrdI4dLz3yksy5owltdEakON7Hq0BOXQXrQEZ9CwFNSCHKaM1IIdO0RqQQ+dq4glmqElleFkSBXM7SNfRqpUTDxOtWjl0G61aOfQ8WrVy6C5atTLoOo1WrY6hm7QEVSvHZYrUkSRv7+BaIZpruBCj9GGkIgHNpSMOs3QxzJiS5m69ih8mTA/rIU7yK3pYQ3q4P6x8y+LkkFUzOVXIaMRBOA1mRKgqTco795H6nhAaGXs4u87F4CZjCDvG9tO6wiL31waX1j2/N0yMe9uIvSAP0oOhwo/JF3FN+hjiGV7o34txdIUgkdBb3H09uH87OFil28kpWWRKDp+S/WRFbIrXmmSHyEp05xivdwpExxIsTy5dTDH2Qau+QA/xMpznPuPpL/Buz95gukBR0EfLpbg3ymMiytavulfe//1MRFXMfdU9+1WuNpW/U3d/iv3dj2HiP7sRr77Znq8dDbnMOa1JG9X1iOM/T3q4XA==
Copy blueprint
Please let me know if any of the blueprint strings are dysfunctional!
Re: 3 and 4 way intersections
Posted: Thu Jan 16, 2025 8:52 am
by solublefish
Images for Hovedgade's recent post, since I can log in. I'll delete this if Hovedgade is able to update theirs later.
Spaghetti Knot
RHT, 2-4-2 tile spacing, 160x160, space age required
01-16-2025, 00-50-27.png (878.5 KiB) Viewed 445 times
Simple 4 way (elevated)
RHT, 4 tile spacing, 36x36 (does fit into chunk aligned blueprints), space age required
01-16-2025, 00-50-50.png (910.56 KiB) Viewed 445 times
Simple 3 way (elevated)
RHT, 4 tile spacing, 36x24 (does fit into chunk aligned blueprints), space age required
01-16-2025, 00-51-06.png (597.95 KiB) Viewed 445 times
Re: 3 and 4 way intersections
Posted: Thu Jan 16, 2025 9:03 am
by solublefish
Hovedgade wrote: Wed Jan 15, 2025 7:40 pm the spacing between signals does seem inconsistent at times.
For sure mine are! I would love some pointers about signal spacing. My only strategy is to first make it safe with the basic chain-in and rail-out rule, then try improving things by adding and removing signals semi-randomly until I get bored.