Page 17 of 25
Re: 3 and 4 way intersections
Posted: Sat Oct 26, 2024 12:40 pm
by TBTerra2
im unsure how well the tester will deal with these, but i find them very useful in mega bases
4 lain mainline with a 2lane branch off it. the pathing weights have to be modified abit to get it working right (should have about equal spawns/outputs for each seperate direction, and 4lane parts should have about twice the spawns as 2lane)
LHD
0eNqtnN1uIjkQhV9l1Ncw6ir/tJ3rvdiLeYPVaEQSdoJECCIk2ijKu29DaJKFMjnHvVejIfBh1499XGX6tblePs3Xm8Vq21y9Noubh9Vjc/XXa/O4+L2aLXevrWb38+aq2cwWy+Zt0ixWt/N/mit5mxTeNN3M7tef3qn/fef2Zb175/Nis33qX5kMH328m63n0+2nDzrwg/t3TH98+qR/+zlp5qvtYruYv09n/5+XX6un++v5ph/98dM3T5vn+e10P/BZD10/PPafeljtvrEnTYNOmpf+X+l6/O1iM795/6vsp3WC1Y9BbXvi77vtHmxgfbax3qA6nNrhVI9TA04NONXh1IhTBad2MNUR3ko4lfBWxqmEt6TFsYS7RHAs4S/B00sJhwmeX0p4TPAEU8ZleIYp4zI8xZRxGZ5jwrgMTzJhXIZnmRAuUzzLhHCZ4lkmhMsUzzLCY4onGeEwxXOM8ReeYoy78AxjvAUnGAOF04uZP5xchKscnFpEVDlYHe72T4saLarimjMdsAEYrBuNNUf7kVl73kGGG1D3ffBX+H4CFrHIASRrukC21LeLINmx4A4Di1wAOwuc4EiLtu/s8ebRWPPE0KIxkY92cJCBvaDkeIFsWdgrf9JziC3ceK5pCc8fIR1w2Av8GRLBRv4QiWA7/hSJYBN/jESwcLZNXbKx1gocWhjriQALQssQwAZBWRmCQB0rQxCoZ2UIAg2sDEGgkZYhSFh1Y6nmWBO4Q/oL67elFkIGwR255cSW100CVKpkNNbyWlRejglk4GhvZNeXSkDIgD2MzTbV9lqglZhAOiFGWjJB4+1GY80oS7QSy1hWZFqIZci+XUvrpQwYojsRjvvWg7FB2kiT+JFp8+X8ebbth4rWRhG8q8ALjvc8fqiVIvhQge9wfKzABxzfVeAJ16YKPOHazOMFd206Pdw9rdcPm6015haHSsWY8XhJFbkqeLykilwVPF5SRa4KHi+pIleJcInIwmtHirnzJFqXIqOkZWmGRFOiVSm2/Wa0wuKOMi+egvuo2n3213L2skMend9Y3yf093XnE2G+ENWxri1O0BQCGe8vuEP8pK9VbMarMaIm1fQyWgFN/5PRI/t944Kqo8Wp/w5UunOitekZ15KmOdPSFMllaVtKmwakXS/14hTia706hfiuXp5CfF+vTyE+0Xw/nO7j16uMtCN0LzTsEcIX4o9QvhB/hPRF+EJrX4g6QvxC/BHqF+KPkL8Qn9hcvZlM5rIroV5WQ8OO1boawneEsIb2IUmssgb6wyKZldZnm3Ew73i1rLSGxIMoX5h1CFbHYk3rfroug9Z7FTMvXpcddhj3ZoICDBoWNQdkr6Ja9SOuzuv9rUmmm/iKqEdRuoePtOlE81isfdeR7+G3UH45voXfQvZ1FR18yBJuNNd0nKvo4CP2rejgI9iKDj6CrejgI9iKDj6CrejgA4u45zv4SIB5voOP3FamO/gIlO7gI1C6g49A6Q4+AuU7+EhYdSOp9ljpUmkLCQ5Pl0qx/SbQ/XvECkFGUk2PBbp7L5Btg2PLtzKmsCcBvRTq9PB9WIyEwN5BgKzOlj1HGqcjbzxAiz18sUZKkzBFVWDVJSSp8Ds1Bappgkj/WA9SwqdXai6XZ5GzYHTV1VkI76uLsxA+VNdmIXysLs1C+K66hArhE1whjDg0V5dlETxx5eZAVfOk30l1dRcaJn6+O9R0Fagj1NyzETyaa+7ZCB7NXUDDTfBwq7ldI3iK1NyuESKaU3VZF8Ln2qouQk8tXtSFqkOJ/YkSNErFa4Pvcw/mgpEc+xPVAgeVmzLI27NSsJhconQ5jO/rFSdFdtadPeuO5WSbk/Dl/31lktYGZXZAIiYo4xvSYd3ZVXK/NHwW9vfbYpe0s9ITLYAcJC0P+42c7GfJRHr2p8mlsQXaWnZ2ZjreS6COnloBlOip2SmY+Yg3Qdq29NQKID7Gsw1CSxE61Hlkd3XNRNHLfGlMfGwXQHRsq9ggOrZLIDq2SyA6ttXZIDq2C6BPlyaOigkV8Ao07JR4ishgu8JIlbadHfFCR3wJ5MkLJwroGiUeDTIYrDC8SBvMXrYEvQqo4bDa6NnVw2SCjdPA3Wz59/R2Mfv9sHsc1OWDqXZfCwtFrzhMJRdHn4kSoiq9XRTsrvR2ofaKSlxvGCI+Ae4jngYyTLQwPs9O1Nnrq9K5UwLRuePsVUs7fn0dqkNAhUQ/3VtgMqc0WvrROQUQ/kSPo/3sRQy+kCDDhQQXCkrHKT25Aoh+1JSzE9zRkqkEoiWTszPRRbaM55INoiVTaUS0ZPJ2SrvMPsSqAPL0+l4C0eu7t7PNY02Qw7ri1YY42j6F0dBRXQLRUe3thPVoD1GH36t4X1hEPP0otNKYEm2lAijTVrIXkdDSUyuAaMlfAtGS39uLSOBjuwDiY7sACmxdLwAFJoW75UepHs4uXnYmuGMlZICOhyGxGw5mh8zKhnM7mKezSFc/MTtEVOfoUCUP56cUE4yWiiQVwRJMMn718tCjDcDP6rTwzInLWBMUaJNm6NgaI23SUvUNf7LE0HgsTTZVgE6c8XPSLLbz+x7x8TTpSbOcXc+X/Wt+qt/uF6uHzbfrzWx1c/ftx59/9H9+nm8e3+8ERc0+5+DF9yfXXvH8C93aaR0=
Copy blueprint
RHD
0eNqlnN1OG0kQhd9lrm00Vf3PY+R2FUUGZhNLYCxj0CLEu69NZoDY1eGcnrsE2Z+7q7q6T1X1zEt3dfs4bHfrzb67fOnW1/ebh+7yn5fuYf1zs7o9/m2zuhu6y263Wt92r4tuvbkZ/usu5XVR+dByt7rbfvqk/vnJ/fP2+Mmn9W7/ePjLYvrqw6/VdljuP33RgV98+8Ty26dv+tfvi27Y7Nf79fB7Om//ef6xeby7GnaH0S/+GPH4I4tue/9w+M795vh7B87SuYuw6J4P/5J8EQ4/cLPeDde/P+GPwzvhKsjNHNaB2FDeuRHhepQb61xncMM79/px9zTcLN/wK4usIzf9SRU1sPHD5/sD8eev/RvYwPpiYy0jJJyacGrGqQGnFpzqcKr0OFYIrMBYR/hLFMcSDhOHYwmPicexjMsCjmVchoeYMi7DY0wZl+FBpozL8ChTwmWKR5kSLlM8yoRwmeJRJoTLFI8yIVymeJQJ4zI8yoRxGR5ljMfwIGMchscY4y88xAh3OTzCCG85OMAYKBxezPzh4CJc5eDQIlaVgxXiUZtY1GhRI6ZnxdflbLC4CeQmTn67jOvkPIIRbJmNtazrezRb+EiaPGJeD2ZjInWulYV4hRdZtM1gZiHezcaauZjnkzyFkrzAZ3kK2TfyaZ5DLJHmc03HZT5/dIB9C59AAtjQ8xkkghU+hUSwyqeQCBaOtaXLNtbayoKHsZ5YYCHQ+gOxQWT1BwJNrP5AoJnVHwi0sPoDgMae1h/Asooyl2qOVWlVo8ixGx2taqDzJnpefgiADbOxps8ir2p6yLyJrzGfgQ+mPH75x+3q+cjshtvhabUfbjrrB201efW3ShNioELXtGdNI/XwNIo9C3NvTrzI7BERlHiRCQ3XzcaatW5PS6uCYE8k5lsHyDhLbaRJ/AjLabEs0fopgk8NeMHxmcdP9VQEXxrwCcbnvgEfcLw04HHXZm3A467NjscL7tp8mgU+brf3u7015h6HhoYxE+ulIVaFWC8NsSrEemmIVSHWS0Os4sul9MjGa68U89wptIRFRkl07EZq/lqYFLQrLmE60s+qcqYJiF6CmqM1qXxPHClGlUidvIB8L6n95EXwuf3kRfCl/eQNSKe8bz96IT5entExy4lfh4r06MUUfY+VcBEQsGvXCpA9fLtYgPihXS1A/NguFyB+YvUCRM3tggHil3bFgPClb5cMEJ/ouXszStXEarsUgYbtmrUIhPeEGEEONxG6TYjsWRLpSpJDpp/mYu3RZrpA5U63bhGTXOgK1TlZidKOKF7bmQ4J92qCBAZN+5IDAlDp+5tzDeLYqtT5DzoT7Nn6EdLgEA1zsfaNvsj3Pi+gHUQT3/wELZz5LiVkizKba1qCuBzz3v1Ebk0K3/1EsMp3PxGs47ufCNbz3U8EG/juJ3CiuEh3P6EFlujuJ2KDzHY/EWhhu5/IRd+e7X4iUGG7nwhU6T4lsKyIezE9MVZPdz8x9YNei/nU/sSOHE/LS8gOaSbV9hktLnvQuoVtRiLDDWxvENq4Avo0UOBsEJQUdz2mPALbG4R0R/AzqbZtA6vsFIuyEFlhp6B16dtnkMQNmSnUIvlmKM2FWgQf++ZCLYSX5kIthNfmOi2Eby97Qni8CxhxaGgupUJ4/NgbqWqm9jE1V2ShYeJp21iHVaBwEEtzmRcZdOqb67EQXtDlJvhyS9pc44XwrrnEC+F9cykWwofWSixEj3ghFir7pERKe2iUmVT2ismuVEhhDyqO3LPlUj+vOJjxIud4MgZzR83KPs9Y4Ti86Dpxvt46sydrrnOtiipSnRTp2a0BCSY4smZOtpkTyyk2Bz/pRuUjvQ2in4c9BKb5XG2Pn71hGtHXK6gI+3Sx2F2FQgdKDeQgsT8qADlRGNlEevbB2drYAm0tezso9HqvgRI9tQoo01OzQ7DwK94Ead/TU6uA+DVebBC/xisg+knuGsizU1OxQYGdWg0U2anVQPR7D9TZoExPrQJCe77aT+rovONIHLdqXcVAE6+TffF4GBg/ILSzbNMQ7xWZnBVskKOdVQGxl4H11FMmNdAGqwwv0gazNzdBm7Q6VUr1TJNlE2zcY/q1uv13ebNe/bw/vjXq7wUFTV/LDyVeFzLZ0zaDogmGOM4MSh8eam/VqnSNJyPjo4+S2vjoo8TZG7fSMVID0THi7N1JE7+PTtU7oIKln64zMBFSGy0dExWQQ2NCp/TQHS+umig6ClwFpPTkKiBHj8jeORydHNRAdHLg7Egk7hhMddBsg+jkoDYiOjnwdki7wr5wqQLydHJQA9Er29vR5hXKW8d9xasNcbR9KqOhV3UNRK9qbwesj/TUKiB6VddA/Kq2I9/zq9oGBX5VV0D8qrYjn3g3xTS1CojWKTWQZ0tzAagRKdxs16mkHs6TOxNM9/YClLsRvfbRM5gd0Fst7y2AczskE1zYAiZmhwirnOkyQ8CK0hqFfUjunFxMsNJDLhVhFvGXvIw99AA8cKfEeyg+sCYIv4Y5Nl1roNgAAiaaaB+X87zx+6Jb74e7A+TjjdCL7mnYPfx+xUXU4ksJXvwhnzzokP8BkW9NAw==
Copy blueprint
10-26-2024, 13-39-03.png (436.65 KiB) Viewed 3471 times
Re: 3 and 4 way intersections
Posted: Sat Oct 26, 2024 7:00 pm
by hansjoachim
TBTerra2 wrote: Sat Oct 26, 2024 12:40 pm
im unsure how well the tester will deal with these, but i find them very useful in mega bases
4 lain mainline with a 2lane branch off it. the pathing weights have to be modified abit to get it working right (should have about equal spawns/outputs for each seperate direction, and 4lane parts should have about twice the spawns as 2lane)
LHD
0eNqtnN1uIjkQhV9l1Ncw6ir/tJ3rvdiLeYPVaEQSdoJECCIk2ijKu29DaJKFMjnHvVejIfBh1499XGX6tblePs3Xm8Vq21y9Noubh9Vjc/XXa/O4+L2aLXevrWb38+aq2cwWy+Zt0ixWt/N/mit5mxTeNN3M7tef3qn/fef2Zb175/Nis33qX5kMH328m63n0+2nDzrwg/t3TH98+qR/+zlp5qvtYruYv09n/5+XX6un++v5ph/98dM3T5vn+e10P/BZD10/PPafeljtvrEnTYNOmpf+X+l6/O1iM795/6vsp3WC1Y9BbXvi77vtHmxgfbax3qA6nNrhVI9TA04NONXh1IhTBad2MNUR3ko4lfBWxqmEt6TFsYS7RHAs4S/B00sJhwmeX0p4TPAEU8ZleIYp4zI8xZRxGZ5jwrgMTzJhXIZnmRAuUzzLhHCZ4lkmhMsUzzLCY4onGeEwxXOM8ReeYoy78AxjvAUnGAOF04uZP5xchKscnFpEVDlYHe72T4saLarimjMdsAEYrBuNNUf7kVl73kGGG1D3ffBX+H4CFrHIASRrukC21LeLINmx4A4Di1wAOwuc4EiLtu/s8ebRWPPE0KIxkY92cJCBvaDkeIFsWdgrf9JziC3ceK5pCc8fIR1w2Av8GRLBRv4QiWA7/hSJYBN/jESwcLZNXbKx1gocWhjriQALQssQwAZBWRmCQB0rQxCoZ2UIAg2sDEGgkZYhSFh1Y6nmWBO4Q/oL67elFkIGwR255cSW100CVKpkNNbyWlRejglk4GhvZNeXSkDIgD2MzTbV9lqglZhAOiFGWjJB4+1GY80oS7QSy1hWZFqIZci+XUvrpQwYojsRjvvWg7FB2kiT+JFp8+X8ebbth4rWRhG8q8ALjvc8fqiVIvhQge9wfKzABxzfVeAJ16YKPOHazOMFd206Pdw9rdcPm6015haHSsWY8XhJFbkqeLykilwVPF5SRa4KHi+pIleJcInIwmtHirnzJFqXIqOkZWmGRFOiVSm2/Wa0wuKOMi+egvuo2n3213L2skMend9Y3yf093XnE2G+ENWxri1O0BQCGe8vuEP8pK9VbMarMaIm1fQyWgFN/5PRI/t944Kqo8Wp/w5UunOitekZ15KmOdPSFMllaVtKmwakXS/14hTia706hfiuXp5CfF+vTyE+0Xw/nO7j16uMtCN0LzTsEcIX4o9QvhB/hPRF+EJrX4g6QvxC/BHqF+KPkL8Qn9hcvZlM5rIroV5WQ8OO1boawneEsIb2IUmssgb6wyKZldZnm3Ew73i1rLSGxIMoX5h1CFbHYk3rfroug9Z7FTMvXpcddhj3ZoICDBoWNQdkr6Ja9SOuzuv9rUmmm/iKqEdRuoePtOlE81isfdeR7+G3UH45voXfQvZ1FR18yBJuNNd0nKvo4CP2rejgI9iKDj6CrejgI9iKDj6CrejgA4u45zv4SIB5voOP3FamO/gIlO7gI1C6g49A6Q4+AuU7+EhYdSOp9ljpUmkLCQ5Pl0qx/SbQ/XvECkFGUk2PBbp7L5Btg2PLtzKmsCcBvRTq9PB9WIyEwN5BgKzOlj1HGqcjbzxAiz18sUZKkzBFVWDVJSSp8Ds1Bappgkj/WA9SwqdXai6XZ5GzYHTV1VkI76uLsxA+VNdmIXysLs1C+K66hArhE1whjDg0V5dlETxx5eZAVfOk30l1dRcaJn6+O9R0Fagj1NyzETyaa+7ZCB7NXUDDTfBwq7ldI3iK1NyuESKaU3VZF8Ln2qouQk8tXtSFqkOJ/YkSNErFa4Pvcw/mgpEc+xPVAgeVmzLI27NSsJhconQ5jO/rFSdFdtadPeuO5WSbk/Dl/31lktYGZXZAIiYo4xvSYd3ZVXK/NHwW9vfbYpe0s9ITLYAcJC0P+42c7GfJRHr2p8mlsQXaWnZ2ZjreS6COnloBlOip2SmY+Yg3Qdq29NQKID7Gsw1CSxE61Hlkd3XNRNHLfGlMfGwXQHRsq9ggOrZLIDq2SyA6ttXZIDq2C6BPlyaOigkV8Ao07JR4ishgu8JIlbadHfFCR3wJ5MkLJwroGiUeDTIYrDC8SBvMXrYEvQqo4bDa6NnVw2SCjdPA3Wz59/R2Mfv9sHsc1OWDqXZfCwtFrzhMJRdHn4kSoiq9XRTsrvR2ofaKSlxvGCI+Ae4jngYyTLQwPs9O1Nnrq9K5UwLRuePsVUs7fn0dqkNAhUQ/3VtgMqc0WvrROQUQ/kSPo/3sRQy+kCDDhQQXCkrHKT25Aoh+1JSzE9zRkqkEoiWTszPRRbaM55INoiVTaUS0ZPJ2SrvMPsSqAPL0+l4C0eu7t7PNY02Qw7ri1YY42j6F0dBRXQLRUe3thPVoD1GH36t4X1hEPP0otNKYEm2lAijTVrIXkdDSUyuAaMlfAtGS39uLSOBjuwDiY7sACmxdLwAFJoW75UepHs4uXnYmuGMlZICOhyGxGw5mh8zKhnM7mKezSFc/MTtEVOfoUCUP56cUE4yWiiQVwRJMMn718tCjDcDP6rTwzInLWBMUaJNm6NgaI23SUvUNf7LE0HgsTTZVgE6c8XPSLLbz+x7x8TTpSbOcXc+X/Wt+qt/uF6uHzbfrzWx1c/ftx59/9H9+nm8e3+8ERc0+5+DF9yfXXvH8C93aaR0=
Copy blueprint
RHD
0eNqlnN1OG0kQhd9lrm00Vf3PY+R2FUUGZhNLYCxj0CLEu69NZoDY1eGcnrsE2Z+7q7q6T1X1zEt3dfs4bHfrzb67fOnW1/ebh+7yn5fuYf1zs7o9/m2zuhu6y263Wt92r4tuvbkZ/usu5XVR+dByt7rbfvqk/vnJ/fP2+Mmn9W7/ePjLYvrqw6/VdljuP33RgV98+8Ty26dv+tfvi27Y7Nf79fB7Om//ef6xeby7GnaH0S/+GPH4I4tue/9w+M795vh7B87SuYuw6J4P/5J8EQ4/cLPeDde/P+GPwzvhKsjNHNaB2FDeuRHhepQb61xncMM79/px9zTcLN/wK4usIzf9SRU1sPHD5/sD8eev/RvYwPpiYy0jJJyacGrGqQGnFpzqcKr0OFYIrMBYR/hLFMcSDhOHYwmPicexjMsCjmVchoeYMi7DY0wZl+FBpozL8ChTwmWKR5kSLlM8yoRwmeJRJoTLFI8yIVymeJQJ4zI8yoRxGR5ljMfwIGMchscY4y88xAh3OTzCCG85OMAYKBxezPzh4CJc5eDQIlaVgxXiUZtY1GhRI6ZnxdflbLC4CeQmTn67jOvkPIIRbJmNtazrezRb+EiaPGJeD2ZjInWulYV4hRdZtM1gZiHezcaauZjnkzyFkrzAZ3kK2TfyaZ5DLJHmc03HZT5/dIB9C59AAtjQ8xkkghU+hUSwyqeQCBaOtaXLNtbayoKHsZ5YYCHQ+gOxQWT1BwJNrP5AoJnVHwi0sPoDgMae1h/Asooyl2qOVWlVo8ixGx2taqDzJnpefgiADbOxps8ir2p6yLyJrzGfgQ+mPH75x+3q+cjshtvhabUfbjrrB201efW3ShNioELXtGdNI/XwNIo9C3NvTrzI7BERlHiRCQ3XzcaatW5PS6uCYE8k5lsHyDhLbaRJ/AjLabEs0fopgk8NeMHxmcdP9VQEXxrwCcbnvgEfcLw04HHXZm3A467NjscL7tp8mgU+brf3u7015h6HhoYxE+ulIVaFWC8NsSrEemmIVSHWS0Os4sul9MjGa68U89wptIRFRkl07EZq/lqYFLQrLmE60s+qcqYJiF6CmqM1qXxPHClGlUidvIB8L6n95EXwuf3kRfCl/eQNSKe8bz96IT5entExy4lfh4r06MUUfY+VcBEQsGvXCpA9fLtYgPihXS1A/NguFyB+YvUCRM3tggHil3bFgPClb5cMEJ/ouXszStXEarsUgYbtmrUIhPeEGEEONxG6TYjsWRLpSpJDpp/mYu3RZrpA5U63bhGTXOgK1TlZidKOKF7bmQ4J92qCBAZN+5IDAlDp+5tzDeLYqtT5DzoT7Nn6EdLgEA1zsfaNvsj3Pi+gHUQT3/wELZz5LiVkizKba1qCuBzz3v1Ebk0K3/1EsMp3PxGs47ufCNbz3U8EG/juJ3CiuEh3P6EFlujuJ2KDzHY/EWhhu5/IRd+e7X4iUGG7nwhU6T4lsKyIezE9MVZPdz8x9YNei/nU/sSOHE/LS8gOaSbV9hktLnvQuoVtRiLDDWxvENq4Avo0UOBsEJQUdz2mPALbG4R0R/AzqbZtA6vsFIuyEFlhp6B16dtnkMQNmSnUIvlmKM2FWgQf++ZCLYSX5kIthNfmOi2Eby97Qni8CxhxaGgupUJ4/NgbqWqm9jE1V2ShYeJp21iHVaBwEEtzmRcZdOqb67EQXtDlJvhyS9pc44XwrrnEC+F9cykWwofWSixEj3ghFir7pERKe2iUmVT2ismuVEhhDyqO3LPlUj+vOJjxIud4MgZzR83KPs9Y4Ti86Dpxvt46sydrrnOtiipSnRTp2a0BCSY4smZOtpkTyyk2Bz/pRuUjvQ2in4c9BKb5XG2Pn71hGtHXK6gI+3Sx2F2FQgdKDeQgsT8qADlRGNlEevbB2drYAm0tezso9HqvgRI9tQoo01OzQ7DwK94Ead/TU6uA+DVebBC/xisg+knuGsizU1OxQYGdWg0U2anVQPR7D9TZoExPrQJCe77aT+rovONIHLdqXcVAE6+TffF4GBg/ILSzbNMQ7xWZnBVskKOdVQGxl4H11FMmNdAGqwwv0gazNzdBm7Q6VUr1TJNlE2zcY/q1uv13ebNe/bw/vjXq7wUFTV/LDyVeFzLZ0zaDogmGOM4MSh8eam/VqnSNJyPjo4+S2vjoo8TZG7fSMVID0THi7N1JE7+PTtU7oIKln64zMBFSGy0dExWQQ2NCp/TQHS+umig6ClwFpPTkKiBHj8jeORydHNRAdHLg7Egk7hhMddBsg+jkoDYiOjnwdki7wr5wqQLydHJQA9Er29vR5hXKW8d9xasNcbR9KqOhV3UNRK9qbwesj/TUKiB6VddA/Kq2I9/zq9oGBX5VV0D8qrYjn3g3xTS1CojWKTWQZ0tzAagRKdxs16mkHs6TOxNM9/YClLsRvfbRM5gd0Fst7y2AczskE1zYAiZmhwirnOkyQ8CK0hqFfUjunFxMsNJDLhVhFvGXvIw99AA8cKfEeyg+sCYIv4Y5Nl1roNgAAiaaaB+X87zx+6Jb74e7A+TjjdCL7mnYPfx+xUXU4ksJXvwhnzzokP8BkW9NAw==
Copy blueprint
10-26-2024, 13-39-03.png
The everything test handles it fine and is pretty balanced. Spacing got messed up though XD Have to make a seperate catagory for this one=)
10-26-2024, 21-00-11.png (28.16 KiB) Viewed 3408 times
Re: 3 and 4 way intersections
Posted: Sat Oct 26, 2024 9:06 pm
by Bocian
0eNrsvV1vJDmyLPhXBD0rZsKd3wXMyz2P9+UAM4t9qCkcVFdn9xFWLRWk6vnAYP77ZkQyUllK9wyzUNZdYHF6gFGyFLJkkE7S6XSa/ev2p4ffd1+f7x+//ddPT0//z+2Hf73+y8vth48nxel3P+9evjzff/12//R4++H24y9Pj9/+9PJl9/j5+f5p+G338vL5193w8/3nh6dfP/3l+fP944ebGx3izf4/GfTwQw4/4vJh/7+/Pv559032z960+aEbGdv8I+TpR043y38yhvlhnR+Oh3+TA1KYi0VfH5Y4Pxw+zIUy/X88PHt4qpbXZ0PeP/vl6Xn3Yf8lh4d0nH/E6akSb05w68c/Tu/+6fbu9v7L0+OhpV7uf338/DA10+Pn33b79tk3wMPw/Pm3r7f/3j/3+PPuH7cf5N+f7m53j9/uv93vDn82F/75X4+///bT7nn/wN3y5y+/fX54GB6mv7+7/fr0cn9o9n/dTjDtD+nu9p+3H4YY/pD+/e+7MxyFcFTXcMLdd6/TX/K8QukIJDZQfK3Qtz3Ur//9bZgQDaiyAFkwiW2f0a5OPuL8dP/rsHvYffn2fP9l+Pr0sDOaSTqYWlCFbWqnShVtIU2XWqixDR2aBSMjWx0HR+j6FBNH6frYOIGuj9lbEun62DiJrk8wcTJdHxun0PUxzVBoc3ZwaHtW0w711Z6//P78t93PM8rw+cJ7jft5++f75/3UMP+yWqjCvqVTO8XmWc1/OOLsZ5H1+tHWruao0UjOu1NFTaBEzpYuEG3vzpsVdoXT6NSo0m1t47xa/H9/fvhlcqh+fdrXyQNrl8DCuGWhc7B4Y7dxWOdEPeck0BUy57wQQRt4NW95O/okWcCJrqA5CYaMTl7HHhxNnMLWR8zpKuCTe6+PmIMvNLo+Jk4c7869bnfYSV6fOKPQb2i7vbTb4uAEdoGYJizgPWk3RswhFBNsoQtOBGqX6bfWt29dLNzCjifRN8N9tGBpn0fM4R6bWb2fDJxu0m29LdPrGNmvAn/7/G0PC65T5phLglZyWaEK0IRJWTuqwKvTgycjVpRYp8hxHBLrE3k4sEs0eQXza37/ktkCRf0jOa6Nb9suWLAVtp5le/A9aLRAG+3Lva2rBZuNkQPuISJg8lm2uGjmLJyVch2X2cPGgp2ryZ8zXtaypgx6WmXpoBExppw4j3mZ04Guhx0vURN0WjfOUdExFd1m2L/C9Kf/9fD5nxPi0TBvra/DNyYJbxl6Xw6AFniTrqMJatlcEXJ6dSKYBXblpv3EPLsAlQuU6R6aEmnJeHnO8idaAaaskmAHxQQ1WyJzc1frwBYUvM2ZNlZ7lBGoHrxghRkyAPNAebte/f7169PzN6NrTEwLso6gq1O7tZ+tgNbLV8FQw+IEBMR/qgo3aevvb6EE3tIPC0ACmhPfHtUZE1gDK7dahaWyFhTs8R2mywy8Mbo2hd7VBXGhagUNaHRRiQWvwvun3rjmBqeNVD/FS1Dg+Inqvb41fhq8IA0H56Sud38LsMNzMKkGzHMtkl4UBIofnAQL1DLTlpE4kiqMV+idQzDBrXmkwW7dcPBHZAT6H9xCLaNfIAddRm4sdWzAz5FRuB2FHCK38FwiI7xKFbPWpvHKGGjLaHAnyggPuBAWVBMn0WtrsFshm/CcyxfDAm2CgQtXjN9bwsokKyM+zA7O5NtQod1D5CHPARmIgYigHuDSDGe+mllh/Bx/MSn7eFmUNU21ccCYXojue1YTN4I+efdJ3/aJaegCR8fj5ZcG4+Hz6fABKCHumQg4eIZj6AwFriiwusDmiiKwjzf0jkKqq+DgGTJX25M8AWS4D4GoMuwFdi8gAqNd+U1V93/f1lnsSsP7qnhsChMnkY71FFL7voKJcQY0o1YXk9kc5pyj9NIFne2JgoMvZ25QK+gk1sDhhhH3aLu1FQQWXrqGZVKHYPHt1+IUQbABh00EbMRhAwGbcFimyzK+tWW6rOCwTJfhLqIyXdZwWKLLIj7KlOgyPGNiEKLL8ASKQYgui/goE6LL8HSKQZgug/3HQSIBi48yYSwBzq4YKoGKnxiboKafExvrh9hJxYk/Io7ZrKbtL50kW6DJG5EYZEmRuFeye8sOcCR4gGVi2CZ4fGXm9eFFrBDDIMFnx0WZhoXXsELMMAlewgoxHSZ4eBXCCDK8gBXCCDK8flXCCDK8fFWit05zMy4cac+3eg6ozT7TlhxBpHEVCctiGo5JVj5SBpHW366Ab7cKVDEgWQVqXM6YC3SSKgFlNfhAWHpEXO22AgfKl6WpIUtfAQN9+TtrWA/JnGRIICGZZZUCTn2kYEMh19UmxUZCXe9kbCDUtApUmWS1IR5WNjurXU7yHxCwvndywCqcOzT05CGFTmqqsBsQRc6tqrIbEAw24DsFNWHNAPZJHgTSU+FiRyXE2TxMEfY1Bqlbrm961SlkbF5HIENKKjVQ4mXTbmgVU7Qt27SVBvtRiTDsBo+X1AhU+NgoK4EamE7K5VInNWqI1HgRK5H+3bTM20iZ9O98pEL6dz5S5Q5DlnkfOf1E8xfmG1yv1fx+tIh5f3SED5yKWd9sogrnoXqNqqPiE39HWo+P6Bg4d9WvXuTcVR8IWj16CPvtO5pXZEdsiKyONR0L50n7QNhuI6dVoMY5oi6QjJwj6gMJ54j6QMqeFSlwBKUS2LMiDDayZ0UYbGLPijDYzJ4VYbCFPSvCYCt7VoTBwk7X0K9TQbA6skdQGKywR1AYLBQYHiQTkIEOZQ9MQ0Q6Et/TIxVIhFfFR9zRhE0cPJHAHgrmrkMV3swk22bNPbDi1AaJmA8Ujg4nwmQDvauBUAVu2Ew0LJ5DkIipC08hyMQ8i2cQZMII8ASCzBhBJk+fMNRCnj5hqJU8fcJQG3lMBKHiuQOF6C08daAQvYVnDhSit/DEgUr0Fp43UJneArPjZtK2A+zZxXd73opwImpkkQu8ze4t4RAWoYmnelpBEwkNKRxDKGe3d6ZdBZxkqGlkfQy7CaykASh1QgvgCSXurvkS4QSONxXla4jVNy4zhpMialzJbgnbZhM4zlJk6wsOs1TIUYayOhR2YkgVTZ8/wDbE0hp3xWe622pThsEDqy21M2HQ27DttEKA944nC4TagYEYXg5b7jEqcNCpKJ3DcZINI8SbpTmR0UyIrC9z940WaLGtoNCza1rw1g9nNFe0BRrRAI28NHPeX5VZyQocMw9225hNU7jLFD2ghkGDPIxhWXmCYDN5gd3GWM3+NId2iaSRIPHwkni6m0MwIQTEsgt2ydaBtNsB57VrJqxdUXgIhpFAbfyd4GD2nr2I4HkQ/aoxVGs8C6LntQbkeKkq6VqHiK0fNWy4XhkcWk/YaZQjzvooq4nk1TJeXZm5uGaSGcT6QhMYHnwxdmDENOoWTieb81lr4+8xHwGBMYdnUvSEqAAwcWgTknIGYAHUBg45OQ65ig25FkjikHCWp2evFw2nju/2VYFNRUvgRmVZMRrSY5lltEG87JPMC2goHKzBZofXhl+jKAsO0kn8CFMbX00WY44/onuTEXD5wgivbIeFLQKsXmFULm/ClV8Y4Xy+zkoSER8sjCztawxIU+J0x4VARReuZf8fzzJ6GrFQhrGQbh/2FnUL6xMGze7qIpbyFHANiE5+BbBfBeF2bz35NTqM5LohEdTDCiTrbkTcoyCRJJ+NmN8VJJGcWgaw3e3w4Vnf98WM9Hshp0QnHh+kcqlkPhC/E1tmQ8B9C3imR8/EjoDfElRIjtuI+W9B4esb/bJxbEgj8NkeSxvbzPMaSeLgZDPqayL1QJLNqI/rUCw4tgQBrUORItivrCxFckQbGsmZnoBtXggj+9rF04JghYaSLUkQlDWMbOMEUkHAqw+rnJXsgUNoUchFHCx813ur2hisyFC2B3FgbTvbgy+wtp2BQGqIKBPXslJliDY1RNbSsz1iIrlJmfKNbSBWZSjbph7jBm/Ow+JYVvua5oGxYkMeTiF9wZwRop8Q6XFgj+1I3k7NzklrSOTtVB+I1Rxy3iwpuc4U8WrEGnux567EbsE9HFZArthzYGJt3MMppIJHURuHteni9BerMeTg4MkDS33sOSCzFu3hKFsfe2RkVkTLw2H9lOpIXbGaWR4O65hX254zuW+tzo2VkMl9qw/EWrTzZmUkV6MKUWiGQorYVs+vKFuiOzXaWIFs/blSn+5u/75/20mq92O+k7v9dkU+3e0/6vRR549p+pj2H6df3u2Htxw+6/RZD5/T9Hl6Zvr13XR/WQ4FnQt6KKS5MD023bPfP1fa/NxU0rmkvZTm0uHJNiPG/mSbIWN/ss2Y8fDk9Mzxu+dnjl8+P/P67dMzd9MVZjmWplDbUtL5d3osTb9bSmn+XTqWpt8dSvMbtdBR5jfal7SX0lyan5yeuZvu00ov6VzSXkpzaW7wqU53k9sovaRzSXspzaX5yemZu8mgpJd0LmkvpbmUPu37+/7b7rfJ4I7C13e3D59/2j3s/+0/dg/f7r/c/O/Hp+lf/7Z7fjkwSGZtsbUUJarOxMdd7Xk+K/z/REH7oHct6a2A9v7f9UxB+0ZUp4fnx3I+fbicKGh3Pewkk4B2vTn5soNOdjpR0D5UNUx/ITncvFXQ1vg/Ctr/o6D9Pwra/6Og/f9vBW1QbTBg1OT1Ssrc7TrK3DpeSZn7/7CG9on633lS+2UNbVD1721atp00FK8kzZ2uJISdryRfXa6jEq20QuRbwg0nV4u2Em8fxtt/WJPVxrTVvQrRutr6f0xXmxEfd+JcP1RK+6cLMpHIOScZJBg8grVQWbFCD6hdR+o7jrQEc4OEp4UWjAaUfjfIbZf3yG0fdUrPdQXksto2cijRjorgqwYY05V0xjOlpI5oeJcfogxer6Rb3n6MwngaWQnvt0Iy9bLm9uXaNr+2+bLqNq5COgiQuZnCdSTR8ZubjCR6YgWzBVAKRS9tBldsXC7rcOMKagPAgZ7qj1Bcbz9EcR0/g1k0qYGUqsxmVA2Jk5AjrnXiuuyEPHfEQbn1KZjK7HpZoRu7HAAqs+cfq8xeriinXn+EnHojhY4RUFyEm9E8L/IDRMiL/ggR8vAjRMjjjxAPRzOA86m0OaPEjV1Dh+qKalyNXF1hfbmF2RpROyyN1BoBJhNUmXtZZSBh1So/Rj7+5GLmD5CPr2FDXMB0C/G7mbgQPanPfUmIHtfnxoXoayGZ45D7W/UHqNvX66vbt5Gko7VjI01IMloHRskbtdBeDL1HGY4XgyGt8MjeTPz3Zc1tgvMH4EFumWT8OXvpdFl+GxNIBzLWG7vgJGTBQWmrmwcqlKT1yM/uPScckTbGz3Oq1ep5RYWbuD5nnxeOKL2U24VlRXQbGhzNatG8IsONKb1npJvgtWnEMQu5zSuQLuiIr06HfrfPrUnN7XgJS0hB+9CxAK1oMByRsteGaUV3G5Mxr4goeCAnWAgUJrXp1w8bIuNCZAkECzWu6HFjW2WsqgW6YaN4NStPOWOi5xUlbmwX2t4nwUyOvAK/CMGh3ZUQR0RKW8nJG0MNXJBZRkynPG6IMgsiteLct/zJ3aRC4kzKBwAb0cg4E0BYUFd0uGH6GbsV8ooc9wpqp3uGUNGbmfMR0wFWEVeXkePuE7woAssucBjqFiIpCZwg9+Xd49K6AWvdxNqs/vt9CtwLjp0MFwpJTiFYMlyAiUab2Sd5RXEb0wJzGg9NmojkS0fQN5wzCg/ACfKwI0rE9ipMCQIHehZJ0EoV4YDGUWk7bVfatmAbgYrSZWeyEbgDqoFpCPi8qnstkZPbRhfCJYiZIJnskZXzdjKKwXEWiz8aGJ82wdwbOTHNgUqnRm5QJ3DpehU4TdAeFeXRruTshl9tXbSiMHXrwmpFXVmKe9GKurIW96IVdWUx7kUr6spq3ItW1JXluBetKFqPGxN1wmAjK+qEweLhRGW6DB9lynQZPsqE6bKKM4xXAraxasEQbBlZtWAMVvBGiAQsoW1MGBjOoT0IYWA4ifZAGEJJZAoBkKoneGZGPLbrihw4GjbptM5vq+lotlckgpkcSF3RCsd0oqBeqiOpE4WhCqkThaEqqROFocLZTmUkLKBGUn4Kq2wi5acw1EzKT2GohZSfwlArKT+FoTZSfgpCBbM1XlWsvbss0oRUsfaRFFSx1lUkjFDiJGLiIoHayKs45NVuHyhz+TE+EHYtKqzXCFREllUgUBE5rgCdyoFDisg+EKmI7ANRbClDZ6JX524vlaK3OPQeGHUP8DIUJP/d5ZvGf6/ofePZh151CoMVL2NVMvisI3Lf9STrAajiIt0pazLgAFaNF7GEXB0gKXBodfCRArk6+EiRXB18JFYKSxHlFcnUmuPXjrz46gORF199oIbMEItuOSKIpCO3irlVU+FWMR9IuVXMBwrcKuYDRW4V84ESG6vFtKYzG6vFYAsbq8VgKxurvbLg9hKrvbLi9hKrZSW3wVgtBgvzOw89PxUShg90CPjKottLCPjKqttLCJiV3b4w9y6xRFZzGw1VDZHotspq7drTVmjkrQyFFEEjfBcvjYTsPM4gncKPENxOaZPg9loTZKYJ4IGVyibF7TVURnMcTjPNlBXgcvaMlDk8ojJjW2z4F0JNbPgXQ2XDvxgqG/7FUAMZp8VQIxmnxVATGafFUDMZp8VQCxmnxVArGafFUFGB+8iqgWc0h/TIA2EghxUN7rU8rcWBQUTtM5oH97oPRZsCTYRLF4AZvU8ieeCodb8ixQ1fFiMaPG+5UagFEScv5J1Co8WFkOa2BL/tlnAsBByGKZL1xVW4UyLqW8AkuczOGqgId0kscCDl6tWRpTgV3l7JPj7gANdPFGVzKKuVg1e0ttTufaLanQZCKyJZDt6ffY2mneuXjSu62sTtPkUEWGHqhuPIbFidK76K9dymAKmxViVjxm/V5uuKqDa6EiSm0qyY/cjJbK/duLHrGle0tKHbyIWARu9LHG/CC7YK4JkDsZrtqyvK2msbXsVRG3fHb8l5CwERfhaOhyWci6UGxg9rSpo1ciTRAk98NZpttKq5fekKqgOpK4Lba7QAzYSNhOK2L9aLoeIX/5RA3XANN5g24TAbw2OxJ/MF5aS310b4SKCiN5lkWVNDhHaGgWSKWFJFQ0JkvbfcBgwOe3QkiYgDor0zJpKTJoBqwzhdRIwdGDGDwi5KECqntT305bkgFgBu0pZUg5AxlVaST2IxCVsa7CS1Ar5vLGYbmBPNqer2ZR9F3VagFNlxmome1BQQfWZUmPuYgGL05bgizA3Ow1B12TuEoWITpmy6RBgaovnN0ooBpL0B5ZuQ0W+ItCLYjbHXhPNtXlzR7F7jHulzJ6QETsq3Bo8pXklpNB8IjYosHh6kIJ5Y5jJgS0/Idke7S3RFxBsKkUZB+plbzfqNmiiMivdPLmNqRPbupzLeeE6lU8XAr15q11VX9L2hvXsyoeOK5DfGhBOxvfupBjiWXYC1RCIXwDhiC2AAl6olMBwDNo+iXBKJxcWPrA+4AN8toyneyQeRnfmpqDhGqB+BrSkhKb4MNQhVyc05hho4ZoII8AsGPB2kEqAcXWaPYsW0pkGO7ewiuLMjSST6KhsBMhpCl7wPrIy0Kq7PN+KoaaSDM8sAQ7x3WLnjuDSc0fpVZsuEZ4t0e0Y8TkL6XAnUSOovRNCfT2lLlD4iTims8VHdOrcV8XTMttOItDArpZZkTUodU1lI43ul1A92lJAFN7M6mSmsCasTDmIC6KsDmgRyJENKEfNgcmR7OK2Jr2Nj0ahguooau1fBwppgXhVjx+pT1rTYLx2UpEt1KVzsr58JpILI0gnJvpYyNE/RwhupramyY/aWxdOKj6RhZHtuKqyabLbnypK56Iz/YqQ6sg/EsihnRMshFFYuOdvTbt0SQvCw2KUgO2KMZIhtunBlA5EhNh+IFU323iyRemoZ8fdrJr3cHBHew4BzKSz9ac/WlVUN9HBom7env8Zu5j0cdneRMXe0sdN8sSfDxqoAejiR1KorQLZJaOyUX+xZp7EC4h5OIRfFKRHSRmK9nOLgsGKyNk4cWcnkYquzjqxkuIdD27ejkUvbt4PDaoJXsXFYNVgPh/Xaqy2yOpK3xKtzOziO5C1xH4i1aOfNhJVHrgFTRyZFwaszBUTRDW5VjTYW6cUcKvXp7vbv+7d9uf3w8WO+k7sQ7+TT3f6jTh91/pimj2n/cfrl3d5bksNnnT7r4XOaPk/PTL++m2g85FDQuaCHQpoL02MTIcr03AFsKulc0l5Kc+nw5AEx9icPkLE/ecCM/cl48t3zM8cvn585+fY8P1n6k/Obh/FY0vl3eixNv1tKaf5dOpam3x1KZcZsHaXMKK3/XZn/rvUn2/SkLN/Xpidl+YY2PSkHzLlOd5P3Lb2kc0l7Kc2l+cnpmbvJoKSXdC5pL6W5lD7t+/v+2+63yeAeft99fb5/nE6AHz7/tHvY/9v/+v2XX3bPu59v/mP38O3+y83/fnyafv233fPLgRg2a4utpShRdSaqv3/8efePLor7irg3tZ93L1+e778eLO/24y9Pj9/+9PJl9/j5+f5p+G338vL51920mX54+vXTX/aj8/HDzY0O8Wb/nwx6+CGHH3H5sP/fXx//vPsm+2dvarqZ/3U8/E2Yf+TDP87/IoeHdXq4hf5wnX/EGTC3k4fj/HD48PpQOHxrnoHb+Ppsavtnvzw97z7ctLz8fToAz+USXx/W9PGP08t/2rfj/Zenx2mk/eu2z0T7djqLT5w26r635mF+vzv82VvCJFLXfj5ys5ITSVl7D4eNF8x31szJjFUOtU+rE9s+o12dLZxEQzTZ5wvb1E6VaIV1u4XYrdIQmq3exFbHwRG6PjaHptL1sXECq5QdCqYVQL+nw4VOv6eNk+n62IISha6PjVPp+ojNKEfXx6H/YuvjXNtit0YeDi2t7NwfDXR9bBzanh2mDtqeHZzMrkQu5VGh38y0aK3kWuRWqJEriAcU6DnbfrPAhrf2OFBckbdxJ2Vty+rtYEW6zZzDWjJUNiBcaIGexcU5+CFt1WO9DGRAwAei53FxYjh0C9mxKWH7TyoQV6C9Fqd2gTw+GN4yBpu1i+w4l4xIs0b0Ukzzca2Ug8iPBnsvQvs0Dg7t09iiXZEfCyZOGun+VGTeTkJbXwBQ4bHRsxUHAZIAE8s5MJxLNVopH3DWVLyAS2SUpUTblr1hzrRt2Tg4O4EutgX0Fq4KckguHRBF1wQliWQT0Or7bOQqrnVKwtGFRy84Ou1zmctsDnwlG17JSKMvXh2CntBrMopj8kKoaluwNSwyvUDZnVbpGRZIb8Qld0LEUQssf7rcYhgyItBZhBQYHBAyHpQy53U3Wmw3GNfYWYan6R8Wehdjw/DcU2q3mtnFaBKv38OZWEELvWIB2dMFH1IZB2XzfIcMZIpVemdkh6XpAJcNo+ysAdwiqOwFsCEh+ww86aszMUF1RW9/jVxdcaLtntw9AFf6UVacV2/3nLXFguWDwKYt8TFg86Rk5K/th0t4ws4NwH4GTwmLIw4KqwQfB86I9G8jRIKX3ca6MTY2SX5wTtgc8ho/a39AMnIbHU+2z+3YcLJz0NrYaLKDIyMdTbYPbEY6mjxCB24jyoqRXNzCiAaPAeUgjKbxFBOUXmqAXbXg+WidwANDBf236De4jUsGp12DrRuOBUYbihxEXpXwU/Q+ewM7JcGP1DuXAgTK0jh1Eh9ARRM9cj8yT0Ei00LzOSGgiacM6xSUdv9nciAi4xA/ku98NxBoRUmpl5tLb3spmLDw1qbfr0S0SfGz+2CBmj2v8PlPxjGVHKiA6yaKjqbjzWZoElac8qKZPWW3AOi6pdGrrClcr5mcrA5VRiR/lWRnShay3RZ169yC7PYFZ5qJPbfeTo/iLkd2vRIg+iMBpiBcjKFCUwxJMNPDfECMV97yy9jnCEsqPuCyhkjcXoUAE+kD1/cQw0ngxl1XcmmIcRRcX6AL7SJ7MwkkNeGijy6IebSt8QOs7pEbitluF7O5I8olf9RlFWhijrCewxFYkSi+xLDJPRXE6YswubyYoHaF4Xygvp6K7UFGbsgtYuwBMQIwyDccA/KSINc8VnwwL8AIbKONC3NSE0l/vcxASKUTvOo1rpETOtQCiYvGBkeykeG7pNFsXXsrkOBhVk1Uc2CgbDN0lxUyLwrFrVuP7QSZe1G9onih2oyXgaoY5cw100miBTSVNtxiUB2jom6VzfUUJbCp5CAnxIo6w6EgW5ycWNVXDDazqq8YbGFVXzHYyqq+YrCNVX2FYAuseDn0JBEMlhaTxWCVVX3FYAOuUZsJWFpMFoOlxWQxWHyUKWNg+CgTxhIIIVnGEvBRJkSX4bkYxx0oBIuPMiG6DM/VGIgeq7hiM9FheK7GwPRXwicEAjXjx+Mmqu0DV5a/pGfb4x5ZhdN0O6H6WcXt9mDvqkKt3Mat+bT23QvB8zqYCQxP7GBmW4L5h5hnGpteiKEmPus3Xewolg5L3kX6KnjmB+OM4CRCjOfUoJz4nmSAIOrIj7NYCHg+LT42Al7Z+BxyCqMjdGSQKj69K54ikpnmTaRoNoaaSdFsDLWQotkYKryoFWJRU5zpqOBzpeKJJIUwAjyTpBBGgFM1VMIIcFGiShjBKW3DhUSf4ajJ4N1nVUkg0riKhFGZvmpi+0hYZtVJ7NlFYtNDpCLnOioNrOFaBU9zQi4lka3iCOtMn4sSMXKVJzkisLJkH+EVWZA0bPaGHZ6KSGbruS2dyBw7Fyhv9iOdVyzngEjEWI8Nt274IHvE+mwBskesT2ABG0F5dQgFjMTq9WzZBcJYrOqqhQSMSK+mVaDIpJgOS1KfzUBzkryBgPVtoAeGxxbSgrNupSdpGUAVx4sVrFsnIg+wbUj3dbDiuHUK8QCFqdxlO3FkffzMLkXSSzRSLCo5XKwiNS5qvIiVSJfM5dWJmXTJfKRCumQ+UiVdMh+JdJ1coMS5Tj6ObFs2eyBdgbQaTbp5FrFJnFLg3Bn/7SPnzvhAm8Ni3iuyYTHV92QJaiqca+O3ROVcGx+okTnT53xW9hyaSZ/JrWEmfSYfiPSZfCDSZ/KB6FwDBVIYlM81wGDpXAMMls41wGDpXAMMtuFJAWrCZpN4b2RTGKDa8rkGGCyda4DBBjYpAIOFUssHyQQkvxANTEPw2/aBaZCCNEg0Ae1APJ5yIMRYK40MOGnkTm+VIIIg2rdupi1yCD4ry1SEVTOQh7cYaiQPbzHURB7eYqh5q9KmAkwRWstmd9WxA5YIG2uFxjrB6T1nw9rgvDqt+AraYDajSFhIw89CmfkSz0WIxIDGcxEiMaBxTaJEDGhcoSgx3QX7kokYIHjaQWJ6Cz4NTXhvBZyaIguBCvuRORCo8LKWE4EayKQADBW+o5ErPhEEOtcAqyyba4ChwoKnRZkmqGQKA1ZZNtcAQqVzDTBUNtcAQ2VzDTBUNtcAQ43oGfoxXJQxSXlJ6F2w0UcOJjJ5037ZCQMXwoMU9j4f3B5otkK5AMzIv+M0F8sOGRGxV56gbNl5FkRKFs51ULL9FbwOpTQwfFGjkzApkrMVFF73eoKkArlFASW/iBdaQUxglogJbl5wRGZ2glLuGn4ORCvDvBfZnpvsGgf2EiLaeSgNRglkG7M8GEsMAaBnCAHlPuvXTBRIgQknyRQQm0QzoU2jQHkxXnuvQQc+IWR0zVoGdRixlTaUTZw2QZDuq+TyFEZAm2QD/4VdZ9M6SPaLvtUNAHFHiHAUpU9EWIVZBrVeY4CqIUTwHvBiziG8JykxRHJkivkmdtujjFDqv4o5r0aWE6pXOiHNX8jkqoCoIcVK0AuFaKsXNYJRyMEg6S96sC4gW54kWyhsApA5HGD+i7oYUsEm4gRr7SyTJbLZSZFMoDaqazcxT1nYq41sQVKGPeNsNobtqxBqIs2EtZsCXuZ6wh2GyiaPBNATzPhxeK8uwCUfMry49TP2gEiqBJThIixb6lAxtzWHLV5gQBxMJvPkwD44Ig0MRzNHAjRvHMUR8dQyybDrSdSGTMq/+UCNZC+Kik2HhR1UEWBHDXiKCQOqnFNnNEFivLqCbuIOMY4Y1vmrQ4lk9kL0tCsLK3gVbe3Kkklb95SvS9mQX25LRIfCjhu3Uqz0gdNKlZWKi5BSXKisVFwEsn5DhTPgk41qb+ZR+ZBU3UZoJm4kVwiA9zfgySGRAM0bt/ARMgZWGSE6mqNsRoiHg+aALD5MjFB/N3AwLVHTCLr2jV11ABma0MBVJ7GVxU+kicqyKtSx2GKzrAq1h4MndETzLc3pDU/o6KDIPgDP56gEKJqseOTzPt8FMFyAcdx8BBYbYLURz/lYDMxRIVZSPvhtc6uJyoq5e7VjhX5jQ1b7OCZ4XRazU+w+AWPsKfhGNprAhZuiErBzi3hmh4wEKkuNlMRWtR756+V1AQTGj8hW5c4EROqjKCrdORKg/JX4flaGwcetCbEYPLuUeZax4dZ8IaoJpd/3oOGZrZmzoeDhvUxUtHHrZAK29hFXKOmifBgqu1glW25cWVV6DyeQ/nTSd6XZRAXXsRgvfKEJnNhJPCL9lcngSIr2tj9qIZXrkoPDCjB6OGwYwsEJ9DgBdg0x0OOk2LWjx4mDE8g8q1ShPVcMkTUL2z8MrMKiUcFkAme2J5wKsoLYHg5r/9lePAOr2JtNnbkYRy5YmR2huRiFCzD6QKzNOy0UWWHrbK8xHLNE9y09LNZ18nDYeT0nr7XZCFl2cCprj9HGaaQ9egsWyCnxao8uECs/7bQQmi5w3ALnCG2BE23n9hqRWIpVD4c9Rsn2TJkyWx8Hh7XwYs8niY0BezjsxrrYc0Bm1XE9HNZXKbZ9Z3be9nBYey62HWbWnj0c1jUpDndXzKwvUmyLzqwv4uGwvki1LTqzvriDg5+cL/WxLboIt4ZU50Q4FuXWEB+IDaN6b8aGUWuA1pCSyBbz3ImTs2/cWaq2K1AK2fpzpT7d3f59/7Yvtx8+fsx3crff+sinu/1HnT7q/DFNH9P+4/TLu0m2WQ4FnQt6KKS5MD02P3E38b1JL+lc0l5Kc2l6cuLnm55M85NTSeeS9lKaS4cn0/xk6U+m+cnSn0zzk6U/WU6+fX7m+O3zMyff3qYn9664HEtTFsFS0vl3eixNv1tKaf5dOpam382lCe1u4mqTXtK5pL2U5tLhyTA/GfuTYX4y9ifD/GQ8NPtUp7vYn5xrMZe0l9Jcmp6cn7mbzEp6SeeS9lKaS+nTvtfvv+1+m8zu4ffd1+f7xylE+/D5p93D/t/+8vf7l297m7q7/dvu+eUgdpS1xdZSlKg6KxbeP/68+0c/BnkF2dvYz7uXL8/3Xw8md/vxl6fHb396+bJ7/Px8/zT8tnt5+fzrbkoae3j69dNf9sPy8cPNzY0Ocf//NzLo4YccfsTlw/5/f3388+6bTA+3+dn9P8vht6FMP3K5Wf5rdX5Yp4dlHA/P1vlHnP+2jMdn97+fHw7zw3p4WMPh4Tb9qPXk4bR/+MvT8+7DXDggl8PD89+UdPKwfPzj9Pqf9i15/+XpcRpk/7rtk9C+pc7Cra/NKtPAnEf4/e7wZ2/54bkZaPASVMgp28UJ5Ko/35k05zFyUdsDWTCJbR8n8W3LBD3YSUWFbWqnSqxj7bQQ61cPwXSLhPWrPRyh62OLSihdH0dYma5PsgVB6frYOImuj+kUSabrY+MUuj6mGQobCRmCImK8jX5Nm92UdbIHtTmq2bCIh8OGRQaFUgOUy+qWBRyQaFd6Stdis0LSTWjjZDL1Y1BA2hu9invSMWfXDopJhMSurOqE5pSe8W3Cp0DP+A4Oeptdjm92fjpo3jDmTDl0cCSxlV4UbIrXQHLyDx5ZZyA5+X0gellw3oy7FauXmwlfG5ZOVCR9j+5EOwAzbvENHSx+ebBx+OVBoJAHfMeuX9Mc3ooq2BlekZ0CZpkSM05Mcj0O4kT5WONwcMgbPIMnYRDJmwg+EO0R2W+WRjKJZDiXlglEEonFUr52tVEdG7Smg4SmrHWGkjNU66Q/Bb7S2Ya3Mibww6ejtZuuEH345OHQq4eDU3hh9NeKAX0NLyideHhvu2Y9wbTqI33TIBmZZjOfPR3Ffn/LbDLocR0J2o1qZ2Lo4mdcdfm69eWbOPBabN+O7NDbEgeH3pY4OBmch+Lra633OLgree3wgMiA4Udhy6QGMNPi52LHjjW9RvpczMMRfjJ6rdjq6xY6UOVUM/BzxmVAOElteVsgbbfw/pnp4BY2lWcQJ4xa6ACWU6OKpryr3VzWHrbwzppZOfTaaCzfNdf3UQlixq9CkrocvhTwqAi28bCAWjD0Dt6GoaO6NkzapsATL9YNpbw67gHPbgxaPCuV5LtasIGuZXn6B9N5pNXJbZjG38BZ9vbAFbFGb/TtStL7/IL4nw1SQ158YyAq2jhiqqEjA1RFLbGhAycsil8RXazPhqGXExumbr2f5eDRC4l9+mTd64RmqnYRFdyQ7P3HpRcDMlfJyHK79a4FGNFkpDcg9gHayFJxDM7Zu4z82aCNkzcbnwNY6FM4Gwc8BEmvRwXv8WJkhDlKh6NzCIQfREZOAnBwkiREhJIA9HFor8o+xOVPyx0cdEwc46YjJ64jkjbbuFNlPvZl49AHiCOypIuQwsW+rZDCxS6QblxL0sV+QMmxB13edERCHaJKKp57bx04wXMPJvIKv6ONxG7JnXZnT0wcGHapcGAqGZkd36MaJKiY97jSq6CW96souIezRcbYNo+Anosk7f2xmssgAafq7JMuEEiTwDpSnh8VWD/K9lbos3QHpvAb0U65DSwLlrw3NAmHS1Vu5KYsIQkdEkcyDyAiGWKRvnVs5/fRl45tGPoejw1DX+OxYRJ7+w7yRSJPX9ZJTwuCXjaa9MWWwKnYe/QfiAJJbGQ+BZJNIYk9+bAzcZNAUaB+G8WGYAeFUxOU8G8JX7d3bfvOOJ/dJS9bnWIuefQRux3IF/qI3cPhj9jDEXCd4kAS6oAtHI1yloCUqD5D2Z7F/T6G4EwyeKKS4pW+jz+FTMXsL3PORGmiU3NfJ1OvE9jpVBBvJoMu4NEPPwsjmsacYb603uRI/JC+1ypOIj+9Y3Jw0APMrp/+tkOSCdpo5zWOZhva00wZ6TBOz5uA+qjwNGkxEfDKwxMWVnjCtB6nx+B5wrQeusHg+QhdYroWzbPpjKAYKL9X6z6EAHIyUlB9PF22uJLeteqgIuevsknnX8gkeQqaqLBfFZYvjBClkVQ+f3TolIqCcJFJVcRdHihIeJVUE9W00RpJVqt32lBFT2jLlb6PXlftnXil11UHp5L3jAQKW6Ck2OFK3YiSZYd2pe8TUr7lvd9He8Dv/D4+X6/LLAnCMSctbouCOF9irkdo8kWObptRm7wGpjTlK00lDSJDHfqNAAFynMRK7FjdATH47Wr42bwHO7KhewFidopngByHX3mPKemIypAdY9TnXxipLwykkNh7vy9y4gbnKf6B+jpezsy2OtMT0g0pKQUeNDoWcC+QCUw+g6sR6I1GF8HhZUR1Y5UA5TfTy4kzBM9vpiUR8PxVLiHmVWGvodg3p3RDXosQI2UD+7gQZi1la1YOBl+3Mshj8G0rgzwEr+yFe8dEVLYyyGPV5MehEiaifFArECai6NlPGAlQflAGwu6UH5SBsTt+UAbGXvhBGRh74QdlJOwlbA9AQ/DbA9AQ/PYANAS/PQANwaNjNVYCNG2OakPweXNUG4IvpEy3scswcflBmhg75AdpIuww8oM0EXYY+UGaCZOJ/CDNhMlEVF40E75+5M+GMmEvkd9tZnvvJjY+P0ozY49QXKlkYoMM8oMMr6mjDj+Iglzyw2syq4cEksmfHB65SO84vEH05DTxY2xYdo/ArVVNYQN+IPDjBnwh8BM4SQxLRABC5YdZvxqIwfOO61AIeH5NHBiT2RLJxeHRBKZjtrRHuaQ0Fb5NKKRoDpLU0+liNW1Yc9h2EiK2qZnhmxzhQ74+6ipwyKcoi/7xLss5xxIVFT/JSYJo2+wZylyg+DQlx0rAHIiorpXY4wGWBkqjvbCYr13gnPUlzwQxN5CrP8vawgpy9b8e4LlA2LWmurrUF4wTsaZVoMTcgRn6JRibT085hv7l6MsDK+y1UkVybrUQOeo2rG3CDfFWq4lo1rOy+elOO1YhF4xzkkNzwai6VXz17eubgxeVrz+mOOmIyJlrjfxFoUiYV2UZrrxuy5DEaCRMtBZYYjQSdlphmeRGdH9jppK+k3easlHcozVexBJyB+lxyGpTcgfpIwVyB+kjRfD6bltFSvAs2/dCiqQya4P5qHsOoQIZqdrAgODwXV8AQ66xMkg2t6+eJKwQTjnE0jyiFKWLm6Rn1wGESYIIo2zbaXQ/WoEc4IAmrmhwO7SZuKzYksPVTGvWKyS2FLYkmER7+NnGkrcehSDjMIxl61EIBl+3nlpg8G3rqQUEL+PW0wUMXrhUfwxUtx5ZYPB8ukke8VlEIrfvc/niJXH7Ph8oc/s+H4hK2tSEdMaGSN8yS0L425M2FcjTDTpuqH/A678ho+S4RYbwt0TnG4GPHoENOhKoW2LyhcBPm88sMPy8+cwCwy+bzywwfPS2lBx93wj5vmFDTslAmOOGnJKBsJsNOSUDYTYwYcyQCdAN52eEKYYtQ5WA35CUSaBvSP8i0PlRyhhL3ZjXjaG3jTnYEPqGrBJm+oqb06UxeOVSvDHQsDUHG4OPW5ObMXiWo8MRtIqbk6Sxam5OksbgK3mUqQCpf4hta+o1VOk0bk29xuBZumbHMjakmShhwBuyTJQwvLThgKGa8GLjp62p3Vj1M5fajYGWrandGHzdmtqNwTe0SQhfLfPM6aES8OjF4KNXf84uJ0xUF81LOd5EtrYR1BeidFfhWl8IxmyP+QTGF1KBcpxQJ4dL82nOW/NAFdro5XI1fNuWK5EICla5sRwh5wKknPWUkSUJMb6RMp8NkjzHeBBwGS9YvDwYfzzzJeiF4CMxxrs7KpJXkN/9hWj62rW+D+QHaNf6PlbswVYiDiivj16tY1g5CKfiKF2PXqvFT1J+MBoxRbLnA8bdk2xIc2av289vIPhIMm8YDU85QSiLTz6uKgWRtQ6VpfR4twWVDVcJ+lkLcpUg1Lo9rN2Qrm9kKj6E2sbNIW0IXjaHtCF43RzShuC3R58h+O3RZwiez5ywDcd0YxpLt6VmXndocArfglMRje/KLnRO7WCi5mDblbnuRDRD6chaqxU6oYo4n84yr4azJFNh+GbiqBt88v7Vjq467CCr/w5KvQNJH/vu70ucLKvxfYH6Ppjzsn/dOsNrHHki6bL0+ursEkc2y9CzJdbhdXAEvs6Rj21o4sDj8yhWcZ6XyVztiQIfy3ZvJ4R19y3Sgk8h2O3B6hV4OHBgqUeOA5BIGi3WG0ZPLiS7svzQ6Y6iB1hZBZT0BweJFdF0aqQjoSEQ4noeaFT2KMarmbIjGaHljEoPiGJXjx4QDk4ihZBCRtKFo24eEr2vm11dNqLi4bB+n4fTyGzmUJFs5hjgdaQf0AXA241ByLB6QPREIp7RI4cQRgREoGIInKBadAS8Y4iUopqPw0rJRuFEB2PgjysWJSPbjQjscIm2WxPY4eLh4G5Wu4QTR05Pze3TKJygmg8EHgJm/d44VgdX3Hg7vUdfou0HxUgOruC9d+J1BqPaUJkbp26VCunlRPWQ2N2F19pta0aOA5jQuLqevuJm/cJI57d49VZ2/Ds4gRz/nq2kSI5/FyhtUFR0BkLK5L3SCNwYiQm96becxcT4vh1lokeP07TbR48NmFmiTA9HSOcvJsj5y/QoceoXqKuT6fiy68aEZoQk/9VFTOC0cbnrJmTvcmgtJQ9nc2qlB0g7Vg4O7VjZOGiuxnE7GCFFx3iSkUFIOEfgqDMWZZd7hxEkFnZvHu1NYWH35h5OYjvVweFYe+Lx5YDGBxeVWE8bH5gHykbd2X5sl+x9A0ZV0vdUyd5T0ewkTl02CA71uSSNyMah0oKzTj0DaYUeTuSsMCxg61aIJh8MyxSQ3hkspzWEku3HVlRYoN8rTGGdniZWdk3xKsfGts5b1VwL2sgalF2/BkezQrNbzwyStQ0Hld1WobdnF5lkL1Yt8ocDzaymPX00ls3Hq2dme9vBKaRgbEpYgKVVOHp5wAWSN2Njz0eS6Y+lkd2qeDjC9oKDAy8q/UZAyutx6YSf5C99W9+VjJDGDYPn8MVIilca2Uhxcrgz08grofekiQS4b2lk48Op2dWklxwHh93GODgCD5tO85CA45MkvMd2GAQZ4U9L8Al8NUFtzA2qNCMBD9Oadp86j+tLZBJ0+CzJq3l8V/JqEtady2KbXcEi2EuEbbovYwNhbN3H8K4PxOa1OG+mrM/m4QiZf/HWDM2BqUpGLc4NxjREDWRoITvh4aSsfFMONg4VZu77RQ8rs7bh4BSOoa2DOQ3FBo09nEYOxej0XBjJoegCsWcozpsFJVMDMpKYkgIXLF6wEzA8Q2SHZ0RyTFJg7+Nn26kN9EBwcAq5Yc5Q8DQFNm0rV0jzOgV2l5JtdyuyuxQPh4sS67FS6zYY2Shx8ZbUyG7gi70UxkgmtJfRxmE36l59WCeo2MtBZIncPRx2JShOf7EukIOTRlKnuwC8Fymx4gjFnnsSG+31cGjrtodyYs9APBx2jq+2dSd2jvdw2B1zta07Vc4/qU6OSkqN809cIPpU3Hkz+lS8QgSvKSvZYsl70bDBh67Rxopk68+V+nR3+/f9277cfvj4Md/J3X79lE93+486fdT5Y5o+pv3H6Zd3st9AyLGwdyV7Qeff6LGw/00vpPk36VjY/2YqzEB3k16B9JLOJe2lNJfmJ6dvuZvoyKWXdC5pL6W5ND05SSm8Yk6lV8yp9Io5P3M3JY1JL+lc0l5Kc2l+cvreu4nAXI6lKclmKen8Oz2Wpt8tpTT/Lh1L0+/mhpi+927aQ0kv6VzSXkpzaX4yffdk+u7JdPrk/MzdZFPSSzqXtJfSXEqf9l1+/23322RzD7/vvj7fP06BnYfPP+0e9v/2f98//vzb/cM0Sv62e3453KbJ2mJre6coqk6HpLf7h3aTmzwZ4ivK3sJ+3r18eb7/ejC424+/PD1++9PLl93j5+f7p+G33cvL5193kzP18PTrp7/sB+Xjh5sbHeLN/j8Z9PBDDj/i8mH/v78+/nn3TfbP3tR8M//rePgbLdOPPP/l/F9L87M6Pyv938Lhb2R+LNXjwzc1zE+HDxPi4et0fljCDFxfgWUs+2e/PD3vPtzUdvy3w9+kuRbl5qQaH/84vfynfTvef3l6nAbYv277BLRvp7Oj39dGlWlQzqP7fnf4szdDXbjZZ/AyxZSbMFwcNjQxRMehZSMTg52Tm9j2cTJp84bJebAT6Qrb1E6V2OC200LsZmuw7xwIu057OELXx3QZRen62DiBro/ZW/RVMQ8n0fUxHSLJdH1sHDateQjOiJdKv5lp0NLIHdEQdN3RU96+bcES1g8dzq/PFlMxmu0H41K2KXJLxgOGgOQB0ZHnwb7irmyYwcPJdH1smfpC18fGgUV89LU+60bctkSynCoGVIrxuJKd868xx+NBtgT0BwViwUHp3re9n0D3vsPFyk4SCuVwo3fFXrnFh3MdlmDyt8EqQLnjQvImkChCtBFtGpqt7MQYfKMnYe/mxriVkhiqaKS9LFs3J27WnBsQwY/IjyfnqtOWUyQPDF5yOiPr8JZq2HzVjKsr9u0FJDIXYdXGo6ELlMdLG5Cdf0seiA46ejlJaM7q0nq6ThOShNyrubVj5a+Gc9FHJhU4BTpBS53uz+bpBT0unbg1eAQr3zXwqjOMX1ULntGbiUVosme80IsWLj2YbJXh1LZEKWwsOu7u4XBeW7hcKeXAXltr1aRzwOff5YXLumeJ3kh7ZcyZua3W92UZjwP0VUiAZEL6RtrUCBYOmXJ2eGkLiEw584Eabc/mm5WRn1kvNhV5By2KbXyWTaN30I7TlZxt0CwjwS+kdVdPgGzrQgcExOznQgcEHBzudtqyjjhgXC5afK3Zeh9X8qqb0cnWmoRz7eYFdr2T6Utqg5gueBW6k20cZffZAl0mqvBi0tUyp/qtdnWF15LXvvbODgg14KUnFOhfePmIBGihjcZ0NukLaB4OL3u4bCjFPBBq7O3mQ7du5s1opEt2sTUaHDo7WpLp2rVAKj4PDVmrGr5TWZoWAE1smMe5SEOz0DptRwedbRhwKQnl9LVWN2M4CW0X3x2cA8aR1Bc5t5Bi4gptwfZJIX4LrXvkgEMuI33+6FSO3rI7OGnTFswBy3TT20eHYyGvWg+Qpyv4DbKhzx8ZQaXP3O235s/cHRz6TBI6bRDh1wb7jBk/hB+6YwE4oyL0lsOpHb3lcHDILUe7CFZIvalBodlSYJ29tIw0u36NpOoZIM9b8HP6V8/Wzh/Bl4XlSAuwOf6Y3suWoClbvfeMbKjGq1BiQzUeEJ2a4rwZdHp4POyxMSprTk5d4Cl/OARNADdUArudtusWyCRCr99OTtHx8PNoQwXOltwqsV6P00KJXCAFmqtC3hL6c6pYWEO1141AGHxX/kEslSbmtnPoWIfHgUG1GI8KBtDSiF7meo3POJcyJQb21CBB7myMeOd2LkgEld0OJ++1af4iG4bdDjswcArWQgoFDPnY2MBbBk7jJRFeT7RgzY7lb4HZGav0JTAbhmX8cmAiJJqWrFYyuxS/CzbIwVNE9v2JHQt20CSxY8GBgVeFaL5iNkEbfuR66FFBUlMkE4Ph4GwhQT9Bb5AtGyqR92Q7CqrfW6/0dex2wg4HS6Y9LgcnkXwCMkK2gZ9Q2KZhWnLGna9OmYccfEiuvOjfYdkWJLtSMk9hLCZ8NC8GoBlZI4HJC/IFAp3X40sEOi/HVwh0Xo2vEei8xr0wppK3puVi8CifZfeNMFB+cPblHznrlcLumOwTbqnslsnDYWPEAt2fFpwPNtkzp9l6Fd1AvVY3IXnuAp/Bv4YmzoBNc6qwBNjQMzUFggWFaoflTO88O4TR6pPKi4N1jnRBFCKlsqmS4tw1a9uInHvUCsnMkcbKYRiZOUzbNzYrxmmbpltuCQkSgEBP+RM5elokz5jPrM2G5Ze9dLlpM3nqcf7+ycQtLG58TwaJoKkCqZH9CJ4KlZHCVTR3oAYSFz8kWqK3BYHFD077KSAGix+j9nN7DBaPKvZcIgwWj6v07EsMFs85CEyXEVtApsvg49ZBKwGLH0cpYQl4QsKghCXgnABH3wiCxUeZEpZAJCsIYQkS6ZNICJaIXjJdRmT2MF1GnHIxXYYfejE9hg8yosOIBAeiv4hsB6K73mY72LH2TACy/DLedRDVuPWCLVbRDQETxgjY0wH77okqrxzFzFlatwpTYfAbJNgI6w38HWxmVaOZd50+DPwdbLWHnNj15OOWjM8QoPO44NRYTUh4TYtMf+FHB8zrwytaJAYensWRiPGGZ3EkYpjhSR2J6C2c4SARvRVhlutUiSGG8xwkwgjwbI9MGAFOf5AZI4AHV2aMAB5cmTECeHBlprfgwVWI3sITQwrRW3hiSCF6C88TKURv4WkjhegtnAGhMr0Fj63K9BamYD0c093EkaLUVECkcRUJu9d9coziIjVQM7ytIWX+avdxlwmQvWsWTt3cr6hSkuQ+Dp3z4XCnkSnkfoXIFHIfiE0h996M1U6QimhEKEhrsD6OcuOUwl2gNV4D/4LHW14Jm++vYMafV422YMaf4yoQlmNeV42tYOZf0yoQJaMzdLl2m1pHC0VZu0Q4PbACqxEeK7VOLXmSQgFUcbxYQTZdwsE5SZfA7zB4WEISkSqQhqi0gK5XO4pv/rKtnWVFeOaRIm4dlRoNfbPhVZAaDDVexCqkO6WOtoHWSrpTPlIj3SkXqY2kO+Ujke6OD8S5Oz4OGzzWADHkNlYy5y31nL1iNpbp2aYr1JY578xvP5K53AdimTi8N2ucF+VVKIwj50X5QEJvIXqo7IwPdTTxlfOi/IoGzovygSLnRflAifOifKDM5mQokOoRiAP+npOBwVY2JwODbWxOBgRLHPD3nAwMVticDAxW2ZwMDDawyRMYbGSTJzDYxCZPYLCZTZ7AYAubPIHB0te4MVjiNl82YbPJRj6yORlQbZUXil6SMzQiJOrK5nxg1Q5szgcGG8mcDww1kTkfGGomcz4w1ELmfGCoFc/5wADb1kwNCD6MW+9xQGM5yNZEEKz2rHKBJ1wQtiaCYNWMWxNBMPi0NREEg89bE0EwePaOrteHdWuiBlbNRsbCz+U+TE2KOBIJIIrcEgn44X8k+ikqmQCCoQYyAQRDjWQCCIaayAQQDDWTCSAYaiETQDDUSmZqYKiNzNSAUPGz/0z0Fn72n4news/+M9Fb+Nl/JnorwfG+MhKTFn74XxgjyGQCCIZayAQQDLWSCSAYaiMTQCBUnGSiEr2VhUwAwVBRYqJ4jBvmP0A2m+F7tpVFhsmuC4sMi2Adg58HRQZcqSxn+ivOK2/rbPEJ28fNtq3iliurCQY3dGMljRQQNQgnmQqEDpwCYh2hsIRHTpuiwguvZy7nmh/MtetgcUsQ15mxdmeZXbzGAcdfvNA4QjVOpg9lFlcbSK8LBcwRypEcPwUmIMu2jTuw4D4uX5iyxdTWG9nzVYcWPVR6HDYbh86VcHDC1isW2oD871A3hEeaiW/DJ1QbrRKgfFBkObuB4PmFbjlxguD5WElIBDwfswwFh2/8zaRA2EvjY5aR6NqmoDkuSUcQKD9EYyTgI8nfGwDesECneNia0qGx6a4eDipwdyRGHc+XMmZpRnkkjhuTd38h7JP2SEuQdb8xjnikRU3rsFFZBvIAUCPFEb7C1PcNQZG6sqnktpp8pGUqPBz8ltJIvGUmdQgCovyKZ5YsPeJIBrPcSB4OK5Xn4ODJIv2yXABOmeNbsYpnJ6uwN1W2q6b41vSAU2wc2uwdHNrsHRyWqDxk5IwmCspbVFxcW0YYz/dIeelQwEZwkYpGoKIbpyVQEgrUuDqiEZgF9+ySiSQTmN1GhWaLfLPbKA8Hv+bap0+AKTniiRxLZzu145SNDvNCtFWtNZNb4egI9UVl1e+8GlUuC9ivUOOygF2gwDJTOm+G8yikzmmPOF94YkW3Kq927AoRbYcmkHfsplxlGyhtuOES1cbKpC24lWJTILxWquT6FyGW0kgwH4xLg63bGMF80C69Napn8XrcEB3liYhqWMgpELAUnWQ5QNpWB3CnjhBjSHcAYwS6N7L7cK9m7D7cwykkS3lEPGc6d8GrHZH12jsB0FGIiQ0fR4fbKdK6FdH2pmnhCg8nkOoJEXFHE3hCGhefPII+OZ6IsNiJ89qcvFGvpO2cJdoNcnDYq0ceDrwg9ChjRFzZTC8Idu2ysCevSYARCucRyLI8JMGWBzSPYFm/0gjishKPyfbiMivx6OFk0j85f1G7Z/AFQzsuYo5odFb97jZnmNxIO3eak0wF6F1sO1EFdKJebVu5rJBY2Fxtr6aBNUYHBx4ccexvDBgNerx/jJIkSNgznpziY4TyCaH4jqXw6f9d7gvxLEtltdE8z5xmOEg2Di0I4eHATlaoZnuZ1lOVjNy9RbUnHFgP4jjvYvlY8eTkHpmB+kWaBOTbxMrFo9qCbGLRynoODi2t5+DAbljP+0+IR1wbKWCfQI+4jRtCg6kBndz4C+M9oe0tvDn9NHrJsR3KFrjoU3IobmKLXMTIB6I9MufN4JERDo58Qhz5k4P0tev/xexNxw4reQwzN98qHVU8ORXHd2pZ1u07jeTIkQXaBGP39R7OFqFiD4t1xjwc2BkLBw8+Ax58GkFnbLGXHKBlL42wM9Y6LmIrYPbJMRE5K7QLTPTBeA52HzVuFswORUUSNNRVL/QLsfVIsmGZsXvO9KKTKDet+y1DDye7qwQWBFL7Pc3hJImUGcqAklwSLk7Wtx/ZaUA2UObhVDRntE+PcV2mKEnj82jjUkvADJXd2zgvr6zYXU7IHjapbr2hm4F7PknD1jRiDB5jaq92h5kDSmGV11iJimZSZSxHKMM9EYfxfZHOwLqnbIwgOwcfSdkYQTa3Z4k+mvdwZIuSXAau6qQAxqL1uBjnd2WOppODfGyDlpvdJnHL9SUPjD249HDYg0sPh119iu0NB/aYxsNhOQvKiGyYUmTPKgvoqkZ2i1Ns/wcXKlgaEIjtpsh6Z17tItstUJpGiolkYizRrh8bLiv2fBzZcJmHw25gij0fRzaz18HBmQWW+tjTRWIlcDwcNsxV7ekisfbt4bDHjtUeJylxG87qbasSmajlA7EW7b0Zm6hVsRkgkVv0iU7SrGDeQgRd7ekEJP5/bf25Up/ubv++f9uX2w8fP+Y7udu/mny623/U6aPOH9P0Me0/Tr+8k71TJIeCzgU9FNJcmB6bn7ibWK6ll3QuaS+luTQ9OZGR758seX5yKulc0l5Kc+nwZJ6frP3JPD9Z+5N5frL2J+vJt8/PHL99fub126dn7iaOajmWpszFpaTz7/RYmn63lNL8u3QsTb87lMKMuaCEGWX5uzD/3fLk/O61v3ud3732d6/zu9fDu891upsCitJLOpe0l9JcmjtoeuZuMivpJZ1L2ktpLqVP+16//7b7bTK7h993X5/vH6c998Pnn3YP+3/7z/vHv//3bjcNlL/tnl8OO+2sLba2dx2i6rRvub1//Hn3j743ekXZG9nPu5cvz/dfDzZ3+/GXp8dvf3r5snv8/Hz/NPy2e3n5/Otuckgfnn799Jf9uHz8cKNDvNn/J4MefsjhR1w+7P/318c/777Jh5ubNv/bjUidf8T5L3O5Wf4TCfOzOj2bDv+k4/wjzfBFXp/VcX42fJj+Tme8w1ceANvJozHvH/3y9Lz7cNNa/+t8gJ2rUPIJbP74x+m9P+2b8P7L0+M0vP5126effROdbXBf21OmITmP7fvd4c/eyhdzc8/gpcOSwTQXh+W7nvk/zFMScjkb7GToxLaPkzqeN0zNg53CXNimdqrE7lecFmL374N9l0HY/buHI3R9TIdRlK6PjRPo+tg67JGuj42T6PqY7pBkuj42TqHrY5qh0Obs4LDb7z0O4uYpu/0ePKoJ+orUYFNE0FekPBzawm2WFY3kCdNwzvIRifCYJvr97XrnrWysA8SyRl+nGtRR3NjKlzoglF1blG0Fh9/AeatKtPIG0tvOx4pVnx9sDmPqVlqXAeL+jfyh69KJAWIMBI/oZGnbN2d0NsMYOHEcp+xzlRSOuopvpMI0UqUHfLC5MUjn1dOniCPpcrpAQo8COw8YpWPRZpuRmXkf6G4Nju2beXORdgC8rQ3twqmT2r9lU+JgFbpnbZxKd0J/R0TPMjZ+5AYc/iTGjMXyh7fyaWaAkPb3bGXIpOR04In+pUBOBy4Qvadx3izxI/cyYEaXqe5inGlmW6CFnQCmBcusHr1AiH0o0uj2N3HyyO6ZBKKZyEK3mHMVISvdYjYOdyd48Z8dMN78bRwwYzIcW4m8BpT5Hc6xP9ZnzbzhOosQ8PxgMX2O3NjtqQToAL3QkS+7goXXygnl2I4WIJivEuobwzod1oSZlQ2CHoshmM5EoYPADg4dKXBwwI3KcQVu3DgtZXMDmssgfRNsqIj6ZGmsmyQjcNWgsif89ksTErhyrJ2FQ+/47epsHxTmWg3r3i4o1UShtyB2Zeggsg2z3e7tk5G6Jd9tSOuLUaVPS8wKNnrJsGEgXrrl9MdE0M0tb65htN7t4JwjNnrqt+tDz/w2TKYPFRD/+C33qZPdXC51YN2+5pp4MFnpcWMNTO0y0nO7fbgzsvrmg653g4z0VO/UbvNc7+Cxg8CBSYiZ9dVwRNqLnfadeoEbal2uip0d1BUTtnIX0M58XjVRG+f7Bc71Exm32o59LEuco3fFIKARhN2GO3Vjcx4dmLgl1d/Bgq9ZHWHWxwlKYbps7J3gh+Bn7J2aC+lKdlvtVI0NQdkwykagIJ0/QS9VhSPByh+AQzZRLBJ7pCx3Ej5FA7lBB986cmZXkE2fKH4R8YAKGKFmmHrjcAUE8TXo83Ynf4i+D2LDcPfc+4GXk4oEe1FhtNrLNOaTg3PgFClcetcA3wDpPi3A0SeB3VI4hxUSWG/Kzk8LiRRaqqQnQF+McupZyLmvQd4VfrjdSQMqYoPYSXfIJ01q5tiN6Bx12LwItHmhL0jZ0UOJyud+9O0B4pXTN6W8akaSnkQA3RGJ8PLRZWNEkHfOEC9rb0W135ddL+zwvUT4+rouMOvDjb4+5VQOP9oOFxsLP8zuLEoCCIRIUpL17/ygwsZFObjCsnjImQcYTWBUKlKFBIaVIjMJnEn5CYFQ6bHjJDXzaSM9e08Qj5g+KHeqiZOlBrmII+xkiHBRSKaH0ZntJBMXvoceA1PdSKoygqaOnqcncgihTKplJHFBT60GErfi0kHdXAsCCw+mYbFeBBY/Rh/67gGDxRWt+t4Gg1UcNhCwAYclugw/SB+U6bKEwzJdhkteKdNlBYdlugwfZcp0Gc54r6MJa3pE+CH7IIQl4MysgxCWgJ/BD0JYQsVHmRCWUPFRJoQl4Gf1A9NjcOitK/1hqGyOpJciKZWNT9upjVJp18/GabTr5+DAJ5idxf8sNdVseJx1NRLjrwWSKwusLM4CTlg0ftafiNGHk7UmYqpouAYdMa81XG2FMQKWOR9BVUK/VAhUeB3KgUCFB1dOBCq8CuVCoMJjKzO9BY+twvQWPLYK01vw2CpMb8FjqzC9BY+tQvQWfhe/Er2FZxRUordAGteZcOKA2rxr1QFEGleRMMbw4XhDxkfC+CeG42GRj8Qxth79YYARXqWgQcdjJ1QkcKQCpuLU07fffiFc2OxMcS7Wj9xNK7fTlGRh8oHYDDXvzQKZZ3He0SY5gvL3jrWYBmp6jIrf9V+8b+f9MVKyLKsdgrG45LgKhImk1nUTwc5Qa1oDChQN2dDVnezroMplFywREg9McRXAcQECrOttioF9imgj2oCRSxbU0esLPE//cstt4Liw39dcQGgOVq+adcONZg+L3fg7OJHd+Hs4G653KWHEqIxqWGYSxXhvIjQ4olNVkxAlRjjtS3EjjJTKcN//eZ1FXa2v8SJWIT1cj31BYyU9XB+pkR6ui5RG0sP1kYSd64KNo1v1jRAaCE1sPpp6lHs0Zav3wiTJnd8DJGWrD8SySXhvBu4fwndDZzvjuiYwyz9917nr6jWaOVGiVHCDBKlejz6t22tZOZ/WBwqcT+sDRc6n9YESexQOUWblzB6FY7CFPQrHYCt7FI7BNvYoHIJl8gGILiPyAZToMiIfQIkuI/IBlOgyJh+A6bLEHoVjsJk9s8ZgC3tmjcFW9swag23smTUEy+QDEF1G5AMQPUakAxAdVgN5Eo4Q8SmRDEBYQU14VghR18x63g5BJR0GcHDYqzceDssFq5CmlraRPBbHeEKbkAfYGK2nkgfYGGogD7Ax1EgeYGOoiTzAxlAzeYCNoRbyABtDrajBZnvasENOeGZAxo0gEJkBhUAV8lwcQ1XyXBxDDeS5OIYayXNxDDWR5+IYaibPxTHUQp6LY6iVPBfHUMG1axZQOMAaanMmUfKI3l2pLLKg58iRRQaD20NhgdEbQqMPbHIa42qw/b6NAum7AacpCAQo7f6ZqY2BlgLwcOpW5WAPkD4KsnF0JO/BvG1+2wZRloLEjkcFR00OLDA4ago7HFHqgtfheJYxIjZ9O0t4ZmslBEWZZXtSvrb1S55B6XC5U7nKzQ62gkbAJV0P++EA3P8NAedWFhO1mqjs1WznlWl6fw8HOiwNzBtG8qpgkHXijRCwI6Mlrh48tSecq+CwEQ6KmAp6iWCZBAKmdBpoYn5b8iaEtvUifzBvVQdU2/V48hbCe4haA83j7zQEmnNwDLCc95Rp9Cc5B8Dxe+8r20JxNoOe8BIiIrOROIbJcLGKrPSrh8MuIx4Ovowc67NOoxFiI9mOQkSEkUMaObqj4EiZhyQcG1HINgx2jHp8y+xVJ7DTYMZ8ISLvQJcXXR8SKHPBMS/C7wd6PNjuOp2F4OFUktbobXvZSjr0cIA49wOZadDPoGwxvoATFazg0MSBDg7NHOjgRJptcXHaHMBEZt+F+q4VHOUiCEukJZxvlMxZGs896Ow/oQLGnlEm8qW6s+gl4NJlNuXfFsEMNIm/hyNbDcsDVJJvK45AfxRW8y/aDmCJBLWsLYcaaHZ+ry4ww01P7IgBaamyuUOdarKk/NGhjww0D380KaQDTbwf7fpUdlfh4bC7iggd24YNVPxLVzoVjTj/esxIDdkoVbQ9FpqX38MpWxh2I0D9GWrd3BlOXRtBpg71RqPHhe0bNHpcODi6uckcQHYVSPYa1VghJA8nkQM/jdAOseWtDedVtIBR4AVmtGEq6TQmeZfT2FhnKdnqjeNISqwkgIU/0tz+CaAsjzS3v/fOmxcPD5BkaU6R45GNI7uYJEc8FBW/ONY0IUyycWS35179KrmRTvE9oyiObaOaWgIWnSjsopOKrdQq3NIdLoLRg8jBYa8fp4x4dlEif7dOzD4xN8VR0lZpNhA/k3uC1DyBXvYMPjUbh03B9HDYFMwEXTiPZ4IB7go8LtVbpbiPKhvFa7MgVWZjYNlW2NXAXffKngyxRu66lw/E7uC9N8s8i0AzO8AeZlq26syC+Oz5YnbUsduGa9AOFn7uvvSN2jjsJsarD7u5z5CUVgy8+ndPNMjIoUmk1QOyPVYCeVkzO6IwMZCXNX0gVIZpWXzymX83tSTuQAV2bfGaklcDfwVczcCMcdyqJ4/BCyrkeHDNcl4n3IkbJAbkkMSTEea+GNmIQbYdwcifv/QUv1yQtuX9tZ6vhcHz8YRlkobg+ZBzd98xeHr4OX24IQsm49VMqIe3uABvxkcwQdl8sWy7tahgwXFPnOu7LqbHxB58ehVnl7Fiu2qJdfk8HFZZs4yQO5BYItripLjFxDp1xXZ8aA0CByezAYJiv1dmHToPh93WFHs6oY/2PRzawu2RkmkLd3DYbJZqj5TMhss8HNaeq2OHjXNkq8PNEMvIObI+EGvRzpsVdotSsS1KITfuNXkvGjfsD2u0sRLZ+nOlPt3d/n3/ti+3Hz5+zHdyt/eI5NPd/qNOH3X+mKaPaf9x+uXdpDMnh4LOBT0U0lyYHpufuJs4wOS1tPfklpLOv9PX0v53SynNv0uvpf3vptJEZjdhHr57Kulc0l5Kc+nw5PR9U+ap9JLOJe2lNJcOT9bvnqzfPVlPn5xqf6e9ceb6ziXtpTSXpidntLtp4y+9pHNJeynNpbkxp2fuJhOQXtK5pL2U5lL6tO+h+2+73yYTefh99/X5/nFynR4+/7R72P/bf37+unv+8nA/9fTfds8vhx1F1hZbS1Gi6iy/df/48+4ffavxCrO3iJ93L1+e778eDOT24y9Pj9/+9PJl9/j5+f5p+G338vL5190Ucn54+vXTX/aD6PHDzY0O8Wb/nwx6+CGHH3H5sP/fXx//vPsm+2dvWrqZ/1Xy/CO26Uc+/OPhF4eHdX64HP5ND1+Q5h+5njwc54fDh7lQZsQZS8qMX8vrs1r3z355et7tH5YxHP5p/k0e9/9fws0Jbv34x+ndP+2b8f7L0+M0Hv512+eLfTOdnUe/tqlMY2gejPe7w5+95d3mJouZPsy8Bc+NbxeH3fkNdkJTZF/LoUZMG6bAwc5AymwLOVViF2inhdj8oOE8ldCKbrPJQsPbRDJH2Z01CzuBUmhh94hoItLC7k7t2HMro09seT+69WxViUS/p42Tt+QODwERUC/0qzrCIPSr2jhtS2qTA4bKV5+MWW+2FrqZbOo83vJtHN7yA0YruuUCzYBcbsOFqj1Uc6bTvEXIebAvCioYnji26vkFWvPVK3nZaVAge5uUsO5B8MG5RD1y1MiDOucW+IFUXZoQSEtU8pYqhhpIGsvDS69fHI7cRd09LHIxBZLULTaifSWF9Pk8GsdQSE/NBapQ2noi3pEcI33mUSc3DNZHWt4TyIQT2rSRrD3d4ofbTMmEgHWHAa46RHbD4fHiRzJQ4gNxC0k4wtnxG3BqOa4kAnmm+CHRuMACfQEmA8lrG2boGlAa2SX/rTaNZdsJpbOJx+omZJVOBFfo0gwAKstLvdQWPoRKGw5ty/JV5h4+8Qed6SIge5pk9BiTC5q4+xHhcmtUlJfpWHlFdIDxg6ehLycCuAkZH3LLWwcgwyDLdhsz19Ks223MBkSdueZ3kzXj4udWnYZ0EGDVzzhh6NL5iIQDQXwtNqzZ+QUOAtmg1sV0+Orp67AakWGV0cWsHHEFog4r4/YhYPpVBVzHdORaoMCbJXX6y5wCCnsQDNlWidvnAbtV8ZhbIaoJy/KGER8DhVyn2sUXh+lBOrfz0IAZheC3rouRrk9/dST5kqG6ViHnKUCEr8KDqdoVtawJF7pe9nxt3URxZuvF2UZAWfaQoXLOK8FxnfBa00FtBLRunv/NLSKugC0NriROga34GGiyeY4237yxiRzDu0g5Gh3mq5BD0HAKuIS3dWI1PwcoBN0Iz7CvYEDkoBV4zelDAWHeRO/fDscmKOeZ7xZuQ2trVzabB63j5sFhn/WNqFtY3LdPJq7CPBzM6weYe1VMVPN8GOfEHjoX1gCEYmRMJGnjYJ9RjsRg6tu3iFQPH02LXxAQWFLtdwgQX5mM8HB6ra2ZYoArOY5mY5qGictix0igooTXcmxNQaZnEVxRSJZTIwSWDrPbwXEROszuAWWSOGlQpF9gjy9mAhUcOdHvbBuXEA06bCuAPZW8zXa4eEJoMl+IktltXifrluMnp0qB1Or2qoTyOiw7mRHKFMKzGroTKHbtMhm9dF8TjtXFi60OnzNF00BNs8cJrIeFphswe/wm7VGBC0GFNRMWnQcov0aITIalsiZMIE7KHQjYx+qWYq/euBR2MvvUtJSQ0TOXIzEhtMrigthD3x8jfht+cba3pD10cWXsZNbNbEk8Z2HQgx+EONJ40sIy5gCOFYns2IBAA8kSa7IHS2RHi725i/hoMXvD7mN8O9Jvelakj9mrek5ehUT2ZpOd6xvh4REuwaSR7EgHBheFM5vc7EgmA+Gw7CLBdkmB3VcKQJwiCfSojpEqwchjJaUt6c72qYjQrNUeDnuNwMOpZPBToJu1ktjh4dQvj6wn6ly7EPwma5SLNcKVEu1BYY41/F7r0MMOyLm+0Ndc7WwGwRMEFnMDsgIlswSkXu0Ka8QB2k3hl2DD5dZrrOnZOAXOpslHHCByhp78D8f0wPN8qGACwzHeRfNbgIQCKaga25ER87y+NjCqK3XM1kCBE3kwIVDIs2RS7w6tbiFPPM5xzZUUJbU+6nah9UWTbHz7jcQJntBU2OJcUmKvons4YBg4jFd6/8DOi069I8nJ+d56J3YeduoNjruYrlRv9B4QOd+d5BAgnm1O5txk+jOoqHau3BTSQH+wCNcUDVwDayBx8T3UYnMFgSXcxUbA4gedy8iGYPH00lAJWDzQsES7IVg8Krd4LRBsxWEZSyCi2Lgl6EgE6goBKzhsImCJSEUgYPFRpkLAEukETJclHJbpMiK7gOkyfJQJ02X4KBOmy/BRRvQYnmowEB2GpxoMRH/hJAkD0V1MngGBGsl8XkFoLVWgO6+VqCcdDCw2G0DZmguKVbOSpCCS7Wq2rXSeUDV13Mq3icHLVr5NDH7zDSQMnr0u4ZgaycigF+1WN9zsI+xWNxCwMva2WfMLg98gfcTYW0Op8RUHDfwQJDxzDRtk8wh7weW9w0WzhokcjntfSLNTwwY5SsKeAz8aiS2r4iLgr6gmDj/sIjEuAj/sImPCkP5YP20XJD1d8ZyKTLQDLv6dideP8BDLxMDFKSEyMR4i7EWWkfAi8ZyLQowuPOmiMEYAb9IKYwTwHq0wRgBv0QphBHh+RiV6C0/XqERvgZLiM3fjAdXJkdEUQKRxFQnL+B5eE2ZdJCzle3jNBnaRMoi0CoQxDa3jsClJNsuLJpJs2a1QJsmWfSD6hMt+s8ze0RNIIEozfZLl1C+yaSrVazHMzGNcbXrMyvOqdWbMyvN6jSoEVNetCrPzmtaAThIqgIsBQzxshdQh6xMKrMcePDDqysJ4EYrl5PVwtvCJe1gsFamHk8nx6+Gw9xQU4JXVk3wHoMX6LsWrIaX2lS9iVcrsa7yIJaTT4bHtaVXS6fCRAul0+EiRdDp8pMQ5HT5QppwOH4dlJbBZCLVWzunwK9Q4p8MFwhW5l8nFfrOGE3i0XiMbh40refUJnGvgN1DkXAMfKHGugQ+UOdfAByqca+ADVTZxQ4F8ECWO63vsDoENxHH9YmMQrLAZFhisshkWGGxgMyww2MhmWGCwic2wwGAzm2GBwRY2wwKDrWyGBQbb2AwLCJY4rxeiy4S4vlZN2GzCKpu4gdU2sIkbGGxkEzcw2EQmbmComUzcwFALmbiBoVYycQNDhc4xMg644fSesVoV8vqgOrJagRboVgcnbE3awF54s3YqBp+2Jltg8HlrsgUGX7YmW2DwrPqIZyJta34EVE1UZOEYVNWEBFXDhmN6xnHCj+lfUU2csDV/A6tm3Jq/gcEnLn8DA81b8zcw+EJrAYeIOzwbju6ZzVBgr7Q6dhdHMj0EHHZRtqaHQK8fdWt6CAYftqZ1YPAwO6KDajd52posglU6E8kimoBkkYCf6GemdSuZLIKhNjJZBELFT/QzMTrwE/1CDIqkZAoKZgS4THghjAAXDS+EEeAS4oUxgkwmi2CohUwWwVArmSyCoTZUtuQYBT5XWTGtC6VsGLSyyDALVmORYSLFYyi7QKy8IRNsJ737AKLTkOGr6so2RSIFRmBg8NbsaxMbwMS12ZDpEy5biy7T2zkHp7EbFxunjOR1b4XyiwPKAxH0Sh2ESqgfSRCNLwzUF7LpPl4PGHs7QjIBGuEFHIevx+Hv7Q1wfOZADnxSVyIns5HMVQxllMgXlhoxgRt5zxxtDJo7QputTchm1nk49OG0gxPAeMSyKazrt/1D3TjOlj0cwHAfKszNEouJaqZ5h8rp93XCHgVEFUItLHl+GJGGYLNQbdHagCtJdMt0cPA0jnCxPpZeBNbTARDNCah8RFx80oAJPIUGU0V2As6A6CaFBl9r6FSBARAkCo0jyUuFgEbXpWUhDCM2xxNED4dj16CIPVTypCl48rN4rsgyIB2dWDYfysMR8rwAE/mOI7sEefVj792h9ePuvKawVHLVtuMIOnkpnxrLum1HIg2kj3KAvjeO7I4q2Nq2I7uj8nA4PeXYFrD1nhH+PLozSkMtKaxqbCiQDEYksj4OceOQkeqyOeTB3DhFPMtj6XgHB6Ji6NvoABAzR8kkMfNb1Inm04CFRVTi8YXXdxERlYJIxzXxfHvCUJBFi7th5YWWedDuQR1JeeMAUBZHOs0jePLbdJpHsJW3aeIFDyeC+6t+HBQaIN+tidPvjiPSByyrSbR13rVwieVx9LqyconlPhC7s3HejE68iBDpcjxJvCA046MAmux40kW/JBVHBBX02I6XR84bwp52AxgeX6bHqNjqistL9FYAdgwx0APG9n8DO2CCY+ehbrjpFdXGIm91uJWK7C7GaSWc2CCOZh+almxlR6xtr9OldsM5DQ7zfUS8zsjSgUenL9jrex5OJk8yYnyP9GaMpMJxWCoPGADOFV7NDrNRwTB0Ct83EN4kCVyLFocpgvsQPCHisP+MyDYksU5ZtJ3PxDplHk6kR33fk0RkT5ISKRUbz7z8ZuLit2btzjFtNZXNUyC0lSLyIA6oyIYhsTG2aLvnmV6dHBzShZMFbL1/cOGKnnQZK4IauH3J26qa0StCtuKwRidkY5IT2dfJdt9p2QoPp9B76t7fCRDEiYR6hZqNaPd3I+ekBLrsZdwaYXjbGg4+vCB1Dd+E+O6FXZGS7ZUWdkXycEh+xraArfc8LmJBoWby+CydbdWYLIdY4IBcv16UbNe1sMc8KTobm8IuQU6NKrsEeTjsMU+KUHSiKj/dHSsKeJwVPf7x650YS6qRP1du5vvYr0OvVraPWunVysEpW5hfUwHmgFrRuywdNK/njsTaaHe0b/gTwuMX28jjRxPfhmcj2alCcnax0SuW7ak2esVycCL5otkRG46NHTHZ9staJvmu82jjkPE4/8XIALYPxAaw7RZKIxvAziOyMU0438TS8sGu3xbBbw+LtXMPJ5ISehmIOyY0geC1J6CchzSyMemc7Ldmx4DjJaWRHQMuED0GbBxhEzlzsXHYRE4Ph53Xc7NxaHt3cNh5vTizVhJ2Xi/2rCWsJ+ThsHKTBTq+S8ImYBZ7phHWwh0cZS282P2nrIV7OKyFF3uk0EfyHg57mlLskaLsaYqHw87Z1bZvZbWFPRzWnqtjhyStbXUSKlMgaW19INainTcLLK1txVbvEMgWS96LbuH8rNHGSmTrz5X6dHf79/3bvtx++Pgx3cld1Dv5dLf/qNNHnT+m6WPaf5x+eSd6eGT69VzQQyHNhemx+Ym7idBUeknnkvZSmkvTkxND7PSkzE9OJZ1L2ktpLh2elPlJ7U/K/KT2J2V+UvuTp98+P3P89vmZk2+P85O1PzmVpsP5paTz7/RYmn63lNL8u3QsTb87lOqM2TpKnVFa/7s6/13rT7bpyTr2J9v05L6kvZTm0tzsU53uJq9beknnkvZSmkvTk/Mzd5NZSS/pXNJeSnMpfdr3+v233W+T2T38vvv6fP84RQMePv+0e9j/239+fv52v7egf978X4/PTw8Pu59v/uPh6W+754fd51/2z+0/vRwCA1nbftOTokTVWUX+/vHn3T96LPcVem95P+9evjzffz0Y4u3HX54ev/3p5cvu8fPz/dPw2+7l5fOvuynm8fD066e/7Afr44cbHeLNzY0MejP/kMOPuHzY/++vj3/efZMPNzdlfuamlvmHjHn6EdvN8b86zs/q9GzrD9Xp/3WcCjkfn5RxevTL0/Puw005/HPrsBKmH6ken23jxz9Ob/Jp3yj3X54ep1H0r9s+y+xf+iyF8rWF5nOZ1ye//fPr9OTf7p+//T7PUMtI/u/PX3fDt5M/1GnIzmP/fnf4vreShdzcNDhuoXKziQcTSC/Vyw1jGdzNKZKkb7erkjdM2WYAo5Ak8HZ12FRvs2XomxCmbi99D8JEEXIfr+sLtrB+AKZfzyZt22rHbMq2jULv4UwUegdnosBHQLrUZb0HK7snRBw5Ye3eVidg7d5GYWNzYhOGKzsf2DAwrcKiuSaQOA/7jjZTM7uhc2DwKwl5gQHeEd7dLeJhwEUmhSUie3rwW9BskiWTa7M4Mb/ABjJs3Xd61+fAoJN9uYp6PJxjHSll88AlGsQCa8eHRN5twaTjQyZTKcF2AIOBZeRg6w/Row/tKoqzJ7nYsCIscAWLPlCViuvkbeCvI+RhN9DXEeqwMf5IcVg6m9sxivwj1VxjQW78LQshZBDwzoQQeMQ56yL+7jhlXcSl7fAE7YQPAzxBO+HWn1giBEiIEaerS3j342x1ieh+eNeTiO7HiSCJ7q8/QIoUT9EmlEjxfG1CiBRXuyN0SPG0bUIvNIcfIBea4w9QC83pB4iF5vwDtEJz+QFSobn+AKVQNIdbxFVTZGjXrMxuZM/Q+RAF4EQqbLacJwlI53PbgpAlXEeJs8TrCHHSenvOa2EyTauysAULLa8K1ZZ6HY3L0q4jcVnH6yhcgqJ6qwKXVso1MvLaovi3OvBg2jexdRMt5qsaryJYWTlKKmmXsPLVtC9ruYr0ZeW0JS8pl9brSUu26ylLwgnQCwFjeM8a1TaOlKOA4OpIaeEqeotwunQ9Vbhbzwtv6Trqiy1fRXwRzJ1e1QIFU6dX1Ulbu45koozjdSQTZZTrSCbKqNeRTJQxbPTzYNZyGeNVxJdkTPzFbYJhX8Yfql8k4w/VL5LxOvpFMv5Q/SKRkQgJYv2GJ2MTOh6Cp2ZH5vUDGRXEUCMZFsRQExkXxFAzGRgEjaCQkUGsspUMDWKojYwNQqh4xkAmjADPICC0ZwRPKCC0ZwTPESe0ZwTPL8hMb6UfoD0jeDZ5YXqr/ACRGMEzzQvTW+0HiMQInoxAiMQInptAiMQImqowJFdpgrmcL5Yk35pqii2aYs/sASVRHHrT5/VohYS00e3FdQ6EpoizhSsEzVaQS3oJVI/CiUF6bHITp11Fg0VQ8b1j8s07VTUkgmGMmDghCTnJZyAScCBri4HMwAFVNSRGMgcHbgwwZygXFjhvHNy4noO8TW3wY6jBlM4wZ6VYr6IzIrFdRWdE0kgmM57JbJj9g2cxLNo7SI/guntLYBVC3bC62ToJdlNsFEvBpRgEJaSrvtQFtXqkfBVJEknlKpIkksBL6PVUicIEamT68pm2h2kCmefQssUKHHiaXdshc5WsV5G2kByuIm0hmbvnWBY5EBMrXUUkQWiaOQ+Hve4QAL5TyeyFhwCxRAmamzDI+L0yAj6rFF7aYWgXuOyl8Jmrgy1NYDb1mUzeyq4lFASUT1gdiSrHq+hFSMF0HgTWeZCSr6JAIaVs3aqGhjRgvYr8gJR2FfkBqSzjT6gI44+gZHODugzwjRn7Va8iTiA1XEUKQCrLCoTw6gvNHWdzpQvNHefh8NTAQ4JZsoVWrrPpyKWieXFtI9u2tHHrJQSnyk2uwsQub1Xs7Il2OJJXmxhg2GDw6aor1Zgsw9DMXW4ipavwigud/ODhbB8vFblVWq9Cei2Np1hcrLkClL06XodUW2nhulgRX1VHvQqhtNIUcx5O3OqTvKXqtV8XVQZfPPN0lpKVifGtNAedzYmsI++qic1g7JhpvQp3s4701sfjFNa3qRFrW4YE3MtUkStRHivNVZccnHAVymMV2AvrK2ACthoqibc7nIBWBbzQKkcm9vyeDEmVDcMowYS3SrPf2TzFSrPfOTjK7njOm9e0CuWDBXnhzwWsQnkhokVDAYhhqwburCIBZxVK0y7YVMJK8y54OODIGsop4e56jq0qHIobjgzFgEXVKzEoq7arMCgrSLS3ynysQa7DfKxBr8J8rCFchaFYNxHreVjpKgzFiicZdOnYDGiOaShXYRLWUK/DJKysIp0LRCvSOW+GpggMS3J5LpCCvEaFpxtZqIURkpxwFeZjjfEqzMcauYs+YWEtXrfdmK/CqayxXIVTWSM40weXeNgxFE5H+8iyvN6CabwKd7MmuQp3syb9IdzNmmA+qp4ZUhACpBSvwgitKV2FEVrp83ibyVnp83gPh/V8SnbmcvxAXi5xQmse/9/27ma5bRuIA/ir9AHUCbH4WODQS2+955bxdNxEbWfqRB3X6S3v3gIkJSYhgP+ai5tuoEGtaIkSSC32BxWjmoJRMapJnGjft6VJnGivxZH+Zhsn7NJanHXfR6tJnHWvxWEhkRRpP44Ook1BCdEmVkK0iXUQbeIxiDaxEqJNrIdoEx9GtMPJnGIo/nI4UW5SafrczEZzLHvMynRp59kxywblDlrbuWPZ8LnDr+3cUTayCx1najo/MLdpbvvcLvtkZTrNyHTuzm2a2z63C9gdCoS9sNHlacsWLVu+bBW02rotrm3dFte27oprt4Hpt8+fP/59foEoadajpDFLOtKCO5tFfS7b3m4waXfDpO2CRhdU2lABowP/sOGk6cZJrzz1NAcujwnTbefEd09ax5Om6+FMR3BHcDR1of5sTYf6kIkdVDhr1uKsowpnnTQ4ayNfO44W6hAqYITqYgUB8enQu0FDG6cG55J+dx3Yxqqxqy4E5/bHYu4mDU0QJ1OWAnFopi6rSOcRvSfyu4cW2qI1WAGC2K6EpjuX7wdggqt40SLf0a7BmQfQpamVyTZ+TzGntn8tIHO4Y2ALk+7IcQbpWnrI9b6GLU+HHXhuS9i9Ku+w9/+GNord/iSm2pGGtpHd/lpf///03de6xLYmYTkjtkaqtRpgvsUlhXnUjCIb+4iej1rY17PUGOR7yUorDQyQ3rTwKBQE0r9N8KC+KITAapxOflm3KoJIdCMspTW7vyg5UlmcwMnGoOBh9h9PC61vzf6KPF5F63dButAEtFg5WIdtWcS7o/mha7ExGBa9aJMtIeAnYdEuGNbIzswEr0yAJo+YRCsTeDvE+vdOqrxWkiN49sjYhg/vgwoz71m6KgqkgUfpqiiqcrUzA+RqZwfI1QILP9AACz/YARZ+cAMs/OAHWPh4ekqg1uNytUCtxxNXArU+pAFqPU8D1Ho8uyVQ63GdWqDWsx2g1uMFoAK1HlesBWo9XhAqUOsZHqTY4YMUxwEWPqcBFn6cBlj40Qyw8AUFobYho4vrQSthnA6wHr0OsB6DDrAeWQlYj0rAetIB1tMkPHu61vURE3xTxHnUBN/Uch42wZ2eCe6FtzRkjyrV6/vWU6obmbY1LUQdoLovHBCQrkpJBeBGoequwI1C1V2CG4WqAYPbahncTsvg9loGt/jErsRhJQI6StkvzNdOUvZLCEpj9+tYVCO8Ydc2pf0QU5pHmNIiqdoPkarDEKn6TkrfSek7KX0npeG0I0uGQ9yUFknVZohUTUOkaiu97qkAyU7HGbZemDYEAWswce+M0LlFYWgXpYHBlKSX+scWTEqGJCV/J1kxnBHAyuDsGHZSWJl0lF4Hl7EFFii9zglnW9gJmJfppPOUbWVOr3FKziya1r/OebaTEBBzUUeyRVP6N88PqoOsMc8NbBSijY0OF+vptWCVhSYKK2m0aOb+itRbgrBFDw9KYZ8Fpg7SLJiNWsFqPevguT7q4Lk+6UCmr5CZ1/nejKi5RjghFlJcA+lYqcFKv2wYs4KdcGrgt69lZWo+upiAqR5u6oDO4HiFTVc1gXWw2BB1sNiQdJBVnoSVF27q+cxQJZKrse0sLBKrB1LiY1ku/tH1Je8nnLf+cq8EZD+s6xjM7XuCdXxzBrsMBteVvr3RNZ+e4yuqzhx1CWbopKkdVISrXNJ6PN25h1uAGb0ksrRav8AZFCFY1lVCUsdexpb9c8DyvFuJuT0l136N/756ZaDohavs7D3hV6XdnCupqVQ+cy6kplL2zLmOmkp1dO48JVv2KO18oi8blDtobeeOZcPnDr+2c0fZsDnUXGadH5jbNLd9bvdKrH++vLyUz1K/wjp+2Qn142+Xy1+beHOZ9Yfz74+fn3Ln04eHd+8vT5fnn/ILnfxpevjl08v5+f2fj5/+OP/z7k3pfNCqZ977XG5rmGs7b3ay9YjfPLfLL8jj/+fAv+dflz9NjRfyy38bX5Ni
Copy blueprint
Test results from RailTester in BP descriptions. Sorry I cut off the decimals... Everything is rounded down unless it was something like .98 where I'd round up. Settings were as follows, except I tested for a bunch of train configs:
10-26-2024, 22-59-28.png (22 KiB) Viewed 3366 times
All of these intersections are optimised primarily around 6 car trains, and secondarily 3 and 2 cars. All RHD.
All designs aside from Paperclip are mine made before SA with Fake New Rails first, now recreated with real ones. Paperclip was posted in LHD version on Factorio Discord by Xortle - I just made an RHD version and named it.
10-26-2024, 22-56-02.png (490.8 KiB) Viewed 3366 times
10-26-2024, 22-56-14.png (549.28 KiB) Viewed 3366 times
10-26-2024, 22-56-27.png (563.08 KiB) Viewed 3366 times
10-26-2024, 22-56-37.png (685.15 KiB) Viewed 3366 times
10-26-2024, 22-56-57.png (621.1 KiB) Viewed 3366 times
10-26-2024, 22-57-09.png (574.07 KiB) Viewed 3366 times
10-26-2024, 22-57-20.png (599.92 KiB) Viewed 3366 times
10-26-2024, 22-57-30.png (646.95 KiB) Viewed 3366 times
10-26-2024, 22-57-40.png (1.14 MiB) Viewed 3366 times
Re: 3 and 4 way intersections
Posted: Sat Oct 26, 2024 9:17 pm
by hansjoachim
[/quote]
Tried testbenchcontrols 2.0.4 but it still detects this intersection as LHT
[/quote]
Now i re did the 1.1 to 2.0 conversion and LHT/RHT should be fixed, including also the Everything test and also a couple other things:)
Re: 3 and 4 way intersections
Posted: Sun Oct 27, 2024 1:38 am
by mmmPI
Reverse Manual Nightmare
RHT - 4 tile spacing between rails
Size : 96x96 = 3 chunks
If you drive horizontal, you can go manual, but if you go vertical, no, it is all in reverse, hence the name.
Reverse Manual Nightmare.jpg (170.69 KiB) Viewed 3283 times
0eNqtXVtvG7kO/ivFPDsLiaJu/QX7cs7DYt8Wi4XbzOkacJzAcYotiv73M243HtdD2fyovPUy+SheRVEU83X4sH0Zn/ab3WF4/3W4H58/7jdPh83jbng/1PRPTe9++/X3YTVsPj7unof3f3wdnjefduvt8evd+mGcPtuvN9vh2/TJ7n78Z3jvv60aH93t1w9PZ1/Stz9Xw7g7bA6b8Qf29798+Wv38vBh3E9Qq59+/F/Q1fD0+Lz5scavw4Rzx6H8ElfDl+mPkfMv8dtxCRdYdMJ6Pkxon/4+3H1fuISWT1gSUgCQ/FUk1vJH9Wf+VsP9Zj9+/PFNEZCjRXJ8iewF5HRC/viy/zzef+f9bn1djukC1wnA2aIgUdXFoiARqVrWFCQk7yyLkqFmt/h7vf3f3f1m/elxUm8br77i+Z/1QBK6yVG8uFCTp8hQJldxGlfxUW/R/LrKkBSSTHr2Z2BZ5dkCJUuyrJYx+ZpuAylkWJWgHgAlZ2Caqhj8vQVKjNlEBnMhVrAbDDGbwncTP/7AX9v1lyPOMG7Hz+vDeD9IRCx+9C+R8/UjJNV7EfuZpF/sRVHCnl3sdQl3+m2JSLEtUbaQ8A0SouLLW1KQmagWtS/CZwbUHpzoJx+ublC+3hZXuMwKX56eHvcHEZcauFJiE+i6Gm6sPCvUEIKFRIBIqB08zN7mFzllRTQdDVxRS3CiypM6hNDMVLxkihCmkHQ0vZK8yAqSBGzx9nSiEC5sQEo8Ql2SuMlECg0SLB1cnIWCRyjovTwRgksG8cfSoCApmNX7OM+x1tOlsTJgrMwGD2RI4dGgcD4phm9ny5wssTEjPCAuzY2lixovlgAYWy4trt3i0pQAJqLTmq0vb2S20Rt88XiQ1ofCSAa5OcSqYrBQiAgFVodClxDcaBC/IyAURotP59M24TUKtqTnkVokRDkVtfyjawCLuNWwdC4AheTUK+fYwJWEnrxlNziFVFJQsCTjDFlOQqpT1Fi7ZPWJLbGaEQpRrVcKDZmIuJbjNDnEmVJWL91Dpm5Jq31CKFTcJEPNgPiz3l3zq1pdve1MWX2PwvPW7mrP8Slb9l0+qcMpmAr62AYJi4Gw4BoLFrVrSaGJEArqY7KvV/ScED2r3TnU2NCCyIolpc4nClmh56qv42bXABY3lgLUrVNuIEsRqABV7BQRYODO51QnUAEHvZBTS8iSfRR1mSvG2dTTpalLNeWirldHugItiiNZouLrNujKbasu2ZI3IX5TiqGU7BYFRjE5KFVfM6Yzz5FubtXH2WOZu61FIBZWS1Z8yp4utStZfSVLChKuC0pdripzwdixxtyr2klzuQIdJOgI3oHPe4Nm4eqNNOZrMkGMJ4MMxRZDouEUfRyO3AAWXbYasmKOHlCGd8B+CiIj18IVQgZ2VM4QMnBs5Qghs/ISP0GoprQXE4llWyVMNtlCIkAkioUEZu9VXzcgBNg7QxTwGQk03puqxQWIkv6s9+nWAcq9Udz3Xrv/hpLA/dd74CxbTpYUNMhRj5wrhAw0GBYHIQP3PzlDyEDH4ZyIqJCVjVWnC2IVKjlL0RwjgTYpxpb9iZ5Kak/lswyNNOc/T5YuDW4ZjNil4c/6sPQ3hZfQYieevt3KpyuSCUgMM7VheWpJTG5LzW9KQzZaZW+kA5eubyM+O61pvCw4ABkK8EGfGocCBfhAADIUhkOwnDcd1kHpAxsMcd5PFJdfPkR9dJgDj+KGwYfUlahp7tV8AK54YkMsQQQ23PGcmT3JPepVnX/VS6MxdsR6dh2HZq5V4Qtn/VO3N5gWshwlmfCskmvWLDrgWaUSucdpuRbFxssRTy+Vi094eqlEzlh6qUQtHemlkkR9SxJiqIz629gYGoYihrGovo6Np4rrtORFBd0jIScSsKWEWU4iVsBr6xIDsnQsvYzUCjPiBhXR4rHPkOH0ZMMLEvIeGzOWqWphC56p6hzW0ux02rsXfiUfqpIhG9atPhmyYSWyIRtWIuvvXkMpkJkkxu+MuC768RvgEb98EcGR8JhSV0amKS4mU6eia5CQU7NkqSFzbtCQSVg6kTkiJIA+KE4QsKlvMUAkTI1PHiIRlPc01LId0e+QxifCZAJkxoSJAsiMfYWQgWKxhxzI1NrUJNHQJdDc5BmJYmfNTcrcKUDwHr+B6Q7+Z+1PKp7OUh+NwkvAKwwST14EZ/z6SL0Vl9jRhcdVU64uCS/kT8idCs/AYchD7BT8ETfXRfVd9g1Lq8UcqVX3Evq2KR+vqkME1zs3XQMXz40VeJfvSksoogNXoCzlWtYvIwN7rgsQMrDnOg8h6y9oQy0Qcu5ob9MaeIF77LlqKuu14k32XN2yLxIZreBcR0PpFHdu80VO/xCXYkNgJAIT3q0uCcxBAgsdPZoLgcl8MdwSrxRY7HhNx0VT2yeXOp7TLWnIfGT4Pd0CWV586XhQtyAhe0PteNcyWa+ChMcf7enW7oFux1CgJVte6732+Ol06wP85G0BLFqj545nOQvxyCRix7M6pVP5BL+rUwo+dzysUxpm6XhZp+Sidkzd4JI1sZNcx9iNBQ2ZhO+Yu6EkQfDgDSVw6Ji8oSTB+OiNCbnrMEkUO4ZvLPgSHYRSx3trLkVDwjDvRolsqXeFls3K0Y9qxwQOJY3gOp51L0Qlk/D4DI5u+w3UMYVDGRpD6BjDofP9wB1zOJQkIjyIQwmcOiZxKEnkjgE+XBSDrSgUfL6OElk/vm6uShXuOyqaZlxRavAl+jv7jpFzXMRRocTqc3WYK8JlUYL0kKxMg+3izIhCVoyP65hsQGFd3DO/Trl4fXY+b67+9sxCYqCSPS/Zy4ZjqV3nuhzUCVmO3rVnaz22715MphQHjzoLQwmcqGqaYvU6uGxiRdRFpE7Q2zYZQ8fYUSUJw7TZVwWYp80C45xPJYicZC0A18szlhyWY7ZgyZ4KtGnNWEmejBwrNg+ak2yxl7Ombo2AbuJ4C2/yqOZEBltIrBmomwzTmjnWxu8mSIwPXZ/QZKyIT11vYiXwtv+0x0RN7S1lC9sNXRcL2w2salmXrNrsLOtqYHlDPI2Ly/4qYpPFoKlh0DlYJChHTmgik7+BBewOM5ZifCnphy+d64aWv6Hgz9WwOYwPE878q1lWw3b9YdxO//bb+HncP4/v/rPevay37/57lMbDej9Onxz/48erxkSVa43smchPW8j/ASGeyeg=
Copy blueprint
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 3:41 am
by lucyisgamer
Chunky Mk. 4
RHT - 4 tile spacing
Size - 96x96 (3x3 chunks)
Originally built for 2-4 trains for easy comparison with the ones in the list, I've also tested with 2-8 trains, as that's what I'll end up using.
Test Results
Size | Set 1 | Set 2 | Set 3 | Score
2 - 4 | 101.79 | 106.42 | 113.62 | 107.28
2 - 8 | 64.53 | 66.60 | 84.87 | 72.00
blueprint.PNG (3.3 MiB) Viewed 3091 times
I might take some time and make a LHT version of this, we'll see :)
0eNqlXdtuWzkS/JWBnu2AZPOa133eL1gMBnKsTYRRZEOWgw0G+feV7HMcRypKVczTIBmn3OwL2azu0/xncbd5Xj3u1tv94uM/i6ft8vF2/3D7ebe+P/75f4uPFm4W34//+XGzWN49PWye96vb4889rrefFx/3u+fVzeLx4Wm9Xz9sb3erzXK//ra6ALL+9LB9Wnz8z+G3rT9vl5vjj2yXX1eLj4vdcr1ZHH9ke786/Cv/46bzQ7e75dfHdz8Zfvx5s1ht9wchVq/YL3/4/tf2+evdaneAuvnln0+gPwWf5Iz2Ib1I6j6kH8fffgIT3mCe9gegz1/2ty8ynwO9wngEYixI8n2QyC0ohXcLulncr3erT6//uwLQJC7PkGT5DeTT8+7b6v4F4nbZBQm/yuUdwCyiyqBglRVsAgnXFdZIK8xuZadWOJjx+C//2iy/H/EWq83q23K/ul+AX+adaB7owt6LusQoQVx5Ol15Qag/Q2NWxO01W4VJyF+dKCD0k5h52UPOALMAmFiPKhA0I8xM7lRuUmw5VSyUtIj7X8H7n8cxdIeQXnGI4PZN9OsCt2Z32XeQjAXKiBQY1KjBMgZx1y7Mrh2MNUqCRoGYkcUsUInItYN6vDSowyxaAqMUeaeZNobGeEvV0TNCh2psrGmsveYP/uTMQTnJQPQYREf6MK/mTThxCmrmhGFMXmsqcK3Q+BZpKV9tftwUrxndErdz5DLtHP4s4TsernSuYVnWUfFQR3A1hXXhetGQdEZ3DMgjjDH2o48j8xAVxVd0rKhH92FBT281z4+PD7s9iKqAl48w5SsOzLWjiSedD8xRFyO54pTgipG9Y6KPz4bVCG2TSUmLQVAUNpEOmzCBMllsrKrFYWoYm3i9Oqrtam6Y3G+iwmuu1w8ArFCkzxRYkXPEVkL+lIxGrRAVOVSK+i5/yQdSkvOeOJktE4rNqqPCJDwV8erqC3N3TfTVaI54ImVOdFBVm/WIKBnHyuanLa5dN0cGUXTNLn5GR3jyyYNhfgbKl+Xmv7f36+Xnh4OBe1jCglnObb6a+3rqOA3BJkngeSfCi6dDpF6EKaOmDTBRy+oR04FpOj00ieWum7c4GX26+x7QEZ4Xr9B40SWIJu3AmGoCmNeVKHvGvDqMl9TVYRiadPaTNJFwiKKqDB6Khb6lREE2PttKMyiixN2wOeFaq1fNiWFon5/NCU/6Kvs8hqEv9PGiNLSrp4vS0K5eXo+2AFOCWlRLYWmqail44FSVAsYwzamWwjBetRSGCcMHSiWuRs1UC2IpqarIdLwbPOmaXDeER1TLovU6MIVZULq4oCo6QEeSxnIAeUa5ys9458T4N3f9RuydunHjFXsXxIPYmPKvd+pObobFU7fyHo66l/dw8ugF3IzSG3nXrX4uUBtVp3WVxI0zLkXveUcW1P0b7lldGQaNXDq3Tu1cPRl6OEEkwI3RnjeRLbDIoNKlQD+tmSr6erKi4eeKhp3RMBHiqiyRFWyiIqbtlhllyidLRzoyULLra09pPRmork/1oFNvgEYLnj42pqOSKcP603o7TgUChsSCmnxhsiTA69drKwJ8IhMSqwJo1mVuAjx/C/czKsSpo5wWJ2bT4Y2HN/kAw1qwAdJW8F8LOrzgv6ZHXxRczUiCN7Z5U21cV1uSxU6C65naEdPzDZ31TYoLV7EkbJXKGU2PvCS4dHTqiY21G/XIS0JoRD3ykhAaZ/X8buFdODmiftplIS6iHnZZ8OeYR5u8OPhCajxPZjzhjAyC0kXKikMERmCk2bsaoaywEfZd6f/yHbN0d2OMS34LMG/y8ayTCqr2XdmfKeP5V0eORG+eT3SDp4QaxcQqYsonqexfDyePFG57YOoXAz0c9b7Ww+FDJE9ex/SKkyEyXwKjUVfoTEZImmEDFSFZi5AyicwIbGJIk3qQIwSzfFmOkA4O+21A7q9TufRnOYg6cstB1MEhSY9aNTsXuj2mNuiUHsOyB43rxlGCuORXBC2JaqBJ9snaFCgdQyaA0h/eBAGUv0YJoHQIFQGUjqcmgDaGK/OVRxxoLgiCFqp+oQqCPqp+oTIhLuoAkShESI2jPCUHn0Z5Sg5+mFLk4ItGg3Kgw/wiB9/UXARXnpob5SkpMdswv8jBqz2iPS3YKE/JiRlHeUoOfphP5OBVPrGn5GE+kROzjvJ+HHxTk1Y8McC5Ud6PETM4P8r7cfBB4/04UBvl/Tj4OMr7cfADtGIS4PWzLyv+ogdlVvylMllkwc6Cv6V1PHUi6IHvCKnC8vn+kCY4tKdPvSb4saeve01w3063CLiatYidAMOS3SL2RvF0JhgEoT9kMhH+lN+r3eE9HHUsScwYp6mndmdEgRPLdJEbUhDU1qmefEG1Hx4AEEwciRFrx6NCVD2hI1FSLdjByaqmOzjsh3L5vYYIT6gaz5SIakYITeOZKFBzGs+UiG/fAz8MIQmSBo1n4kBN45k40CjwTBxiGuWZOPg8yjNx8GWUZ+Lg6yjPxMG3UZ6Jgo9ulGfi4P0oz8TBB41n4kBtlGfi4NWaV4IFzzDQfBEFv4t5lGfi4NXkrqeFKg7DS46ZzdRG2Stq8cmNslccvB9lrzh4dUhQx3TJRtkrTsw4yl5x8OoHKj0t5FH2ihOzjLJXHHzV2CsOtI2yVxR8dqPsFQfvR9krDj6MslccvI2yVxx8FNirxAwDC3zvR1X0kEX2ikMtInvFoVaRveJQm8heUajFiewV5wRsJ8jcCJLOGkE6uEFr1Ep2PhQO4tINh5PPEsOrQiG764uqhKRmrIYnQqofjvVwivgVAVqo0KYV+HaQdFkBasWrg1PZxt0sWvpdxwfTQDhvfUQHYahB7NUCoeQhsInNWrQy5IsaZi+r2pzYwxHbd8tFMLXzsIejdh72cJrYN58oG75rxqAcGmNDh25eDcLEOXQjI2XuwTyyw0yFp6lN7gnXBxodF8cS4IuAzMxdfbKduVlMxhPyME1XGG8owzQdBV+HaToKvg3TdIUZfexEmo4CHZ6Ox8GrVTAcLTbQihFNEDOKRbbUKdvaQNdFTIKgcvLX0WcZpuYoMav4BQDYfRMEbsOcHyO3d8OcHwUvv2mBrefDMOdHiWnDnB8FH9Vkp6OFNMz5UWLmYc6Pgi8i50eB1mHOj4Kneu+LkFBYoJmM6nhB+SYOP1XEiS89LQR5uEiYPLhRumA/Xp7LwsSntBbIo83eLnb1t675FmSeo+FHFNT23h4OyXOUekEBELiKw5ESMbzX+GczpjFGufN4hBPN0MOhR95MB212GEetd/XkMXFUWHbMdGNjh2r4N1zrpIBGf/XlXw/lHDBOFoeM5cAlUVb0fWyyCfFOgVlVPc/w+vlPSdolHGEyxkV5In+oTHbF/kG3WwQ3w1ydHGfRVKV3hIuq0js4apNgD0cdI5uJqcTG903MpsQpKN83MY2RzBnjqF9NdeQ5nUXRGZKaZlmu9nBY8qo/dCSTt/8OjlFTU5UV0h5fLq8wqT6F85Wkz2uZXkPIlXD9pM4p64lZVcfo4Kj94B2c7FQzdnDUXb7gPCWrE2YL0VJlA40Fk3P0xIzqg4EdHNX7Cz5kcx5eYAeQn485LTAwdqhiVlyY+cGW1WDoLLqow5c58YocG/hQL0F856UQ/fpW1AeLe9INt7z1AOXYwCdMGT4ZCnMQvmsIoCqjl2VlGeCZdiiFmZBsRX9bZX6NNTMuXt1IebgU4uSt8tusWLUDEx9m/+wAmvqIaqFUGcVn4EojCrBWyU/s4tvjtJW7FleVcCo4g6hFvP9X5uSvdfTSXj0D38Q3Kk9RsbEa/55kgLCQiG1+9BXYM6mh5zb1slJxUtQG3glP0CU6ckbxLbfKPLHb2OnLU9hWY0yW6deAi4DKFlGm3K4y/FWrYjG49pjA1sTPKipkAiP/lsZPnOvviTr1PKr4CVV+9kKERoDPuzr+HcmAUfGa6etOThAWP5qbxEcvOdQsVgIq8zKtK6NFrMr0R0W29B/mcks9a+hKQrkpuiavZ2q6qYl5ulgdaF7xq7Ny6b+HE0bfhD0zn4P4dC441dIr9Xavj6N9abUwXucH+t4ixMfwfNvNJDXRrBfl0Qy1YJ9QG6t7OE28llcmYY/spIaf52lngkEM9FOVc7rXMI46nquHY3oeijWHFadycz0x+ZfDDUoHQzpkcQBHpcYuRHqcQ+ri4q0t0JxdeN0amqfcm2qKMQwJEc2JN9zmqBtu5Ec6TH7f4L0mmv5iYFTWrxJ5PTGjqsff+8IlmvqNQsMZtfxSRg+niDvv8esOjKS+jNw6OOqNqMH3YKNc0+/IE7041agR5eUYg7g1tnS+Nf55s1jvV18PGHeb59Xjbr09Xqk2y7vV5vB3//ryvP37+x///vvDH/Hw199Wu6fX3DmHFltLh4wrBH+Ii/8DTmKKFg==
Copy blueprint
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 3:58 am
by OzarkRanger
MJDSys wrote: Thu Oct 24, 2024 8:57 pm
I played around with a bowed 4 way cross after seeing some other examples and it has slightly higher performance. It's also single chunk aligned:
10-24-2024, 16-45-59.png
10-24-2024, 16-46-20.png
0eJylmu+OqkgQxV/F9Ge4of8Bzdd9jM3NplWuQ8KgAZy9k4nvvkFBHTxcT7ufJmbgZ/Xpquqqar/Euj6Wh7ZqelF8ia7xh7jfx7u22g6ff4tCq0h8Dn9OkfDrbl8f+zIenjtUzU4UfXssI1Ft9k0nir+/RFftGl8P7zb+vRSFaH1Vi1MkqmZb/haFPEX3D/Wfh+Ghj6rtj74W0fRW9+YPZbxp911397I6/YxE2fRVX5WXrzt/+PynOb6vy1YU8gboW1/t3vr4/P2ROOy7qq/2zbgqqc+rkqfBnBlERfe2x6Oxjwjzw54hyQ97isS2asvN5d85gOordHNsP8rt2a7YL1qmviNlApiGZjqaaf8fEy09DVy6eY7MArfIzrcoA9D8O3Tz5qtmGZ0uoSVAuyv6zde/4m3ld/vG10vOKc/k7DtXAa5MoLZrlgldQEpSXTVKkM4lcIiqwjTIaA100L65JaOlRXATZLWaVEYoHFpgrxTcKxQHko+tSxp3szVDQTM6i1oENYiZ044KmXDxjrYzY+1UOKCAoMOTj8wUMWWQD11slZIwVrGiBjDDokmP0SQfDkHoWsoE0acEI+WcDuF0gEkL9YDZUKVBJueBgmRh+QUbDr2OjrgFqITu4ej4uED1c5fTfMxBJlq9liG7Np3lg8PNRECnucZxBwx2I/a58+qwuEsmizVVfBo6U+bQYiixDbFYyXuLES4ozlSyuGXQ1ox2MT0JgDA5Vxkpu+xQGnH5qMphCMDcYhJ217Wkg9VI1lSdYFMhVYVs/lXdx9obqWv0K+cv4VWGDis3MRHF0sE55j/zPJ0YXBguF5vz9eJtwmGEqBpToa05K8CNijCODM5rtjdUtrcJx9VymYuWbck265rpsjkWbZElpxd2kYpCyOpAT4cdkMUDC+A+V8rz9fJFn4RQFNg2DfVIvN7XijvGwKBZxc3jH5pe1PNavq+6UIm+Kg2t8Yi+KqWPIsPbSYbPVVHHKJq+WNzlTHGXhvVUctFymPLTF6u8HFd5KR9ZY/mQPz/s0izIRruoAEp9Ke6j/lDwzGcsUFa64luiIiGy5IVKRxHNZIZDbXHSQDEDuyiVEHPh16YX6mG+gPYs47soAy2GKvDnF5YW+sFrMwtShqBou85b1eNABI1bMjrcxqN3LjKmhg3glYVSIzVyegK/AIWBnNNH29gTKKbLyhXtwBZSIZQuDScHZqB0pXiDIgx9mzWeNpRtaZAvjWWngsdhTjdUf8aEXV1NY1XFXYsFXl5N7OdpypGd1S2HcJdtYfN2JXmD6YF7CDTszJqqF0XdujlDSpwtYuG9mAu+J86R47rQu2GdEILSw74bFGHIYd9VumEAAEF8P+VGELw/TOgeauI8iPUzElVfvovi7mcfkaj9uqxFIf7avx/8pl+Z1b/+c6VWtW/KVbz65bvhqY+y7S4dTqqccc6aREqps9PpP8LcJqA=
Copy blueprint
I was working on something similar and ended up with a symmetrical version of the same. It still fits into a 32x32 chunk, but the performance is slightly worse for some reason.
Screenshot 2024-10-27 220639.png (1.06 MiB) Viewed 3090 times
0eNqlmU1v2zgQhv9KwLNUkENSJH3tZQ8FCiz21g0Wss06xDqyIclps0H++0q25aTyqJmRT0Fs6fHMy+F8kC9iuT3EfZ2qVixexDo2qzrt27SrxEJ83j3uy1V7Z/If5fMd5Nuyindf/vjrrns61k1c9c/9XX17AglGSXBS5l//K+t//yyrTazvRSaaqtzn7S7f1Gnd/8BPsdCQief+z2smymWz2x7amPfP7VO1EYu2PsRMpNWuasTi24to0qYqt/27VfkYO6vqMm1F926q1rHDqdfs/UPt875/6CnV7aH7JBveah7KfcxX9a5p3r0Mr/eZiFWb2hRPP3f85/mf6vC4jHVHvwBWh/oprvP+1/Oy4+53TTrpdPRK6aNXvVPrVJ+kEQvfGzdCwm1IJRGmzt6rk5/luCaaT/Yk/if7K9UhUEM2NJANtbcxMT2LX31fPZSpmlagOCtgxwooBO1Qa5cIVh2hjqCAvzAfyu33fJ3Kza4z9YimggHhBmIIwFmAYixAQKBK8qy1Z2sxlOKhHNVxBawACFP+K4vBNTUEAF0pLGCVYSlxAWMo+n46Zd0w8hkV9G1HNW3H2zy0v1/vEdRgTEdmOjLTU50HiTELjBmo630yU6mP7QTeJmKAFSvy9TnylbwKfSwMAMjZz6Imo+kPyBtK4UKgJdXMSgFKjYXAQgIsC+6ZKhe8ZIBLjdpNrl4TUIXGHH3TnaCaYGm4jYnZqSVn1YauoK+OIxGwvkCT28Jwxn5cxjSvjKlJi1G4ZsHlAL/qE7Hdp1m7D9R7OIYj1zTQg7oYpqA1RGCn115jXEc1T0s0WtE0oP2tVHQTBM7KXISwJCHMrLJGSLhGUXuFMDAxCjCb97FpmKCG2w6OoegyGUN1eIh43GM7q5RQ3KbupUvxM6Q8ahyNe+lc3BiLBqafE5iOIENgBibas1vJDUz38Z6xihuYjpCVLHADE/dYzwpMitu80nMp81fDHzb7WctsSwjzhS1uY2JhaYm76OJ9IHnv57UMntIyWFZhAjlpOTpjFHJeQ+LxhqRgjVlv/USgJKsCuIWfMsIX+lYqFmiF4Q3HQJhSCjsjWZPABa9HB0k4anSsPTEctcH1KIjK62eN83A1xaLwwJzmO42xE1HJHN/HS4VFq1OzJmya4w6Y48Q4ENAU42aVNCAc6jjDHNvHUDQhOO5BIVDmC8c9KQTC5O64R4UkKPeskAQNc87yAS0yntsVTmDUvAxlKRdCHubcBgDhfMLrOZcDExIY4k1ImHQem1W8ZXbYJL+LOVcBJDKvVA1NC5CuhbwnSuwGrCfdtvjAvBvVEouAIPmYj+/XFPPqcsI24GNGtt1nIrXxsSO83d1nYlsu47b7bHxZ3331FOvm1OcXEEwI1igD0E3kr/8DBYxp+Q==
Copy blueprint
This is my first time using the testbench and I couldn't get it run more than one set for some reason. If someone who knows what they're doing can retest this, I would appreciate it.
Screenshot 2024-10-27 214317.png (30.27 KiB) Viewed 3090 times
It also expands nicely from the three-way equivalent:
Screenshot 2024-10-27 220548.png (688.74 KiB) Viewed 3090 times
0eNqll82O2yAUhV/FYtVK9shcsB1n200XlSpV3U1HFYlpgupgyybppKO8e3Gc+XPudC7JKkoCH4fD4QIPbFFvddsZ69j8gVW6X3amdaaxbM4+NZtWLV0kkj9qH0FSK6ujL5+/R7617nq9HNpFH/R9q2ylFrWOXBPJofHHH/Z2BylInkKR8uTrX9X9/qbsSnd3LGa9VW3immTVmWoY9p7NBcRsP3wcYqYWfVNvnU6Gdq2xKzZ33VbHzCwb27P57QPrzcqqeuhr1UZ7rZ0yNfN9ja20x/FD/LKR27dDo53p3Nb/Ej/26teq1Yl70REOdzHT1hln9DjU8cv+p91uFrrz5KfOy22301UyjJwoz2yb3ozOHWfExXFGw4Qq041msflsEDZBwnVIniJMEb90JjlZcU6UN9lo/E32mlogUEkWWpKFZtcxMT/z13NfrpWxbzuQnxzIpg5wBF2gahcIlh+hBcGBGXGp4CQ0nwotEWj5BF2r+ldSGbVqPPaoF2FnJ7UIiadhqAKbOGBgHrRO5VvT5xkGB+pKAbpSWK64IGd1rGblRCjqwvOm6p3nrdbu/4s0gUqMmZGZBZmZUycPKcbMMSZ5O40yOSfonAXFNQBcBsVVnOLK07O8YjGAlFxZMlQyWlqAk6m4EehxBRftW86nRmCRABEEnwW6LIPCAbjVqO6MXG/eWD8sc0DfdCNUvJ9jKGjnDWSP3sKZtwLjzqhaRYqKxR0oA09cnr1vgUgDD4cpFJUqOM3Yp8pQTH3FbBVwST0rCCaIi/ZC8f5eEDIwtYSjQmTXMVEHctqCPd4Qh1L2mordPEQRug8o1wQxu5aKOlBeEC4glEOZXhIuIBzDkgdewoBSZiQE3sKAUGmlCLyGkaAy8B52DvUvXOP0xhOeH/8xq9VC+8cym772/V87/9of855DKcsyk1wC+BPs8A/GiEwz
Copy blueprint
Interestingly, this only uses 56 pieces of rail compared to 68 for the straight version, which makes it very tempting to switch entirely to rick-rack train lines.
Screenshot 2024-10-27 224915 adj.png (1.72 MiB) Viewed 3090 times
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 6:45 am
by Avona
grossws wrote: Fri Oct 25, 2024 11:03 pm
Tried testing newly designed intersections and I got slightly different results on my naive intersection updated for 2.0 (one plane) than similar looking Avona's "Symmetrical Cross". Likely because of a bit different signalling on right turns.
It's more than the right turns, it's the fact that I signaled all of the merges and splits differently. You don't need chains before merges or splits (unless it's a merge directly into a split). And the extra space that the chain blocks take up will reduce the throughput of your intersection significantly.
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 11:57 am
by akulen
I made a probably overkill 4 lane 4 way intersection. The blueprint includes exchangers as the right lane can't turn left (RHT).
It is signaled for 2-4 trains, but there is enough room to signal it for bigger trains, though the exchangers would need to be extended.
It was designed to be exactly 9 chunks wide, and rotationally symmetric.
Blueprint: RHT, Size: 288 x 288, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 136.73, Set2: 143.37, Set3: 147.87
0eNqtnd2OHDeSRl9l0dcqI/lP+jH2djEYyLZ2RoAsG7Js7GDgd9+SlZnd6o6o+k70XFpwn4wiI8ggGT//fvjhw+/vfv30/uPnh+///fD+x18+/vbw/f/8++G39//4+PbDl3/7+Pbndw/fP3x6+/7Dw59vHt5//Ond/z18n/7825uHdx8/v//8/t3Xv/jrP/7194+///zDu0/X/+HN07+8/PjPt+8/Xnbqm4dff/nt+pe/fPzygSutfdfePPzr4ftLauu79uefb17g8on77fMV+I9/fr78JdEL1DhBFqYQqVK6K1ZVxUrlplxN5qybnK5ycrvJGd+OkzBv/TpAbx5+ev/p3Y9f/4dkYOeJ/fH3T3+8++kv4S5vb8zifAbdDOrCujGs35w27Uc/VQvpV6ek/uxHLVF+d8pc++xfXmQBFxKwcrW2BWyqgI96LQkYsBdbwIF10FxP0uRTaoMWH3p74d34ENkgtCPk/mhk9bmRTQv/aAz/fPvhfy8/vX/7j1+uaEfYE16+RWcLXfDkFnMEKhLxy7Khy9i44thCdibkIEIOrpS2kBMJmQsRcnGFN4UsG95Ek+1llIQVMJmczHc4T6TC9c2WqSKXbHwr2TezuSx8wLOy5exo+doe5dyU5asMrnW2nJPqSrU95YVMbD3C7lpY3bDu2DLWhCfXAbHNIyfyawueWUfIqjpB56hNQbyG9cX0gGrnk2qDhuyMNvI7J9cVWz6+P9igJpvBOWDmUtzw7uBw+HHCAel7Q7sN4ucHB9SCi3dtyibT+DHCkXNglTBdj4YP2rXeN6GGD9q2dD2w/tugxBXNBmV8AFYGrBeuv7Z8Naq/WXE+euP6a8vZsf6aTkzHx2mHw4/TDmhxTTNBY+MqYYMSnzMblOmcFfvKEJ+SHQ6/U3VADc+ZA+p4zhwQd/Id0MRzZrogA6/oNmfyFd0B8RXdAWU+ZzaIu+8OqOI5M32EiR12h8Mddgc0+JzZIO6iOyDuotughV30Yu6LC7voDoe76A6Iu+gOiLvoDoj7IA4I+yDF3BcX9kEcDvdBHBD3QWxQ2rgT4pG4F+KRsBuSlw3iN5MeqeIB90hcuT0S1u7sPHYOPkwOafJhckh83XZICS/c2X5GS4kPk0PKfJgcEndJPBL2SXKxQfz5ySN1PkwOiXvbHgm729le5J68yv51jv/09udf/f0k5/tH95S56+0Il7nv7ZGy8jPPvUX7nQGld6TjB8xkL8aZL+seqdO7/TSVQeOLfLIX1DzxrbwmIV/yHQkLN4Rkr4qFOzUeyb5X/MGPR0hFGLQnj6/vPrz74+3nK1j0UZO9wpWATTikpv7kNNBv7vg3nwuMJyrfIDzSjE+IvUiVxSfEJj15beUD5yADBuKQcnjgNnsl1Z9b5yHa9q36dRPLDcQTsMXnw0Pq708b+tHcQDwJ4way2ct9XcFQ3m3YES3pyXvsvZUr3Zat8UODR8qvUBYHWbQgoFy+HbJv1GWY5KoOYL73s7lj5ZF6XPEcNRlI8R7f4rYXb8lXr8H6AL8w8kRdr9AeG9l5OKhHSqIe9hsjaLoK/RWbir2/d36n5JHqK6bEQQaMxSG9wljs/b0PHPq+ZZsUsApHptdYhY0cAatwSAlHujsDNsJWsOw9fGAj8EBxG/CILfxbnXB+/DjmgUb8tzrESTVkKQfx8cyf+u33X3/95dNnf+C6nb+AT+HLSYRI8YFziFn8hSfH+YnG6VuLslpVyUmZNebZriwlI81Gl2RRbG4y9i40X2EyDnHiGTuJ2m9f/7EPmMa5xFSCx8ivl8pwHdUvf/v3D2//9YV5CvpgfjDJrvw4h174Hfj9etnb5CpxHXGI9fYU+nd2cykqshrNvZjTOaiuTg+qooj4tnja2/GTJ+/bv3V881u/jbNF6rrw5B23j9LQ5C1+iWaPUd4SNemXYzTBGOUt4zHKjvqY+Xf6u3vZL6GWcAeVN7YbnoP14soio8Fqoq9wGMIQEss2vEPOYetOfIf0iPoLZz60UZm8pSn55cyBmy+SPSuZt7TxhWD/8PPPmnjulB7D1QUF0UMEJqHic9t0EngD57ZKBI3fjHsS8wuN7Ehs6nca4jJxHMWea5lN1Y0RCbtUt6G0m6OaN+ztXg6FfeYlJlMRcuIfqPYHTDPO/GpkO5YnQY/1UIVOqAHry4SPQ3imnZud4y+1HpHvd9kZWtMysm5wCMu90ss5tkkxlBcp5t76czlPAs9ibYqJFX3Ty/lENF8kYyeybRfum16cgbLHqchLH6FWcfQXgQY2wc2eW5vPnVDzwJzLK5xQhzj5CeUOET0Sl+Wr8zDrecgvxuW2nDWpdrxvc2Pdv+nLlVvVsPGmJlXsVw77KFzj7wEeUb7jLMc1wGaDUNWHMg8FGlOqWVNHYIc45kg5clb8ajbsA6Ke9V7GTVALOI/HoCqHiKYX2yJUfHE5bN+58ceD8iioSax4ZhzRZKOpdyTiDuA5xbYDqOfFp9sc/hBwCKa40A0H7Tlydn7dWG7/8q7uMCen2pyMtc0RSN496p1fVvmCcm4fisfUW1yd7e1eT5NPtzncBbsj2BS1pJ3jZ2K4HdjyjFfYgUNMWH8dUMb664BKWL267f2ADPrbnBZVLw+Izx4eaJAEk2H7dmOGlcsTCztJDkiPoqi3JQpEUZzKZftvU6whdznfrbpUJDXPAh23rlT4zBMbg/O748bgALkxOKAR12OHOLEeO6CF9dgGrS2ux7a3u+Qj96nGNidT/XLkKWH9coA4Y8EDtbh+OcSO9csBDaxfDmjG9ct2Sxern3hJJ+2uR1pA/v4tGcuWwjrnAPEx2QOVuM45xKq4DOfJoGebEj8LdLtc59bxfuqVZN3oKdkTaYbVwgHi84ADSrhwhQdKcf1yiJnennQh7bmk+OnA6YCQ5Cyd44mlKSFSBZQAuC1fj2qfB8RhbR4I1yfyQCusfQ4xx/0ju6B9AdUAbnNyeDodIH528EC4dJEHijtIHlGO8KyPv/H+YqKXA7js79xNuBwvOe482a0Cil4VIN3klC2sfA4QZ3Z6oBzXGYdYFAfncKifT6ypL0XfKg4LUdzXgncK26XjT9keaNDyr60qwxe/YPIEXfAWv1W75r78cF2HPbGpmlz58e10tFtWnItKT9leswG+eTigGp9bhyg/v7V8gpQ56cq60B2mjRw8A8rhd5M/4Ww7LQyqHPGYH0H37brFXyUcQVvikRrDltgc0CbXobmcIzEUu2xFN/gDLBTrL43e2tol9kvDWTdVuq0urdMsujqlARU7r+V6Cvwi08FWgfhm5I1t4BQzbhL14gKP2mQ7Q8+fu53bnnPObQjddDxhJM/sjix6bY12CiPsDj1+dvF+bY+rhUPkUVLzjoxTXw+P4RQCy4v+8P2owLanN+gVr8dJoZ5jVfHjh3zldWR8VcmLHPHLX28U9BipAqZbrzBfiBYN/DyiYUfcMJ1h1d8JFxEUvxpKWPCoTpRAL1lfiRJM/T552ljTDZhFPEHObFOHSZVbU13qHsFclQSHohe7v5y6oJxg9Mf3y6m6Ele/YTttS+JOndsIV9+wzpVR4a5NVohzb5C4iW+w9nEbv9t7nFdsVg6xxtdphyjX5GzOJJtryULB8deT6nFk+ZJocT8Nqawhe2l1HWRlVXlen+Ce4GcFsvIirN/WUu4G2n1eKn7p9zjx906PKMaBFTh4NfL0P26LyiOE52EHm01s+n63785lCJpZ9RIBl8ObeA62B1Xflw7nR+NOvD9r3IX3Z4mrBxCc+7PGTXh/1rgZ788aV7qSuBzJ8BqT71uXhAYjEHyT0Kh0vm7bPULTCIhKDCQF3lyRoaiVOx6X926HJdVIbAKxvRyPcdb4ug22m0qRA7E8RH1zxAAJXy2Kc8mEGigXQPA0KM6bvMD9ORFT3vBu61g84kESU60M8O2qcPdJrZZwsVJNbPmZ6lgjlY7ShdsbWYIjlQCIZRTpYfioGK/5r6ClAhqK+OOVZyd6qg4ZU721PXLX9IYLyLsMdF944hWbxEKvrjVBpeDt2gkykM+Dxlb2JVu315xuYgMpn2ikA7HfxJIrfzTuxAADsRmdWGLjzmYnahNo+NDJ/Db1/r8TY2p8J+xEa1qgvjfSmkDhe6Q1gYApZ/zNVaGJBVfnGTVSxmuKidYmR1Zdjivl0hQHAoSAHGFwRYhRrp0/HNgtgWvnx0EHVOjJxOHEQxE9Yov7BQ5RDmg/dxMlfKV2tQDjWLayNJOqmtMZNVZedCZpxJz6Cke4FCH4q44tfANehEDxqldVuLTjSlEoqFL1IguPVmuGKlS9ecVptQ6IRiZ6HD3c1x4weyI6PehK1EGjKEt+TRnf+orSDN5w08j5YkbO17nFl0ZbsilX5hm3JRMf5PqtSTLBBYWQne60EI5Sn/e6cIXuvtDmEg4CR87zl1AMqM4eKE17LHlKyEsNlHN4fFtLynxOudhgJtgVuN1e4AORGhCnzUgfCDwknPct0gdy4AOFfCDywkB0JxCbcslokgNvfBlNcqA4XUaTHLDfjCY58PSX0SQv+Z0HLBAt0EPjzBLTPhCw3zTIB/IrXrilD5RXvHBLH6iveJeWPtDi79ISv8cfkyX+iD8mS/yJzyFmTF/bVvwxWRE0bfHHZImf6GOyRM3hx2QJj69s7MkLhMqguQvXKtPw4TahGn6En1Ul/Iw/q0r8hZ5VlTNByxt+VlVEza+ICrUVW4+VIW5n02t+EHe56RVAiJvf8iuuT51hxRlBmqCD5u9o2EnzdzTsovk7ErZsNH9Hw+ppQWTKil52lkxZkQ2skSkrsoE1NGXy5U5DU6Y/2aMpk62soSmTrayjKZOtrJMp0wNjOpkyPTCmkymrcvJdn84+bnP1zlBEFapsZoOoQpXNbCBVkN8ozjdwIRupBSJjZrVvfm0+704zHVWeJh/1qpln69Syvaj/AJ5aWgMP7oeub/cvylugpMmZxZWVLK7WMq498lxyswZHa/itMJuJRw1XMfE4Db3AjNsw3D04C0VxWotXofYEnWE32iPKUSvT+enmyhDo1jG7rZA2X70qmYNILZtPSpPYJYhryc4wm/tG163puE/XuHo5utwIVy9Plwfh6hkNeREu6BWF5g1U/yXzBkqkFDJvA9R4JPM2QHFsMm96aEuqZN5ApEtF86bbW0XzppfkqhMslM+jX+5ki6ecD9csdyXAog0x3OwyCiXrYZrHITEL8axtxivgZTNxoE25cuTR8zgrCSltxlMcPElxioM2pCjFQUPGUxw0fg/nImj8Ec5F0PgznIug8Vc4F0HiBwJiOpnfQDxMJ/MbCIfpZH4D0TCDzO9S+/8exU81auO5As6SaG5nq/N7DGfU7UsuvWxLSoWs5UvcJ1NLcJ+EzVpSK/qA921Txe6+2M0kJ+KZpLbYsPQNhF+fRxgJDMrGHp3cc1PGugKJG5G4AXAhYFBz4jwuS+ABYucXAU8ARlpByiaRyUukriyZvESyisjkgbovaSOTp0ewXMFk8hKwvA1NHrC8DU0esLwNTZ5ueQvNnW54C02dbneLzJwetXJZZOL01jSXReYNFHqZZN706JXLJPOmh69cJpo33eImmjfd4CaaN93eBpo33d4Gmjfd3gaZNz2S5TLIvOmhLJdB5q3oD3hjs7nmQaHr0SyXThSi6GVueydcubBSc+bNHoZArPSRVJ278gExL/CS2nnyqN9JousF2j2HzXzb7UW+EfU8TPPQ25/EtygnyEzUrsbDNLOZjt0rLt6ZXyQ426ZX49U7PVkr742ywJFRj3I5wkWe24aN5YmCqyKNC4RJk12qqmmCiyx1gfovyEcO1H9hzn2gAAw7lgQqwLADVSuBDxDNCVSDYYfYFqmMhiY5UJMQXRw8b/Njv/akI79Oc3ta4AFfEjbwgK9we+ABX+IGHvAlbuABX+IGHvAlbuABX+IGHvAlLnjAr2CHBwEzFemDbm8V6YNub43oAwiYaUQfQMBMI/oAAmYamTcQMNPIvA35eJiOUFrN1Rss/vPJQ4FQg6MPtQP9eDzFFaWBQx96A4fzoqMoO92IdBw+lgyh8FB3Amf8OjrZLMrSp9wH5UgIzEqLrK6Hyxwl3LPQdKjPeFfiXOwBKDiuR9KAGW+S4kkqF2QqE1jX7GrwLrFZvc/QEWn8XO1trL6jpQ2Y04Tv6+d2qYzF2lh8XprnMrZJz+ArweX3fPVMivgZil988c0ogVXgBzY6PlXtFXCDXEDSSl9iW9fLk5CK7TUVyXogaubSHDWwB1HfKxPiyjep552kkpLe14pvFWaS81DjZEr255QUMR2Rpkjj9k/IaKU4T13COjG2og1P7Wx9GIGaMEdzwJwVwUVjnXBdHpucyTQ91ba5KOB7ZTreqPtY2h697qR43WNbjD/gsKdNfkLZwEo1UuLhfaLEORjep9hlKjy8T1OUVKPhfeKwNB7el5YC7jy8Ly1lrAcP79Mknjy8TwMvHt4ngfPGw/s0cOLhfRo48/A+DVx4eJ8GriDDONtge4sBITbny4UmcueBgxp48MBBDTx54KAGXjxwUAKDOJvzbVEDJxw4qHGz1O1vbYQZKFU40WAEShUONCqBUoWDaLZeT+YyjislobTCKIEahYNYTqDd0hlRpn0gULxwEOWpgeqFnShPICbn0onyBHozXTqZ5ECkzqWTSa5qetSlV4INmG1HuhMo8d0z8GLr+M99wP4FkecRpP0B+21E+wNhPJdGtL9FmoYS7Q+E8VwaUdNAGM9ZYEf7QGADrmiSm+SWHM8tSak+Mpq+6WY0Grr/i87KetDOBZ1om/yCeVbxlrh9kyat2f7MNJFJCoYixEyfb5XCUKPLj5l1ktOgHqiDVgg9TgetbHpdG7Qi61E6aCfRg3TQDqjH6CDfQw/RQa6YHqGDXEg9QAe5vgNXSdSwuEqihsVVEjWsbGXoaDdkK0NH3SFbGTqiD9nK0NXClK1skimbKVyBMgt14MaUzW0SldAL2kyiElM2t0lUQm/stJBKyOa2kErI5rbQlE3Zv6nEEZmyvS2iCku2N3StufS4U3QNu/TKiBtxnZced4ruo5ce540u0Jce541u/JdeGBE9USw9zhu9qSwQFYfmTY/zJu9hc9PjvMkD3tx0eyMvjlMvM4OeSOdWcMFQjVtxwVCN23DBUI3bccFQjTtwvpHGnTjfSOMunG8kcdOG8400bsL5Rho343wjjVtwvpHGrTjfSOM2nBekcTvOC9K4A+cFadyJ84I07sJ5QRI3bzgvSOMmnBekcTPOC5Lc9ZlLMC8oCXXrZq4wbvyMP0tDiW+buckhz9MR3B6WjqPDDYlBJPHMIx4drs2FHsXdbGw2sStcuT5NQeyy4RrzSSkFOfVIGVfnTdUpmbuMErdwl1HiVu4yStzGXUaJ27nLKHEHdxkl7uQuo8Rd3GVUuHXjLqPETdxllLiZu4wSt3CXUeJWXGNeWt9rA5Gmxwqs5A7P2gPBsU0ZihEIYZXAMxDCKoFXIIRVAbctEMIqgVMghFUC50AIqwQuPIRV4lZc+1LjNlz7UuN2XPtS4w5c+1LjTlz7UuPqYSizA26Xk5AcbTAjPGZPNFctvShol0gq6+w5XI5d2wCcoJVb5diTUm5odpielG4NmfmBFkvbSkJRmNl7IPmpKJo5AslPRZF4BpKfJIlXIPlJAY8tkPwkgVMg+UkC50DykwQugeQnCVwD/p0EjqQoSeBIipIEjqQoSeBIipIEjqQoKeAZSVGSwIEUJYmbuX8ncQv37yRu5f6dxG3cv5O4nft3Enfg2uYad+La5hp34drmElcPcXm8y5a4Cdc217gZ1zbXuAXXNte4Fdc217gN1zbXuB3XNk9K4aupB7k8JrRJAusG15FC6AbXgUIsPcjlMWtN4ia9xnvWvfcFein1ROQFzaoX4eoG1wbh6gbXkD70eEnAVJUJ1A2vIYXTDa8hxdANrxLFAM2UKlEM0EupEsUArZQqmTfQSamSeQONlAqaN93wCpo33bMsaN50eyto3nR7K2jeFk88VLig0Au5p1qgzgu5TVqgzAu5TFqgygu5S1qgi1JC8wae9MA14MqyZ3lub4pjuTLPv5OGgeffSVief6dgi5Td6nnsNpJnBZGT3Co80XyiIeF55uTkvAJ1XsiJfwXKvJCbihXosjTR/Ab6vKD55cUiFprfFW6Ek5Ra2Muq9RL9gLkyBmq9kLvEFSj1Qu5AVy2wk49GreFOPhq/xTv5aB/o8U4+2gdGvJOP9oEZ7+SjfWDFO/lIH4i0ayKPTSvSrok8k62WUScfbcXRo2gSOqPoUTQJnan0KJqEzoCt8zBJiTt4mKTEnTxMUuIuHiapcPuGO+5IZxTQgQnd5YAOTOjuiXRgIvoAOjChuz3QgQndRepBMQldzoIOTOhw2SfPrJF8StKCiSjEgL0q8lmcOyWpAecaSe3J+qUVq8suJjtH842EQtprFFXyJ5lG6qiwXKbHTkfyBxpudZSSBO5M8rM7SHpRBPzLB40PoGr3T3p4yFozeTqWOupyN9/HRypFFecW75ycsvIB2UqxkU5qpMRGZ6Do4KO6m0S1ecxzvZNDbNcMnCRvyyw3nij22Jp7w5QDR89783w/x2/NqRxQzmNEtn/xkiDjJmTJMdunkyUtkYsHbRvrC9Go9Yqgbe0niXvhY/MR4ycl9JMqbv0lqd/zVk13osRrpnvA6uwDjS6oTyJuUPMyaUFdrBlM2/DwrGDzMqGScdq2yEZ5qM8mfSGpVaSPcdcEz3qYj4k1zw1XbnyDXH/aRL0JRTYldQQNb4qenPK75LQHNNtYeVdMmcy/6JQ+aY80JX/6il64P5I0Y08Cb1A6jDQeIPrmTIcZktSZp8MMSeLC02E0iStPh9HAjafDaODO02E08ODpMBp48nQYDbx4OowEzhvvBTSkLQM1XCJqQRoubUQtSMOljagFicXZiFqQfksbUovOE2008MCJNhp3ol5AGnPFewFJHyhbvBeQ9oEU7wWkfSDjXkDz/unqyi3xXkCa4DXeC0j7QIv3AtI+0OO9gLQPjHgvIO0DM94LSPvAoq16JGwgMudMqpB8QL0szRnrPyUuv985g921Tb+qjx3n/W9XenpewTV8AB32wa6GT4oesKODDFlMqtxF23FXHX2Y9Gp23u9ScsXKJ8VqW7O9JzSxkXY9j7Yvqt+Z1TGuZPUyZiJ5c7gKnbRHNrlty5q2DTvciuuPS0oMommQr9o6rmuucQeuP65xJ64/rnEXrj8ucfuG649r3ITrj2vcjOuPa9yC649r3Irrj2vchotJatyOi0lq3IGLSWrciYtJatyFi0lK3LHhKEmNm3CUpMbNOEpS4xYcJalxK46S1LgNR0lq3I6jJDXuwNGMGnfiaEaNu3A0o8SdG45m1LgJRzNq3IyjGTVuwdGMGrfioEON23CUpHaInT0azdikx+vrFwaPZmzSs/6VPYPRjE05Mj6PmFGiGdVR0QNpzmtW6e5gpXgZc2lQQNWZI5yuS9zCL5pqNgV3VH0FrlWOTVEb+ybHOWwEG7j8LIN8IHD5eXg32gcCl5+HW6Z9IPB6UYBZpUiQTF7kA4HXizzIBwLNrHMjHwg8Y+RCPlClZ69U7UUh21BQy4bI2sNXuO1PmzhoDJEm6IzeDHtyrnAHzS7cBKYkb5yrEEVISY0manCvTymzAMGKP1B46Xklh+ZKDpQmLYrepUBpUg0cKE2qgQOlSTVwoDSpBg6UJpXAOVCaVAPz0qQal5cm1bi8NKnG5aVJNS4vTapxeWlSjTtw6XmNO1VPvdnT1m2snstUF1mGI8Ezp+A2MUX3fQ+Y5fZWd0CsI1q+8ztlSyp3xJJNp4zboM4TT4gtFpYM2B6TKV54GxVkn1w/PANXD0calDNWK14RMisWW/WQ0DN7XrJYENZylhFQZlfvtvRYWlDiFl5aUOLqqQ+lm1xn4hovWSjJ23nJQok7eMlCiTt5yUKJu3jJQoUL+ixlMm+gzVIm8wa6LGUyb6DJUiLzBposJTRv4LyG5g0c19C8kbQHwtXtDU2bbm5k1nrcb3R25J7ofZkmKNjWCBZYGcHWcDa6M6r6czoRU7YtNKZDq5ZFkPwSEi22nbuRaJMY3MzQ5jb4YQ1tyoO/DSBnYvCnAeQEDXzIc+xw8Dhp5AUO/iyAvNfnhWDce41SCZWbJzoj6MEuj1gTFKj5gg5Jk9shOtxNOdH2CH7KypNJoOJLJVo9+XZYiVYHir9Uon+TW2VFasPf1xtSG26fDc0v3z4bmd+1iatWI6vW4sbaiNYsvmk2ojWLW20nWhMIh+lEaxa32o60hlttR/PLrbaj+eVWO9D8cqsdYH7zplrtqISacBjY6IQvHzSP9Glli82hmjFfj0hKCZ28qSXWyhE8sGkhlHljHXqP28kkSd1FqfNypXbGe0QvNmzXMYfjYDyeGDuaN/+Xk9eXrPd0KjcF16vI7M64x5ENbfc1PY58hTOnZU+2/iTVnuqhmeVVPcKvX2yBfOSv+4n0RpyTXNHwuLFX3rRzCltacSZUf3v/C5MdzAoarCNWVrezdEuqnGCWsceRT4L7XHqcAlcFb3QqXBU8ToOrgseRlX02S9dtE9ILtuzRJpJvkOXiuUfhxMaqo14/wRu0HJ0Iqz3AZZNj2cfO+WYomk1NgSD/r+6jFOOfA52Ujvd3JVw2R2q17FdMGr+GY/01fguH+mv8Ho701/jqBeelVECd4fQBjb/C2QMSv27h5AGNn8K5Axo/h1MHNH4hmQPaCSRepMUOnM+VZiJoP73Dh1WNOuC7qkaNnsG8EV3sVVUSUg9gAeP5vCjLzTdVjZijT6oavkRfVDW8eDzLR/Bi/c7RgdaiT7OaoD36MqvhZTs7qTZnRh94NTFX9H1Xwnd6teGMQk/R111NzBx93NXwhb3tatAafdrV8DRo2ps58SKxzCfrwf3qXbmP6IOx9vNn9L1Ywy94mHZGNxC+UoFdBKJXKrCLQPBKBSo8JN+xdeA66uEqnYyDbGud/HzZf+zAMPRyLAPYg16MZRD1la1sgNnSC7EMMFtTvn6cG6DKV/l7Jm9VrsUmaAb/FavUkchyM6LjoayLT06BKJT9oGbX0MyBsJN0k0ebD3WlYGSeE3pfnnh0t3I4C/XfGxNO8/NORLfxM+34oXWWyEtOk5vHaAoWGimest//KlVO86r629JXrNRqJa+wTS1HOaI25fEGVH6PM6Hye5yl2vhehFnq0FK2DXokSreTsiXokWjUDD0SjVqgR6JRK/RINKpcDGwPjdGoXX6X/eo7PG+ONWysnsK9l6ZIUoZl2SbNHFJa+F25i2YOaVw9QGPPHBKxCWYOidgMb6NFbLi3lt3H8Uqs8IJbFLTBG24RG92f3J+vO32mmN2msrp62R4Ce6/Rq5KU2z9dr0JSy21QUr2bZpuQs6vmHA75ed6JetofiFtTcYYimtnmAuWmysP84bZ+6vVGyh3xBtUhDzTDU9EcYjTAyQMWsafAUeEzvSw/ZS9qJcFYx/TienbZ4Kzcve1PH6kqJlNoQJQ7mhW00xVlk21lT99ITVlwAwVHLvsFbBqaAoyoqg5ncKfcA+QOSD4v7Vn2SSlCVyoOtnXkqwlmfCXp0qbc637z1i9KmqSjexFjKooDdcYVNEq1wfZ+Ee5/k5Yzb3qd8nUbRC8YXJBsMkeBhiy5gjW6DWXH29IDKPahc0EJDp0Lku/kajJHzjFCvWnNfheXldj10qI+WnZ8l9ZY6HN2MHpvmnIbNKiGeD9sRqMzXCI9vHigQGWOclu0nvQFYJfNcW265HYd4fnVgZSolnpSgVYWt0GNqpcHCgf/uES6G7igcMq+S9Q1fx6KISxmgdiD/Zc7HhXp/HIblKmaeKASVhOPSOtduCD5xLFHKuUhTWoPa58naPSEkR13CTRuKbdBi6qJAwoUrzjUxCNiB8kDZTH86khg+ZLPqZx4A5Upyp3frJ8g9uS6zQFFjwzF8TInPTK4oBFVFJdIn/hd0GJtQctBExaVFfaYPGmXFHW9++ZlUxQadEfZJ9nx5laB7y8uKHpacIHUfXJBYffJJVL3yQWF3SeXuKhi2H5Y1Z/qD8XwQNEK0C6QOkwuKOwwuUTqMLmgBnfCol111y3sMrmiyrXAdk51OLTiZRkOaFHNdUApemZwgYlqrgfKYc31iPId0qG5ygV2TdggPPlaWG89Yqf6thzQoPrmgaJ5aS5wSeleu3ekROjVTG9VPdlyuNakS8xU1zxQ+LTgEivUtZocEE3edEHRABEXSC9TXZBat2NXh7o5HHqF6glUwgcCl8jLExxVFDblRaAWGlVViyNpQVf2NTuYSpXDk6fhkTvUJGsj1+G5vipP7rXQPaI63ta95hdv3anR5KS3TJ6cesOLYsvnzE/lpnMYo/gBHkxVz6GQPlBQ35R+ZBr277yhDpy8v2751XGNKj16uyAeErJnRdehDaZ8+Og21qZONEVHIFN9cRuZms3X+zftursU4216k5ldYMnla7zVbyFS57D6Ot6W3vPiUF8PVFVXxP7B9pmoyY8heZlYxxaamrzcXH1dpBpUbYMrRkO/iHd6qvYHqs1fUdVrjmfX6fHIBQWOR3vZDiW4o3YeuLUvoU0KSq6dp4rtgWFNiXCvXbXNI4X82bAUm6qfr/bqB0r7r9r1mom7tEpcdg2UFehEavUkNkyZHWjc5pwzwcA254ECNreZ42mbhP7SnzvBFr4MJ3PGHFMegeIdmfwA9bL7cLS+FDB8TRHbqlcb2Jtct6rodiB6YBL8DJuOc3QYAWO0JbZndmLTdATVQwz2HH5Rvqw6eKd4ChWd8MqRrdBe5kFsSKsD/TH2sGlxtOTNcacqhRTqFN3WdKTAtw7LltbJHdU9dLE5B9sZN0WPKBbyTvXbYXiqLmhQrDiHe4PSjp8gaMuij13eyKwM035ejoztPq0CWwmLP7zyS49B+LIZ7nvXVMwwUtFg12jn9Lzoi4ALklMO9hIczplqLbjS9JfF8huxsbZt0UF1fkPbqFW5oEw2qdO2Xg7JsvEl/MuLI3DlN987MTvE9grifUNtW4dJYSKW2pU7ovwtYb+dFQUNH/W67Qa2JBfP3znV4WAr8gTK0bKfLlF9cTs43k+UA1S/7j29O5wWnsThEGmAqgsa4cH3iHplt6+c5XDimu8QcdyFC0rhQfOImWnaUCJcm95RYqc6+1wOv465RPo65oLo/iCOXNgsXEHFzhLHw8Iozltl04My9ll1tq4SdqxcIt0SXBBzrNLTMbtf56gFOkMcs+sJXOGcOHNbxGu8o1LeaNpzaSvy7fk6BBTMJFJMoNwegElVyAOtkG/+ckDtX+7EZvjnXm1Aa3hn8cahZqiZzrZew4cRl0gDmlxQuG68S+xw0JxtvcbtwyPq9vH15mIoNxet0pglT74Wbq/uEum1tfaLG7SL6ezrLWwXLlEu4LnfJbog6mS5oB6dVJc45OXzzvDD08Z0NvBGDcAD6dELu0DOut2pL+WCqKI7a2KXsxvSDnJOw52u+65Ecm3N/enJlQgu99NZqvSSAOkOiHpBLkhW63wbNKBaL8deRwLpFGtzIBmOsysNjXJzQVKFsX1RdH9Wg5PlSgP1eTlr2aD67IKoPrsgqs8eaFJ9dlZX/VE93QHRjEwXVOgQeSB4pl3OMq0/eac7IHrp6YIGHSIPBL2P5ayuer39Y2V0QGujY+2BqPvhgvSArXYbhPXaA0G9TpuzzILs+nKH1OG0+ST6sOWTJpw4n0QXbY/Ut41OXXFACU+dR8p46jxSwVPnkSqeOo/U8NR5pE6nrjmggafOI008dR5p4alzSHrl+XPqPFLCU+eRMp264YAKnjqPVPHUeaSGp84jdTx1HmngqfNIk07dckALT51DyhueOo+U8NR5pIynziMVPHUeibopTsn8nht5CTkDt1LanBfIrpd0P7t5eLLRE6ZPokdMn7SoMnikslFlcEmJKoOzDbOX1SfK8OJpNdl8vMS7klZYojYlKT29l4Z1zhMRV5Z2SXprkMZ+LPbiXRGxF++RKvXinbr+vWIv3iVlPJMeqeAB90h4A3CcgCfvo0qlv7NTkhJJ3SvfCzwxB3xgSFqB/V751uCJyGom5kJGsmHX3xOzJfgwoo4kfTRNTgX83kpwG5qeT9Iq1kNPNuYv1VO2pW2Rje8anqSDNnNJWrHX3vi24ckoJgzkTmWkL63J6SnQnzy1Kla9Tppg1Prr66GWrpSFreINiUnfZH0xW6gdmSgmPmK7Yg4m5kBiotonR8Rnytlb3Pqiqu64XiDPu9wh4cO3S8KHb5dU6DA54z3wZuKS8PWSS+p0sc9aPdOuP/OeE+DJOOliL8u4WIB8ykptzT7xHuK4XBMfRVxSpude8acW2l5L5PKtw/vlLRSye+VpDsPs9JAtjgC3H28E0MbxxIqMEfjbm4f3n9/9fEX98OH3d79+ev/xSwLUh7c/vPtw/bf//uX3jz+9/eGX3z//V7v+8x/vPv3219+1nlddq9UvtUC/3Eb9P8UhMPY=
Copy blueprint
4l4wITest.png (33.82 KiB) Viewed 3022 times
4l4wIScreenshot.png (446.27 KiB) Viewed 3022 times
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 6:04 pm
by Factoriointersection
Awesome guys! some really nice intersections! I added almost all. And updated the forum. Lots of intersection on there now=)
Re: 3 and 4 way intersections
Posted: Mon Oct 28, 2024 9:36 pm
by grossws
Avona wrote: Mon Oct 28, 2024 6:45 am
grossws wrote: Fri Oct 25, 2024 11:03 pm
Tried testing newly designed intersections and I got slightly different results on my naive intersection updated for 2.0 (one plane) than similar looking Avona's "Symmetrical Cross". Likely because of a bit different signalling on right turns.
It's more than the right turns, it's the fact that I signaled all of the merges and splits differently. You don't need chains before merges or splits (unless it's a merge directly into a split). And the extra space that the chain blocks take up will reduce the throughput of your intersection significantly.
I know I technically don't need chain signals there thought it's a bit of habit. I was surprised that my variant I thought suboptimal somehow shows better throughput while it shouldn't. I'll test your variant later to have comparison in the same environment
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 11:47 am
by mmmPI
3 Chunk Square
3-chunk-square.jpg (181.2 KiB) Viewed 2792 times
0eNqtXctSG1kS/RVCa9RR+bgvb2Y76+nZzXR0CJBtxWBBC3C0w8G/j0BVBUhZ6BzhXT/so7yZN99ZeX/OLq4flreb1fp+9unn7Gp5d7lZ3d6vbtazT7N//fPfZy3/3fJ/1zefP68uV4vrs7vLm83y7MvNzdXZP2bns9Xlzfpu9uk/P2d3qy/rxfUTyHrxbbn925vF6nr2uP0j66vl37NP8ng+8Yfmm8W321d/Uh//OJ8t1/er+9Vyh/38Lz/+XD98u1hutlDnb/56D3o+u725W+1I/znb4szzb+l89mP7D9Z+S49Pv78HpCPQ3f0W6svX+/kz1YdQI1AEYyiMvIfi2Kn0zaHOZ1erzfJy9/9rgJpG1MuHzffl1TNl88U7R6xvQaULUDPNuBIduaDESUxbdODKCiOkrLHCyPvCKAGqdLQ0MiANEVocoTqIsryLYQzUzzZyT/e5pxGuh9y7CJBLj2sI9xLNPQuPnVnuxTAFPaXFh4yUQip7nxUxLvKiJl8X15/nV6vFl5st8BT/BrHIcWFrR0tFQhMPOosXXyH7J88RrIIMTdO4FuEaaiG0xsyUkJuOwprGsCETEqjoVgcuaIO4kGE7aXkARthQcFyNcUM+VNbgad1ng0S4DdaBJ8/yLLbuuGpZx8ZPOhE/Ge14NA6gFLV55V0Y42HeCsEjVDAwk25auinCTZTxVItpDknOsA8p+DU32DPNvXdxWgCttMp5ES0xeEgzGMjN1UbpZUR63sHMEIvpjSTnwvGixdARm53OdjQMjR0M79o0Q6PY2GEXJTpxuUKGwtGdJEJMsIOSSqAWjLP+YmkKEqx4hd2eDrxNCG8bjDuyIR1nQ6JDPw29UxJURUdzFeMobvcGguy4PibjVF2EwHaahWEykvYivOdKzVQ+ow6UI2DFaSNoBFPo84XZQSJdz2DKpQEyaCyNEkY1uWNZ1h2XQxY2qJGKWPGsKLFuI7URDpwHzb0MBB6XSab1QkIfmGGvMhxzAieD4YmPGZR4HItnXCVGjsVAaDYj5Q1Nx5nf8JApjRQeL+AUOp+Z4mGh85mYhUXJcoukg3LL+fNf/fN68eMJcba8Xn5f3C+vZtHPwXnP4EMEKO4Up+94zAywSuA+fZ1C+l50Z2DOHCsjiyO3CtenIbh5ym6OKUGpbAl4HzXkxX6a83B7e7O5PwTtywQix6sPFQ7DngqzEaVRLFpRx/OirFBBruLZjQ5MAGol1d6/ZKHx2sE34JJVsLYweuGD8lkj7ETFc6EcsyjkPN4MGrILwFNXvNjQW58C9Ibw5lANKQ3P35AYeXS6+TiZDa8taH8vgLSqoW3T0Q4fmOEn9wHftqa86hCngX2eSggaZrQNbcKWSR6FsFAaNbhR5IagcaONlsOQwnsrZCmuTzkM4EHlr0OMHhYRG5xt9dbfj2u2dHDqpTkm1UNYgbsxXQgbE6uc7GyI2o7LTjoD44uxSgG0+KRztm/SHVikjrBI0oGhqEz/Xswe2AUO5TVEnngjOIU8j1HR7G4sMkJ9S+nIVnDfeEAun6D5naUpkmNcYRNdEFdRXOVwT4lFLWJzqI0CaqNPEs2oIj51sUsugEBUBPSKIr/mCIUt3uyGKohfgJV1sJCG3aR2eJPAolE8s6Koio5JPhSOiJLtsL6QD4QjoopXGLsINQxDROFhwMEEQsTidcveGUCo+ORTHyxAqHg+aIS48HJMH5RCqBVHJaSFV/4Vl5bhbTHFpUWMcCguLcOrMYJLy3DdElxahuuWENLCB2/78hlkXgxXLiEuQcFKGDhgpR0MwVpYvXZJGRJsvxrnQAnGb9iroQ4UHFcKVxpccEV2NPHrhzIgTOcL9+HViyWZyALzwaRrYkI0B2NOlckIjfo5MOYcJy6xgHBiQiTKNcObGafF3sh5FkUmryTxuur2TvCahGxQ6UeadZLA9NATJcKEO0ffyRBCdbarDKGmk/OP+IsDfKxk7hkns3wQNTRQCU7qBpORMLWARx3rFG7IhYzmdjqosUO5XSZzO8FvbT6h9dDHdsjAgWT0CxexKZYwfTvBx1Z2bSuktp1RP5mmbotRR+C79X2fNiFx8avplw/CxxeqIgGyMQTDQazh977AKWJfKIFA5VR3G9vqouRcCUQkPC/mjoudGIFJOKmnO78SMzSzlawCHb6wlayCnL6ylSwItbGVLAQVn4AZKlkQqrCVLAhV2UoWhGpsJQtCdXwe3XHUxNbHIFRcuTRUrtD51sK2nqCPUqRWchIQsgS10eGUhLchdoWtQ2sMu4ubgeCyney0Yhvb9GSj3WLAU5p5rQc8fm2bs7O2wAdg0tCYcQh7D8bVJJYW/jlNjoiNr22DHRjDWHh+szcHDVIB2H/1RXiAVO1g99XbQwgU9l6acFDYeWnBQWHfpQ0HhSNCIwQFey4jBAXrlGXUAGhXTjWroRXUrrJFKxHk7Kf3t2ViiwC+ucNrSGjIT2Jzxwt9x8+PL/IYvljDYIkSoxGwDnWfzAnIRJcDhlATk1v+Zfgx/QWdt+v9wf6gdrhVAR4nkWGcRLoPjQCrNO5b4cNZf+rntOMDVQmlEm6PIKdRhFAtdJ/I2LUKOBWukFCwVKk+LfKYGeC4mJVp4PCWajrVx0zYbnybiGsoMYlFVsg6FnYR6keJjaXVyEoWRCy8SWScgBPjRuDUhB2BE8UusJ2e0knYSFQzdgpODNMJw9O54bIBvXI1dIGPK8tc9AOFcUFShExdlMK2qSLmU79Y+SCg/65IkP652glh7OB0gEEM9Q6e6s8EqpxAtRH4J+jt4OUhfGLKrDfBwISRRlMvx/AbQTX0iVEX3754ZRg8asaQia987AhU/Ls+5iLAPpO5vvh2E0aVE5xISiFQlaygYahGFrswVCerXRhqIstdGGom610YaiELXhhqJSteGGojS14QKr4qxQiHRg6qGCGyrOSEXBAlhWlftpOTqDi2zejXQcpSyq6HOAzbmPE7RVeueCJD3gz39EZk/1jIC29qqb/qB+mFlAKMImnhyza9AUOmtbSAKeR7XApxleyGwcBgHmnCAjtnySzkcmjJ0C0vlqdpDu1DyfgiiP5WIE1tJcZb+pwtI1cZVcnRBmRo3XABC6nTsJSiVzQzLCHHw8tXOTeqsTBDWVb8W76hi4B0kLXiW8j62T+B1gXjQ9V9mFIR1ERb0RTSHLMic9JjoEHHqaPpaJjpqKgyjoZUweJ3beyGFkXaSg0fOPOeXgRVuCVDh0ygymIn7H2RkEUx6+nFLyCsM1t8VMMguSV86maHEwfb++td3t0XM0VLYdcyKRKrtUpuEdL0oZZe42fP+oVQmpBV6B25EWqfSTGqsLXow0W+8S7yjl5zpkDYYvh+l97ulOP74wyflenLy/ukxrxN7F4+rQgHMvcWzRY0hCnk0jytyJkr22d72vsUE9jYiZP4XQ2Tjp0wnAJin3PqX9KAbYiJ8o2agY2AdIR8/2mKD+QDUNYhWzJNEjkSjLzOYvCqFZukNkzWTdiu+hQ3K1lWQtnJ64/FT1505K2ZgIGXGI0HPUy8w+cplHwNKn4MypRbc94GrON3EH/UZrgqyN5X08SunjZgY58Rb9oMmxtyzNBCyqXEMORDaRNP3ym396sMWMfFax25vt+Qjatmwm7zdwHEa8qK1zsE1qC0JA2IIYZzkvbYouIbTfrQxpHEy4x9SsOBTNrgaZDR/rthEbjRj2m4QXxo7MocBzpM5vjgch+FOzA5ZC70F9CKuR0n3Y7HftE5t5PCo4eCcngWqxHih9eWtGl+WgicT3lmCrsEhXxmCruxlX1myiHF9XbSM1MOdD8sdWwU5o6JD3/EZhhycqCfYMSbNhOwobtKZCrkccyYyFTIExS7p8Q1UQ5l1ELYTL7ZiN1XfPtI/1YhdlPBvMh8krdhsd1SY99sdKRPZ/hMx/BmoxfkhTy4RDca3IIxIsPrX7tp5JhmVrviyD+TXeCQqaETw5/F6W8AUvDLmXz21+NMBZ7PGOpMT8W0GKmSz8RMUdRIecYwpeNeDHYk+0KHJtJrZgHpV2FfIUxxNlJIXZiCcfJSJDCMLeyr0imOYwtZl06KCJcsIUzRVlnmpQmNKo18FSeFz8JZZZ8OTDE9+I4OeRdGSeEhzaVqXHCUguDoj/PZ6n75bQtxcf2wvN2s1k+9nuvFxfJ6+9/s7PLrw/p/Z7//9bDYLLf/4/tyc7dbOpG1eWvJtStla70f/w932Eqe
Copy blueprint
I made this junction trying to optimize for the test bench, but i noticed the test bench adds some rails that invalidate the signals, if removed manually , the junction seem to score good , but i don't want to publish my own non-official results.
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 2:32 pm
by Factoriointersection
mmmPI wrote: Tue Oct 29, 2024 11:47 am
3 Chunk Square
3-chunk-square.jpg
0eNqtXctSG1kS/RVCa9RR+bgvb2Y76+nZzXR0CJBtxWBBC3C0w8G/j0BVBUhZ6BzhXT/so7yZN99ZeX/OLq4flreb1fp+9unn7Gp5d7lZ3d6vbtazT7N//fPfZy3/3fJ/1zefP68uV4vrs7vLm83y7MvNzdXZP2bns9Xlzfpu9uk/P2d3qy/rxfUTyHrxbbn925vF6nr2uP0j66vl37NP8ng+8Yfmm8W321d/Uh//OJ8t1/er+9Vyh/38Lz/+XD98u1hutlDnb/56D3o+u725W+1I/znb4szzb+l89mP7D9Z+S49Pv78HpCPQ3f0W6svX+/kz1YdQI1AEYyiMvIfi2Kn0zaHOZ1erzfJy9/9rgJpG1MuHzffl1TNl88U7R6xvQaULUDPNuBIduaDESUxbdODKCiOkrLHCyPvCKAGqdLQ0MiANEVocoTqIsryLYQzUzzZyT/e5pxGuh9y7CJBLj2sI9xLNPQuPnVnuxTAFPaXFh4yUQip7nxUxLvKiJl8X15/nV6vFl5st8BT/BrHIcWFrR0tFQhMPOosXXyH7J88RrIIMTdO4FuEaaiG0xsyUkJuOwprGsCETEqjoVgcuaIO4kGE7aXkARthQcFyNcUM+VNbgad1ng0S4DdaBJ8/yLLbuuGpZx8ZPOhE/Ge14NA6gFLV55V0Y42HeCsEjVDAwk25auinCTZTxVItpDknOsA8p+DU32DPNvXdxWgCttMp5ES0xeEgzGMjN1UbpZUR63sHMEIvpjSTnwvGixdARm53OdjQMjR0M79o0Q6PY2GEXJTpxuUKGwtGdJEJMsIOSSqAWjLP+YmkKEqx4hd2eDrxNCG8bjDuyIR1nQ6JDPw29UxJURUdzFeMobvcGguy4PibjVF2EwHaahWEykvYivOdKzVQ+ow6UI2DFaSNoBFPo84XZQSJdz2DKpQEyaCyNEkY1uWNZ1h2XQxY2qJGKWPGsKLFuI7URDpwHzb0MBB6XSab1QkIfmGGvMhxzAieD4YmPGZR4HItnXCVGjsVAaDYj5Q1Nx5nf8JApjRQeL+AUOp+Z4mGh85mYhUXJcoukg3LL+fNf/fN68eMJcba8Xn5f3C+vZtHPwXnP4EMEKO4Up+94zAywSuA+fZ1C+l50Z2DOHCsjiyO3CtenIbh5ym6OKUGpbAl4HzXkxX6a83B7e7O5PwTtywQix6sPFQ7DngqzEaVRLFpRx/OirFBBruLZjQ5MAGol1d6/ZKHx2sE34JJVsLYweuGD8lkj7ETFc6EcsyjkPN4MGrILwFNXvNjQW58C9Ibw5lANKQ3P35AYeXS6+TiZDa8taH8vgLSqoW3T0Q4fmOEn9wHftqa86hCngX2eSggaZrQNbcKWSR6FsFAaNbhR5IagcaONlsOQwnsrZCmuTzkM4EHlr0OMHhYRG5xt9dbfj2u2dHDqpTkm1UNYgbsxXQgbE6uc7GyI2o7LTjoD44uxSgG0+KRztm/SHVikjrBI0oGhqEz/Xswe2AUO5TVEnngjOIU8j1HR7G4sMkJ9S+nIVnDfeEAun6D5naUpkmNcYRNdEFdRXOVwT4lFLWJzqI0CaqNPEs2oIj51sUsugEBUBPSKIr/mCIUt3uyGKohfgJV1sJCG3aR2eJPAolE8s6Koio5JPhSOiJLtsL6QD4QjoopXGLsINQxDROFhwMEEQsTidcveGUCo+ORTHyxAqHg+aIS48HJMH5RCqBVHJaSFV/4Vl5bhbTHFpUWMcCguLcOrMYJLy3DdElxahuuWENLCB2/78hlkXgxXLiEuQcFKGDhgpR0MwVpYvXZJGRJsvxrnQAnGb9iroQ4UHFcKVxpccEV2NPHrhzIgTOcL9+HViyWZyALzwaRrYkI0B2NOlckIjfo5MOYcJy6xgHBiQiTKNcObGafF3sh5FkUmryTxuur2TvCahGxQ6UeadZLA9NATJcKEO0ffyRBCdbarDKGmk/OP+IsDfKxk7hkns3wQNTRQCU7qBpORMLWARx3rFG7IhYzmdjqosUO5XSZzO8FvbT6h9dDHdsjAgWT0CxexKZYwfTvBx1Z2bSuktp1RP5mmbotRR+C79X2fNiFx8avplw/CxxeqIgGyMQTDQazh977AKWJfKIFA5VR3G9vqouRcCUQkPC/mjoudGIFJOKmnO78SMzSzlawCHb6wlayCnL6ylSwItbGVLAQVn4AZKlkQqrCVLAhV2UoWhGpsJQtCdXwe3XHUxNbHIFRcuTRUrtD51sK2nqCPUqRWchIQsgS10eGUhLchdoWtQ2sMu4ubgeCyney0Yhvb9GSj3WLAU5p5rQc8fm2bs7O2wAdg0tCYcQh7D8bVJJYW/jlNjoiNr22DHRjDWHh+szcHDVIB2H/1RXiAVO1g99XbQwgU9l6acFDYeWnBQWHfpQ0HhSNCIwQFey4jBAXrlGXUAGhXTjWroRXUrrJFKxHk7Kf3t2ViiwC+ucNrSGjIT2Jzxwt9x8+PL/IYvljDYIkSoxGwDnWfzAnIRJcDhlATk1v+Zfgx/QWdt+v9wf6gdrhVAR4nkWGcRLoPjQCrNO5b4cNZf+rntOMDVQmlEm6PIKdRhFAtdJ/I2LUKOBWukFCwVKk+LfKYGeC4mJVp4PCWajrVx0zYbnybiGsoMYlFVsg6FnYR6keJjaXVyEoWRCy8SWScgBPjRuDUhB2BE8UusJ2e0knYSFQzdgpODNMJw9O54bIBvXI1dIGPK8tc9AOFcUFShExdlMK2qSLmU79Y+SCg/65IkP652glh7OB0gEEM9Q6e6s8EqpxAtRH4J+jt4OUhfGLKrDfBwISRRlMvx/AbQTX0iVEX3754ZRg8asaQia987AhU/Ls+5iLAPpO5vvh2E0aVE5xISiFQlaygYahGFrswVCerXRhqIstdGGom610YaiELXhhqJSteGGojS14QKr4qxQiHRg6qGCGyrOSEXBAlhWlftpOTqDi2zejXQcpSyq6HOAzbmPE7RVeueCJD3gz39EZk/1jIC29qqb/qB+mFlAKMImnhyza9AUOmtbSAKeR7XApxleyGwcBgHmnCAjtnySzkcmjJ0C0vlqdpDu1DyfgiiP5WIE1tJcZb+pwtI1cZVcnRBmRo3XABC6nTsJSiVzQzLCHHw8tXOTeqsTBDWVb8W76hi4B0kLXiW8j62T+B1gXjQ9V9mFIR1ERb0RTSHLMic9JjoEHHqaPpaJjpqKgyjoZUweJ3beyGFkXaSg0fOPOeXgRVuCVDh0ygymIn7H2RkEUx6+nFLyCsM1t8VMMguSV86maHEwfb++td3t0XM0VLYdcyKRKrtUpuEdL0oZZe42fP+oVQmpBV6B25EWqfSTGqsLXow0W+8S7yjl5zpkDYYvh+l97ulOP74wyflenLy/ukxrxN7F4+rQgHMvcWzRY0hCnk0jytyJkr22d72vsUE9jYiZP4XQ2Tjp0wnAJin3PqX9KAbYiJ8o2agY2AdIR8/2mKD+QDUNYhWzJNEjkSjLzOYvCqFZukNkzWTdiu+hQ3K1lWQtnJ64/FT1505K2ZgIGXGI0HPUy8w+cplHwNKn4MypRbc94GrON3EH/UZrgqyN5X08SunjZgY58Rb9oMmxtyzNBCyqXEMORDaRNP3ym396sMWMfFax25vt+Qjatmwm7zdwHEa8qK1zsE1qC0JA2IIYZzkvbYouIbTfrQxpHEy4x9SsOBTNrgaZDR/rthEbjRj2m4QXxo7MocBzpM5vjgch+FOzA5ZC70F9CKuR0n3Y7HftE5t5PCo4eCcngWqxHih9eWtGl+WgicT3lmCrsEhXxmCruxlX1myiHF9XbSM1MOdD8sdWwU5o6JD3/EZhhycqCfYMSbNhOwobtKZCrkccyYyFTIExS7p8Q1UQ5l1ELYTL7ZiN1XfPtI/1YhdlPBvMh8krdhsd1SY99sdKRPZ/hMx/BmoxfkhTy4RDca3IIxIsPrX7tp5JhmVrviyD+TXeCQqaETw5/F6W8AUvDLmXz21+NMBZ7PGOpMT8W0GKmSz8RMUdRIecYwpeNeDHYk+0KHJtJrZgHpV2FfIUxxNlJIXZiCcfJSJDCMLeyr0imOYwtZl06KCJcsIUzRVlnmpQmNKo18FSeFz8JZZZ8OTDE9+I4OeRdGSeEhzaVqXHCUguDoj/PZ6n75bQtxcf2wvN2s1k+9nuvFxfJ6+9/s7PLrw/p/Z7//9bDYLLf/4/tyc7dbOpG1eWvJtStla70f/w932Eqe
Copy blueprint
I made this junction trying to optimize for the test bench, but i noticed the test bench adds some rails that invalidate the signals, if removed manually , the junction seem to score good , but i don't want to publish my own non-official results.
Looks really nice:)
I'll see if I can do something with the rail placing.
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 6:18 pm
by ManDeJan
Hi!
I'm new here, I made this 4 way intersection for my space age playthrough, I use 1-2-1 trains but for this thread I tested it with 2-4 trains
. I'm new to trains (previous playthroughs only did belts), this is the first intersection I designed, not sure all the signalling is exactly correct but it seems to run smoothly through the benchmark. I'm happy it fits exactly in a 5 tile cross.
0eNqtXdluWzkS/RVDTzOA3WBVcbnM6zzPFwy6G0qsTgvjDZISTBDk30e2dCVHKl6dQ+Uti31I1l7FYt3vs48PXxYvq+XTZvbh++x+sf60Wr5sls9Psw+zf3+7+Wu5Wm9utv+7WK0Xn17//eaPuz9mt7Plp+en9ezDf77P1svPT/OH199+mj8utr+2mi8fZj+2P/J0v/jf7IP8uG380N1q/vjy7if1x++3s8XTZrlZLnbYb3/59ufTl8ePi9UW6vanX9+D3s5entfL3Z6/z7Y4dxp+S7ezb9s/Zfst/XjdwAmSHpDWmy3W5783d2/bPscSG5E8HON3JNsd3c7ul6sdPd8wXn/5z4f5t1fI2eJh8XW+WdzPnPUiv144XU8c3HTA/fRl9XVx/0aNu7lHj7rH1RPU4MDmq2EHB7UcUEdS3V2EH0bqn+xaHfyhAz/6+NmBr7zsiSd7EkBhEGkLn0dfkWkCfPQEbr/VVAECC69+W1wPyHABG2kZAAJEmrJpOKVs8YATT9nqE9aTLMkn+/7y8vK82njsGrddfkZ1uVVQagwHapQzo5M85IGXg+LKQUUPXvxze9RUVL9S+9iZsO3ao3bjedJlPqqizkMPB4oN94nr3eup3qAysMOIq3M5wHpAiRcs/6BHjfp7/vDX3f1y/vl5S7UmmkyiFZ7DaRKQUKCRYG4co7xT8oGMd0rJEKdkwh/VdZvW4Xx8IDT4s0MwFndeAjYJFvlQREeHES4rnCWaqNF1xJZpojaACmwCjuf0cAaQOeWEN5fEsPIcsamNRlhhJjbKZBACxwh1XM/dt/Ki4/ruaLzo+EARBqqTOInX63gW7zAsyf1aHjOQhsXy6xbwlCKeKNtbXt8OBSDIyouX6yJT4MXLBxJavHwcRRXw1Ze+4RiQwBsdpMdGbSRFnvRuLJD4KKwBlGnS+zhoJqNHIsl5JkOoduIDtOgGG4kP0HygzAdoEaoaZF4//A1qh4cdLQsQ82TrMIblgO8h8gpjbvCTeYVpAGW6LhKBukgutOwYVBfJAys7jXNXyBHZFDdLOJePS5sa5c/cgKIInXhb4RKFovymdXrTxgu1DxR5ofaB0hVndD1dyfwZfaDCn9EHGvrqDQ20yiZTBoRmQ+g30BaBcHWQKxjtOv5B6ejI1I+Ohg698PfUoRc+UOKtMlRyGTIInH8i2kVrP6Bu5HWbe+BwTYI1DLwBFs4AD/UKmXXjoBrgRH3EUReHL5w1NsQXzhpAxhm5OgkWObDpIzouBkK1/YG1Xg5Aa8ay5XGnbpRSe1J6OSBe1P3KJy7qhmSVT1x8IAkB9maGH1QCXBCz/SWvlsv5uAT+tkXzNUZOgvWLhA6AX5bA34tqgW6cQ+rSYvVvAwN5a5Om0VB3FdqMdC+Dw8BfB9m4RIIYVul+EU1XFTxEcLeljaO4sB2Xo2NPiUI9D0rfPSpSe5WOHgXNyIb9y1KXEAwdUn/zhxpEkAxvvIHrbxxV03w0uGdRZXSR0fAxpglkSolQvY0TZ2H6ykRDhy0a9UsAIioeho6Rj/ptT3gfQ2gTxzUySgam0iCA3/MU+QzhVVXeFlCg+UcTankl+fv2YfFaYjrs1gWC074221zNV1A/j+JwVtD2T15RQ2U+PcXVBLRFIra36zZTGVhmlNQGNhcYdo1jm6UibZZicCnlEKYilsbgLiKNhB4YWGY53h2di6/PN7DMYkL6LcOrknkvwVIRXOy6N0UGs6OvIjYWcNkXw69bwD1BRKv8Vkc+ytnlCBVqR6XraOcrUnFJ5Fuezlek4hKiqWMMG8QvH8TU316JCQBaLpUJdghHnY6GQmmouu+s3rV2XMxeRiMdfPrjhaA0ycgUULcszEnf9XdcOOlAweLOUwlhQ/s9js7eUX0XGKzx6ASwG0Uk+I3J2Pci0FuClK/G9QnRUWG1UTQKtMLQcdOc/BX8BeC2eMsEbO65ITdmAem/gscW6OkxUWYBgylPwUa6gUmyf48pOXWUixvy7T9Gybzr9iuwcN/JO6NUrgqt8tB5EVQZAvEe0adPgW9GMmOfClyyqYQMF/gaURiVxvtVhDFFePeKMJa5wJ1eUhhYWOWEYllhE3UMdmATdQwW73pJoz4kJNIY8FbiZD6wu+EBL40mYXDxC/tYGVy8BSYWBhfP9WJicPG2ykjxDXdwkeIb/gbmEHAi9cxh4B2yHzt43S6Qe1Qj9lsD/cpQgFeGUoXOaQW66qvKNkxJvK4AUI0OIXyO1o6XZrFhPF2hromt/kuCqv81d9yrENrY0WkTGK9S+SyQ2j6aAwYcVAOfARoDj7bkRAaUz/kybqw04Nf8eUz5DNl2vBrX3y+qj+nwQlLOukZFXGi0EBqnoN0H4gF3jYfivUHAeJ0zBobMFW92MAJXAu/L/ZffInRv9Dm3EjXnQPt7eTDiWPc7e0xaJNJut0H8xL7+9ZSQIj6onFMLKrUgWLyZsgVGLcjP7xGluF9/3QKuzT+dPOJfsCq1abz/5lBJRdwT3IyTj3GdYLZe0cvGHCagzYWOfIlAIM4lvkQgCJmJJpzA4BbeVQcsCkC7cu4sT0D77COcavKp4foNeHiJ6cSWXUKb8JV7aQ3fUT4vBsaqqcGXFoeiJERV8oWGNBTDNRLGP346NxLVRc60jxefXfwlfYO8vp1ER53IlJmkYggD21Nl0uYzK6JTUiywXiYKbEvGkRhuW4JGQitH/gLvUzRaf9/o6QKufsbYPZSuIjO9Em6s99aq+ATO/c0uDUT+Pfv5yw5KjAfYwoZx4xfbljVWmjDmorv8S7BTPE70gqb/6buOG6x4PM718ke+KYmWJtH4ya6tWXkp8lNQfSBiSusorgiD0XJNbfK3MkpwNoWlpQQ6MuiyCjBzVsbnpD6NieeKaQood/SbjrcNEeCa1yODyP34BhRZgvBo40sInxbWp5p+PJXJePJw5+SjJVpyGkCZlpwGUOmXnAb9OxrNDjdfPmJlbUa4ZmidloC1nI9UuBxWoUNZjmnDVUavKNvCFDAnWmhH1UormUEtO03wZaMkVhEaOHQ/NfRcSEvp1obGRvGobgcTfJhK2rUdmO9+iF6VPTMbOMIys4Gj3URvAHa8dt/hKeD6Bjxm27uX6O+S9i6NOb+0c2ng9Mt+A3AgHUG6yg/0jFmZ2n4lrtF2fPYzyUp/miJj5p0ZulKnNmisADVwIja8ZLeXATDHNbEs8OsvNbMsqA1HWAubsA0+Dp2UNE5G5yT+aOXQkZIklI8WhGzwqdeUUqyjnWNvCZBRJxaMlUq/+muBj6oaQHxY1QCi4yqBBoBaKPDoj3F/FzN7CwPNiMZg+kozwgciWi9GRjSAhLz8F70mBzHisysjKZO/caNJ2QCKNCkbQAlyS2MYH32Q3DvbvQVYrgC8PLwfnktyuBWRTH5/AB5EovH9Eu5nF+iMxH/tYkqnJC0gfBL3/mg+jLFqnK+JgU37PwohiCPXxOY+GGym+e+HMVpo/jeAhm71hGIIpadvaaM2Y0Yrjza+WUIrTwtIu5/TI+OczKyrGqK+qzU6CmsBJTLfVYViJ8u9LYvQ0C0z+Anl2I3jDIJjZkWYDeTHyBRoszajozj1NSoG9jJNI8BHeArIIbg+p3NxgZV9tKLIrGWLxn06TYEvjVlPS8HelyjyNNXgb7QcTStWcLFIuyl/bKT1zOaoLgl8Cgw0BRr1DouVrXeoW/CwxHsp3zMn6f7EpyLDHSxp9zc+FRjPYfjnWMagUAekK80SPYJV61XNXpboErY/W9kS/VEKgz5hVjpgXaCBJa05dZHfb2fLzeJxC3L8svLt7GH+cfGw/bd/PT++zD9tbh4X6/XNP9LNZvmwuPnv0/Pmn9sf+rpYrXevKbLWWGuKGkqJ26zj/+cEYLs=
Copy blueprint
Screenshot 2024-10-29 191343.png (1.43 MiB) Viewed 2718 times
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 7:32 pm
by Factoriointersection
mmmPI wrote: Tue Oct 29, 2024 11:47 am
3 Chunk Square
3-chunk-square.jpg
0eNqtXctSG1kS/RVCa9RR+bgvb2Y76+nZzXR0CJBtxWBBC3C0w8G/j0BVBUhZ6BzhXT/so7yZN99ZeX/OLq4flreb1fp+9unn7Gp5d7lZ3d6vbtazT7N//fPfZy3/3fJ/1zefP68uV4vrs7vLm83y7MvNzdXZP2bns9Xlzfpu9uk/P2d3qy/rxfUTyHrxbbn925vF6nr2uP0j66vl37NP8ng+8Yfmm8W321d/Uh//OJ8t1/er+9Vyh/38Lz/+XD98u1hutlDnb/56D3o+u725W+1I/znb4szzb+l89mP7D9Z+S49Pv78HpCPQ3f0W6svX+/kz1YdQI1AEYyiMvIfi2Kn0zaHOZ1erzfJy9/9rgJpG1MuHzffl1TNl88U7R6xvQaULUDPNuBIduaDESUxbdODKCiOkrLHCyPvCKAGqdLQ0MiANEVocoTqIsryLYQzUzzZyT/e5pxGuh9y7CJBLj2sI9xLNPQuPnVnuxTAFPaXFh4yUQip7nxUxLvKiJl8X15/nV6vFl5st8BT/BrHIcWFrR0tFQhMPOosXXyH7J88RrIIMTdO4FuEaaiG0xsyUkJuOwprGsCETEqjoVgcuaIO4kGE7aXkARthQcFyNcUM+VNbgad1ng0S4DdaBJ8/yLLbuuGpZx8ZPOhE/Ge14NA6gFLV55V0Y42HeCsEjVDAwk25auinCTZTxVItpDknOsA8p+DU32DPNvXdxWgCttMp5ES0xeEgzGMjN1UbpZUR63sHMEIvpjSTnwvGixdARm53OdjQMjR0M79o0Q6PY2GEXJTpxuUKGwtGdJEJMsIOSSqAWjLP+YmkKEqx4hd2eDrxNCG8bjDuyIR1nQ6JDPw29UxJURUdzFeMobvcGguy4PibjVF2EwHaahWEykvYivOdKzVQ+ow6UI2DFaSNoBFPo84XZQSJdz2DKpQEyaCyNEkY1uWNZ1h2XQxY2qJGKWPGsKLFuI7URDpwHzb0MBB6XSab1QkIfmGGvMhxzAieD4YmPGZR4HItnXCVGjsVAaDYj5Q1Nx5nf8JApjRQeL+AUOp+Z4mGh85mYhUXJcoukg3LL+fNf/fN68eMJcba8Xn5f3C+vZtHPwXnP4EMEKO4Up+94zAywSuA+fZ1C+l50Z2DOHCsjiyO3CtenIbh5ym6OKUGpbAl4HzXkxX6a83B7e7O5PwTtywQix6sPFQ7DngqzEaVRLFpRx/OirFBBruLZjQ5MAGol1d6/ZKHx2sE34JJVsLYweuGD8lkj7ETFc6EcsyjkPN4MGrILwFNXvNjQW58C9Ibw5lANKQ3P35AYeXS6+TiZDa8taH8vgLSqoW3T0Q4fmOEn9wHftqa86hCngX2eSggaZrQNbcKWSR6FsFAaNbhR5IagcaONlsOQwnsrZCmuTzkM4EHlr0OMHhYRG5xt9dbfj2u2dHDqpTkm1UNYgbsxXQgbE6uc7GyI2o7LTjoD44uxSgG0+KRztm/SHVikjrBI0oGhqEz/Xswe2AUO5TVEnngjOIU8j1HR7G4sMkJ9S+nIVnDfeEAun6D5naUpkmNcYRNdEFdRXOVwT4lFLWJzqI0CaqNPEs2oIj51sUsugEBUBPSKIr/mCIUt3uyGKohfgJV1sJCG3aR2eJPAolE8s6Koio5JPhSOiJLtsL6QD4QjoopXGLsINQxDROFhwMEEQsTidcveGUCo+ORTHyxAqHg+aIS48HJMH5RCqBVHJaSFV/4Vl5bhbTHFpUWMcCguLcOrMYJLy3DdElxahuuWENLCB2/78hlkXgxXLiEuQcFKGDhgpR0MwVpYvXZJGRJsvxrnQAnGb9iroQ4UHFcKVxpccEV2NPHrhzIgTOcL9+HViyWZyALzwaRrYkI0B2NOlckIjfo5MOYcJy6xgHBiQiTKNcObGafF3sh5FkUmryTxuur2TvCahGxQ6UeadZLA9NATJcKEO0ffyRBCdbarDKGmk/OP+IsDfKxk7hkns3wQNTRQCU7qBpORMLWARx3rFG7IhYzmdjqosUO5XSZzO8FvbT6h9dDHdsjAgWT0CxexKZYwfTvBx1Z2bSuktp1RP5mmbotRR+C79X2fNiFx8avplw/CxxeqIgGyMQTDQazh977AKWJfKIFA5VR3G9vqouRcCUQkPC/mjoudGIFJOKmnO78SMzSzlawCHb6wlayCnL6ylSwItbGVLAQVn4AZKlkQqrCVLAhV2UoWhGpsJQtCdXwe3XHUxNbHIFRcuTRUrtD51sK2nqCPUqRWchIQsgS10eGUhLchdoWtQ2sMu4ubgeCyney0Yhvb9GSj3WLAU5p5rQc8fm2bs7O2wAdg0tCYcQh7D8bVJJYW/jlNjoiNr22DHRjDWHh+szcHDVIB2H/1RXiAVO1g99XbQwgU9l6acFDYeWnBQWHfpQ0HhSNCIwQFey4jBAXrlGXUAGhXTjWroRXUrrJFKxHk7Kf3t2ViiwC+ucNrSGjIT2Jzxwt9x8+PL/IYvljDYIkSoxGwDnWfzAnIRJcDhlATk1v+Zfgx/QWdt+v9wf6gdrhVAR4nkWGcRLoPjQCrNO5b4cNZf+rntOMDVQmlEm6PIKdRhFAtdJ/I2LUKOBWukFCwVKk+LfKYGeC4mJVp4PCWajrVx0zYbnybiGsoMYlFVsg6FnYR6keJjaXVyEoWRCy8SWScgBPjRuDUhB2BE8UusJ2e0knYSFQzdgpODNMJw9O54bIBvXI1dIGPK8tc9AOFcUFShExdlMK2qSLmU79Y+SCg/65IkP652glh7OB0gEEM9Q6e6s8EqpxAtRH4J+jt4OUhfGLKrDfBwISRRlMvx/AbQTX0iVEX3754ZRg8asaQia987AhU/Ls+5iLAPpO5vvh2E0aVE5xISiFQlaygYahGFrswVCerXRhqIstdGGom610YaiELXhhqJSteGGojS14QKr4qxQiHRg6qGCGyrOSEXBAlhWlftpOTqDi2zejXQcpSyq6HOAzbmPE7RVeueCJD3gz39EZk/1jIC29qqb/qB+mFlAKMImnhyza9AUOmtbSAKeR7XApxleyGwcBgHmnCAjtnySzkcmjJ0C0vlqdpDu1DyfgiiP5WIE1tJcZb+pwtI1cZVcnRBmRo3XABC6nTsJSiVzQzLCHHw8tXOTeqsTBDWVb8W76hi4B0kLXiW8j62T+B1gXjQ9V9mFIR1ERb0RTSHLMic9JjoEHHqaPpaJjpqKgyjoZUweJ3beyGFkXaSg0fOPOeXgRVuCVDh0ygymIn7H2RkEUx6+nFLyCsM1t8VMMguSV86maHEwfb++td3t0XM0VLYdcyKRKrtUpuEdL0oZZe42fP+oVQmpBV6B25EWqfSTGqsLXow0W+8S7yjl5zpkDYYvh+l97ulOP74wyflenLy/ukxrxN7F4+rQgHMvcWzRY0hCnk0jytyJkr22d72vsUE9jYiZP4XQ2Tjp0wnAJin3PqX9KAbYiJ8o2agY2AdIR8/2mKD+QDUNYhWzJNEjkSjLzOYvCqFZukNkzWTdiu+hQ3K1lWQtnJ64/FT1505K2ZgIGXGI0HPUy8w+cplHwNKn4MypRbc94GrON3EH/UZrgqyN5X08SunjZgY58Rb9oMmxtyzNBCyqXEMORDaRNP3ym396sMWMfFax25vt+Qjatmwm7zdwHEa8qK1zsE1qC0JA2IIYZzkvbYouIbTfrQxpHEy4x9SsOBTNrgaZDR/rthEbjRj2m4QXxo7MocBzpM5vjgch+FOzA5ZC70F9CKuR0n3Y7HftE5t5PCo4eCcngWqxHih9eWtGl+WgicT3lmCrsEhXxmCruxlX1myiHF9XbSM1MOdD8sdWwU5o6JD3/EZhhycqCfYMSbNhOwobtKZCrkccyYyFTIExS7p8Q1UQ5l1ELYTL7ZiN1XfPtI/1YhdlPBvMh8krdhsd1SY99sdKRPZ/hMx/BmoxfkhTy4RDca3IIxIsPrX7tp5JhmVrviyD+TXeCQqaETw5/F6W8AUvDLmXz21+NMBZ7PGOpMT8W0GKmSz8RMUdRIecYwpeNeDHYk+0KHJtJrZgHpV2FfIUxxNlJIXZiCcfJSJDCMLeyr0imOYwtZl06KCJcsIUzRVlnmpQmNKo18FSeFz8JZZZ8OTDE9+I4OeRdGSeEhzaVqXHCUguDoj/PZ6n75bQtxcf2wvN2s1k+9nuvFxfJ6+9/s7PLrw/p/Z7//9bDYLLf/4/tyc7dbOpG1eWvJtStla70f/w932Eqe
Copy blueprint
I made this junction trying to optimize for the test bench, but i noticed the test bench adds some rails that invalidate the signals, if removed manually , the junction seem to score good , but i don't want to publish my own non-official results.
I figured it out. It's because under the elevated rai there is an open rail. No Idea how I can account for that. I fixed it so that a singel rail wouldn't cause issues, but an open ended rail like that, hard to patch.
10-29-2024, 20-31-27.png (356.21 KiB) Viewed 2686 times
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 7:35 pm
by Factoriointersection
ManDeJan wrote: Tue Oct 29, 2024 6:18 pm
Hi!
I'm new here, I made this 4 way intersection for my space age playthrough, I use 1-2-1 trains but for this thread I tested it with 2-4 trains
. I'm new to trains (previous playthroughs only did belts), this is the first intersection I designed, not sure all the signalling is exactly correct but it seems to run smoothly through the benchmark. I'm happy it fits exactly in a 5 tile cross.
0eNqtXdluWzkS/RVDTzOA3WBVcbnM6zzPFwy6G0qsTgvjDZISTBDk30e2dCVHKl6dQ+Uti31I1l7FYt3vs48PXxYvq+XTZvbh++x+sf60Wr5sls9Psw+zf3+7+Wu5Wm9utv+7WK0Xn17//eaPuz9mt7Plp+en9ezDf77P1svPT/OH199+mj8utr+2mi8fZj+2P/J0v/jf7IP8uG380N1q/vjy7if1x++3s8XTZrlZLnbYb3/59ufTl8ePi9UW6vanX9+D3s5entfL3Z6/z7Y4dxp+S7ezb9s/Zfst/XjdwAmSHpDWmy3W5783d2/bPscSG5E8HON3JNsd3c7ul6sdPd8wXn/5z4f5t1fI2eJh8XW+WdzPnPUiv144XU8c3HTA/fRl9XVx/0aNu7lHj7rH1RPU4MDmq2EHB7UcUEdS3V2EH0bqn+xaHfyhAz/6+NmBr7zsiSd7EkBhEGkLn0dfkWkCfPQEbr/VVAECC69+W1wPyHABG2kZAAJEmrJpOKVs8YATT9nqE9aTLMkn+/7y8vK82njsGrddfkZ1uVVQagwHapQzo5M85IGXg+LKQUUPXvxze9RUVL9S+9iZsO3ao3bjedJlPqqizkMPB4oN94nr3eup3qAysMOIq3M5wHpAiRcs/6BHjfp7/vDX3f1y/vl5S7UmmkyiFZ7DaRKQUKCRYG4co7xT8oGMd0rJEKdkwh/VdZvW4Xx8IDT4s0MwFndeAjYJFvlQREeHES4rnCWaqNF1xJZpojaACmwCjuf0cAaQOeWEN5fEsPIcsamNRlhhJjbKZBACxwh1XM/dt/Ki4/ruaLzo+EARBqqTOInX63gW7zAsyf1aHjOQhsXy6xbwlCKeKNtbXt8OBSDIyouX6yJT4MXLBxJavHwcRRXw1Ze+4RiQwBsdpMdGbSRFnvRuLJD4KKwBlGnS+zhoJqNHIsl5JkOoduIDtOgGG4kP0HygzAdoEaoaZF4//A1qh4cdLQsQ82TrMIblgO8h8gpjbvCTeYVpAGW6LhKBukgutOwYVBfJAys7jXNXyBHZFDdLOJePS5sa5c/cgKIInXhb4RKFovymdXrTxgu1DxR5ofaB0hVndD1dyfwZfaDCn9EHGvrqDQ20yiZTBoRmQ+g30BaBcHWQKxjtOv5B6ejI1I+Ohg698PfUoRc+UOKtMlRyGTIInH8i2kVrP6Bu5HWbe+BwTYI1DLwBFs4AD/UKmXXjoBrgRH3EUReHL5w1NsQXzhpAxhm5OgkWObDpIzouBkK1/YG1Xg5Aa8ay5XGnbpRSe1J6OSBe1P3KJy7qhmSVT1x8IAkB9maGH1QCXBCz/SWvlsv5uAT+tkXzNUZOgvWLhA6AX5bA34tqgW6cQ+rSYvVvAwN5a5Om0VB3FdqMdC+Dw8BfB9m4RIIYVul+EU1XFTxEcLeljaO4sB2Xo2NPiUI9D0rfPSpSe5WOHgXNyIb9y1KXEAwdUn/zhxpEkAxvvIHrbxxV03w0uGdRZXSR0fAxpglkSolQvY0TZ2H6ykRDhy0a9UsAIioeho6Rj/ptT3gfQ2gTxzUySgam0iCA3/MU+QzhVVXeFlCg+UcTankl+fv2YfFaYjrs1gWC074221zNV1A/j+JwVtD2T15RQ2U+PcXVBLRFIra36zZTGVhmlNQGNhcYdo1jm6UibZZicCnlEKYilsbgLiKNhB4YWGY53h2di6/PN7DMYkL6LcOrknkvwVIRXOy6N0UGs6OvIjYWcNkXw69bwD1BRKv8Vkc+ytnlCBVqR6XraOcrUnFJ5Fuezlek4hKiqWMMG8QvH8TU316JCQBaLpUJdghHnY6GQmmouu+s3rV2XMxeRiMdfPrjhaA0ycgUULcszEnf9XdcOOlAweLOUwlhQ/s9js7eUX0XGKzx6ASwG0Uk+I3J2Pci0FuClK/G9QnRUWG1UTQKtMLQcdOc/BX8BeC2eMsEbO65ITdmAem/gscW6OkxUWYBgylPwUa6gUmyf48pOXWUixvy7T9Gybzr9iuwcN/JO6NUrgqt8tB5EVQZAvEe0adPgW9GMmOfClyyqYQMF/gaURiVxvtVhDFFePeKMJa5wJ1eUhhYWOWEYllhE3UMdmATdQwW73pJoz4kJNIY8FbiZD6wu+EBL40mYXDxC/tYGVy8BSYWBhfP9WJicPG2ykjxDXdwkeIb/gbmEHAi9cxh4B2yHzt43S6Qe1Qj9lsD/cpQgFeGUoXOaQW66qvKNkxJvK4AUI0OIXyO1o6XZrFhPF2hromt/kuCqv81d9yrENrY0WkTGK9S+SyQ2j6aAwYcVAOfARoDj7bkRAaUz/kybqw04Nf8eUz5DNl2vBrX3y+qj+nwQlLOukZFXGi0EBqnoN0H4gF3jYfivUHAeJ0zBobMFW92MAJXAu/L/ZffInRv9Dm3EjXnQPt7eTDiWPc7e0xaJNJut0H8xL7+9ZSQIj6onFMLKrUgWLyZsgVGLcjP7xGluF9/3QKuzT+dPOJfsCq1abz/5lBJRdwT3IyTj3GdYLZe0cvGHCagzYWOfIlAIM4lvkQgCJmJJpzA4BbeVQcsCkC7cu4sT0D77COcavKp4foNeHiJ6cSWXUKb8JV7aQ3fUT4vBsaqqcGXFoeiJERV8oWGNBTDNRLGP346NxLVRc60jxefXfwlfYO8vp1ER53IlJmkYggD21Nl0uYzK6JTUiywXiYKbEvGkRhuW4JGQitH/gLvUzRaf9/o6QKufsbYPZSuIjO9Em6s99aq+ATO/c0uDUT+Pfv5yw5KjAfYwoZx4xfbljVWmjDmorv8S7BTPE70gqb/6buOG6x4PM718ke+KYmWJtH4ya6tWXkp8lNQfSBiSusorgiD0XJNbfK3MkpwNoWlpQQ6MuiyCjBzVsbnpD6NieeKaQood/SbjrcNEeCa1yODyP34BhRZgvBo40sInxbWp5p+PJXJePJw5+SjJVpyGkCZlpwGUOmXnAb9OxrNDjdfPmJlbUa4ZmidloC1nI9UuBxWoUNZjmnDVUavKNvCFDAnWmhH1UormUEtO03wZaMkVhEaOHQ/NfRcSEvp1obGRvGobgcTfJhK2rUdmO9+iF6VPTMbOMIys4Gj3URvAHa8dt/hKeD6Bjxm27uX6O+S9i6NOb+0c2ng9Mt+A3AgHUG6yg/0jFmZ2n4lrtF2fPYzyUp/miJj5p0ZulKnNmisADVwIja8ZLeXATDHNbEs8OsvNbMsqA1HWAubsA0+Dp2UNE5G5yT+aOXQkZIklI8WhGzwqdeUUqyjnWNvCZBRJxaMlUq/+muBj6oaQHxY1QCi4yqBBoBaKPDoj3F/FzN7CwPNiMZg+kozwgciWi9GRjSAhLz8F70mBzHisysjKZO/caNJ2QCKNCkbQAlyS2MYH32Q3DvbvQVYrgC8PLwfnktyuBWRTH5/AB5EovH9Eu5nF+iMxH/tYkqnJC0gfBL3/mg+jLFqnK+JgU37PwohiCPXxOY+GGym+e+HMVpo/jeAhm71hGIIpadvaaM2Y0Yrjza+WUIrTwtIu5/TI+OczKyrGqK+qzU6CmsBJTLfVYViJ8u9LYvQ0C0z+Anl2I3jDIJjZkWYDeTHyBRoszajozj1NSoG9jJNI8BHeArIIbg+p3NxgZV9tKLIrGWLxn06TYEvjVlPS8HelyjyNNXgb7QcTStWcLFIuyl/bKT1zOaoLgl8Cgw0BRr1DouVrXeoW/CwxHsp3zMn6f7EpyLDHSxp9zc+FRjPYfjnWMagUAekK80SPYJV61XNXpboErY/W9kS/VEKgz5hVjpgXaCBJa05dZHfb2fLzeJxC3L8svLt7GH+cfGw/bd/PT++zD9tbh4X6/XNP9LNZvmwuPnv0/Pmn9sf+rpYrXevKbLWWGuKGkqJ26zj/+cEYLs=
Copy blueprint
Screenshot 2024-10-29 191343.png
Nice=) looks like about score 100 ish. You sure about the name though?
Re: 3 and 4 way intersections
Posted: Tue Oct 29, 2024 8:14 pm
by Locutus123456
Hi All,
I posted an intersection on Reddit (
https://www.reddit.com/r/factorio/comme ... ersection/ ) and was pointed to this forum.
To be honest at first I did not see the added value of the benchmarking mod. The reason being that this junction does not actually contain same level intersections and by first splitting off traffic that goes in different directions I minimize conflict points. Only if two trains share the same outbound direction they will have to wait for each other. So I, incorrectly reasoned: "what is left to test".
However, running the benchmarking tool I was a bit disappointment in the performance. First, because this signal density is much higher than what I'm used to when playing Factorio, but this was easily fixed. Secondly, this test contains, many trains that simultaneously want to go in the same direction, this will quickly create a traffic jam on the single inbound track.
I then started experimenting with buffering the outbound traffic, as you can see below there is quite some space before the outbound traffic is merged into a single track. It does however feel like cheating a bit, how much buffer can you add while still considering it as two lane traffic?
Screenshot 2024-10-29 204545.png (436.73 KiB) Viewed 2445 times
0eNqlndtuXEcORf+ln9XBqQvrkl8ZBIEcaxIBtmzIcjBB4H8fSe5z3FGT3Xt13mxDWq5TFxZrk8X6e/fuw9e7z4/3D0+7n//e3f/26eHL7uf//L37cv/7w+2Hl397uP14t/t593h7/2H37WZ3//D+7n+7n9O3X252dw9P90/3d99/4/Uvf/368PXju7vH5x+4Of7N/YF3s/v86cvz73x6eEE/c/b1J7vZ/fX8h7SUn+zbt5sTUt5IX56eWb//8bR/bcwpq2wkj1NUznlM1T7szXfd7N7fP9799v0HhoM1/pXJa17bOL99ffzz7v0rZX975ivz5cZ13HVu2wb9xjk9zISt8Slpwa3pLifR5viY7A7cu1OMbZiL45Z+zPk/bj/8d//+/vb3T8/TNWignW1gxf3lLudktL98TIPrcJqyDFPHX+laiTToV/qYqX3l3L7yxNh0z6Qu6mSb51qXE+4s1y7kTDvLxxTV9vUDJruYSreuMYOdCxv14Zqq3GD/BJgOl8zrd11cMlme6v1s68SpPljrCjbzwzV/hZr5AJNpZ/kYeaq/bE+vnOFysFEf7kwv1KgHmEZ7x8fIRnzrHZ+DHZbhe57UY/ExdaG942MS7h2fgx3z4ZrtSh3zAFNp7/gYw73jcxrtne6axUp97wBDjXSAmbR3fI5hq9xdO2jUKgcYapUDTMG943OwB9LN90AMeyDd51APJMBQD6RLTrvhye23jnogWuvagmeF27wmSiopw/ZhO97d/aBROx5gqB0PMNiOBxxux31dBttxH4Onuo/hdtzldGzHm7sfdGrHAwy14wEG2/GAg73r5u4HnXrXAYZ61wEGe9cBB3vXzbWLnXrXPmZQ7zrAYO864GTqA7Ts+wCj4H52LeGotJ99jEEf4PW7Lu5iA09uv3Ud+gBi6waeFX7zJvUBtPZNbsfd/WBiO+5jsB33MdyO+xxsx80PXFA7HmDoVA8w2I4HHGzHzd0PJrXjPiYt1JBHHGzJIxB2sM0PeSzUw4441MWOONjHjkDYyTY/XLJQLzviUDc74mA/OwClRRV8tx4S4rop4QiOJb99NIQTcQrt+IBTcccHIKN+WB2+H5YSnuXVj1wnOssjzoCu2OunCbNqwkEM2ncUptScMbF9GVv2qIGZumNqC7HPXoOsgooyAPbpPI06MBGHejARB7swEYiG66u/xDOe+T6nYM0wAql5WMs2Q08yCJK5ZGrxq7+zFWrxIw62+BHI5NjqgZN9DtXMq78D6dHMfp6Dz6ARSHdqvnOKbz31eGY5z0mwgyJOph0Ugco/F93j7cfPseUuQ9gQ9Ojm2rQgiYta8IhD069Kkza+SvWX0jUunvzRh2MFRmyhLTB7qTSFiu1/ORGMkgvO0EqW+oa6uNgC81ffYv1eqDRdRsMacq4OuXTFt6omrqhUtpFalFy/pAZdf5xg8vfMqpef/vXD7V8vlN3dh7s/b5/u3u/c/+LH6lp/bi/6rdk3oUex2AsZiqvL+gwS5tdRMBZkxAaNlCOyaevZIQ3ZUUhWaWU635dHgVk8Or4RbGKCQt++u2nfzRbUulijVoorat+2Zp4EzIsL7vLk3MD/xFYXO9DX9w3twibrSjtL62zZ7A+mLhfhs49iv9v0FDWuLO0pXQ2lbZY1n+yBfsvLdcvUP3d0elRfcUlpqnyo2Tcfm7LLxZqW1tyuNnfxqc2lUr0rn+yw7lG4z2v8gOz7AYMttdTP01T/L20edZqSERwZTte+4oXxHwXCE4Gr6XXb9pVOtu1M3KOjkLdr4c5sHEnyakaDl4feYt3lchQLJ1tI8r2QIS6+NONed52GwVbfPq9zpQtzZS7q+tmciNSl9XMUKtemuJFmv93yvn7+/OnxyZvjPtU19rOIQ/hj4Wh+32RbX5pbo12awQmxNlbZ84+C79qwTQLv3FAEfH8AB7z3lXx3cNJracm0a2kLPaen5t4lWnCubKrSXaclX7U7+/2Yl6LuRLa1U3JN86LucS1TshwQHZSsntdKp2RVAimbDJaKYsXzMqCtWRdWUZpNd7YC4Ene2Srs7aT6nHSCpAzFYYcL/LaccP5YCu7Jsv0tX6DpZ7kXp+uVpBzmMkhQGOaD/XHTL1WPQrh65tlIhCsHuPZ9Am7Wsyx7J1w9i6eTcdPvZe87GTeQ3dDJuGU9T7OhcdNvUTU0bvp6a2jc9PXW0Ljp662hcdPXm5FxA3e/jYybfhd8b2Tc9JSKvZFx01Ms9kbGDdwer2jc9PVW0bjp662icdPXW0Xjpq+3isZNX2+FjFsFtwjIuB0leFwMDFTCVQMD+YdHmaRjQYX6ZUbdIUez96kR/09PDtmCD1qD9XWXyDyuXe+IBXWEvvDQ+phKXtACiIbzBJNfOsd4EC7q0uby83UKX9BaVTeZW0hPCmrkIFHE1d3WWkTKhDJVNBmbZDakI7GaNXKkIIngjgUkETywfiSCJ5aPNDDMGdmX5M4Mn52uC15IbHV7S8ZWSSt6co6BVaKmlezTmzmnSzrNeLLBZjqXyxJ71usFpG0oXU7HUvjigwaVwqUrCvkowUSNVQSTwd0wYMZJLuc6s+sO5Evk7LXegTJh9XoD+zFdrrtw9foD+9EBtmJ5T8IaVvckbMPinoTtWNuTsANLexJ2YmVPwY4FC3sSNmFdT8JmLOtJ2IJVPQlbsagnYQ1rehK2YUlPwnas6EnYgQU9CTuxnqdgQVEFA0M2E1bzJGzGYp6ELVjLk7AVS3kS1rCSJ2EbFvIkbMc6noQdutzWAFY9n+UtlUrKpCrLcl2+j9DocpJIEiVSJX/yNheqXhseYUc0cOgpappJ3s6BUtpWkZNMXmvgH+4UKkfuspiuw6yFABQsTN5CbFUwmQb7YmDtSARPrB1pYDm15Id2JIIT1o5EsHxFoEFwuS4/SGKryy8vYaOTC9ZXX/Lbm11s44qBj09+f8iSyaqiNb/St5wlue4kSh1ytZR/PrOKidFXi2fQpZLFNUjXtlpLgxqjLG5+1HqqzwTgvQ9km7xWhHq9CqpwG4iWZcDtoL0JcEEQbgKsfthbt38FC3JNpgGsftibYC6ATJMJhgwkmgwwZCDPZJAhM6yHStiG9VAJ27EeKmEH1kMl7MR6qIIFGSYdDFlNWA+VsBnroRK2YD1Uwlash0pYw3qohG1YD5WwHeuhEnZgPVTCTqyHKljwOoOBIbOE9VAJm7EeKmEL1kMlbMV6qIQ1rIdK2Ib1UAnbsR4qYQfWQyXsxGmNCrYtOKtRwsqrLG9d63LE81j+UehIeo/Lq0Zy6bjuf76vAhwlkajVTjIZNeN4MNfe1izxUwTL8DvElV30lyeIwdEfoiDWUX+XgpjyLq80y6Bj9UcryHam55SQvVdPKSGOgp5RQrwaPaGEuGB6PgnxF/V0EuLc6tkkxBPXk0nIsQG8mwFGS08lIQcyPZOEnB71RBJy1NXzSMi5XE8jISKCnkVCFA89iYTIM3oOCdGS9BQSInzpGSREpdMTSIikqOePEP1TTx8hYq2ePUKUZT15BOngevIICgdM/fJMPXhFyt2ZMvkhLCnN5YcwAVsXfggTrrvUJckhRL8Pkt9a8UxWtjOZVMCsqgkitYTc4nJZ3YNKBg4W+TmwJbR6p2brjpPeSMkFy2VIcgj2+1mOWK8JBtIknvLaOEgJwgWJ+jY5JCiOnVaiy0gKI7mNGi4ww9SBRSjLVpNezLh6o+IbAf1pk6LP+aTXBZ86VI44H3YYCdpxeLwo2IGj2BJ20iC2QgWFRA5ukURNNIQtUTONYEvUQgPYErXS+LVENRq+lqi4WI9ExaV6JCou1CNRcZkehVpwkR6Jikv0SFRcoEei4vI8EhUX55GouDSPRMWFeSQqLssjUXFRHomKS/Io1IoL8khUXI5HouJiPBJVdgn3h1iERK00BC5RjUbAJWqjAXCJ2rUnd4ZOvOJNiwy6YV6B1/vjKIVDvud+CLMW4WgoPyuzRYeL/yhiBdkbeZ26LoeetZQQXzV61pLGhp61JKi8rKpuAfQ8jaqbQD1Lo+rWWs/RAEalLTDGLUETDHFL0AxD0RK0wEi0BK0wEC1BDcahJWiDYWgJ2mEUWoIOGISWoBPGoBVoX2AIWoImGIGWoBkGoCVogfFnCVph+FmCGow+S9AGg88StMPYswQdMPQsQSeMPCtQPf0CKFZ69gUQ1/TkC6AD6rkXQLLUUy+AuqpnXgAheDQacpaonUacJapcVmC9fia56GPiS+int2Bdsvz2y3Z1UAUnevFaBWd68VoFF3rxWgXLd5jP9DG4Flunfrf5cLvXP7dOfpl5vSxtwgF7yk8M+lA/IDnFUgLbhfGTzp4ulr1Tkd0WezbDFnEJbtfytWln6vswcDqbmqAB15+pCRrQYJhawQNaOFMfiZm0vayAx2F7lmaavOB8aNDeQS+Jqx0hF9NZe/ikpEvyUoEsLTTpQ3iG2hJ+hvCk4k0i1Q8syQ+gHQr3CHV7DBbzOOwfQpkhU0t5bKWRupRxZPpTMYdKTkrZS9PfiTkImFIXdChgStABBUwJOqGAqUD1lI7adWiCAqYEzVDAlKAFCpgStEIBU4IaFDAlaIMCpgTtUMCUoAMKmBJ0QgFTgeqJHE0fKD2Po+kDpadxdH2g9CyOrg+UnsTRwUAZFDAlaIMCpgTtUMCUoAMKmBJ0QgFTgerpG0MfKD17Y+gDVeV83kO9bwlarnqO0S1JbrVeoR/YAXg5S9iq0Vr6w4/QG3+9JfjiDgvRn9ahJyeAKufE+93q96p47NpeVJian27LNQ9EKi029sBEAWT1MkqPxtM/XaiPu2zajMqtUJtRuQa1GZXboDajcnWlo+iTQRQ6tgd51IUxr3pu2383yPSEjtWURSD9QYkVJFxDsaM0Dv11kmVtqLArtKK/QCU9lWV6Psd0qX4z+SstQTe7OrjhR1q0VutPtiyAKruHhzfZNKp8t+vwhJxEpY+2dIAWFcTtqb7Tl/p8C9MzvaQlrQs91aOQXqj0mpZENSi9adQGtTeN2qH4plEHVN806oTym0TVMz4MjNagxWw0Ki1mo1FpMRuNSovZaFRazEaj0mI2GpUWs9GotJiNRqXFbCTqpMVsNCotZqNRaTEbjUqL2WhUWsxGo9JiNhqVFrPRqLSYjUaVc6rGANR51aOUyb2Z0RZ+6ApAahB5cwHzv8oVamo2x7n/z+WKCkeqFFyveTQxCdl7DdbbWMtMSGhR6ChrVlIqkmvf1Hobm0Il9/OAEpUMnlCjUsHqkyybSCWD4QO2h3SL5GrNTX6HZROJX9aIj5LfiF5JJmXItATeiF6/9aL005LheIBPdxWPlto1728nIXOqHSVugKwYDT2uU/+6PyPkTOHNHmhJUy0vWA4UsqZaVh8f6+tnXyy/0zJ8iN1ctDta6ksraU1iSloWU8v1muiI1mY5TLaZiSHOCfjW2NrTbvCsZVm032+cy3pwywNbHR/vzzVxwfW4axfirxUmP65LUYhvtMK2uXWXk9D0NcCkxU5aKVdtzdkNebRS4dt5Z2Hqsls94KxVQmtFLjm1rO0Tlome91Fcqg+Vz24NQNnRLYH2VvjM5sr2D3NVPMyt8cIs+qOV7W9zbaPw/eUqg55997TC5dTPwni87DA4VTDjtal7z/bFykCJh7PVWcimWb1Kfcbvu0D2fcYqv5G5NlN0Gb0CHZpt8Rtq6brV6bsbJp/D0vrdoltkcBXZ2WbKR7G0Yi5Pd7NrRyZopChvbFvd/Dd5T83UIqNpNa1lEYduXOMBFN8DMHFhrZpPycpVtNbwSaxUt30gw6Oc5WS9QSvn8hxtheokLxqX38BK5dniW6BmUJ6Nm6S/VHm4f918Tode5ss1Qp8Eilqf7SO9rNrZvu5YUy++ceqgLuFZTqYdFHAK7aCAU6V3dL4jho8w2sfVN3V6IsShjyNOh30ccQb+MN+H75N+mM/RMxrWDws4CdramgUVbmS2U9WT6ER3sQWPgm+b9LyFdRQCjtFRCDg4X7z6Rk5PR1g/LOBQ4x1x4Nn6HEtPNDjbJLmSxOYH1CDNv+npBNuw+aZXrhUxLjYJz+ygRVRtilvU6FQKWgQFpQgz2NGiDuWJvgbe2jhMBXN3mg5C//0sJ8FujziZdXuEwabbig+iEzziUNMdcRrsnwAjJ0IfMNnHYD/FzAdRPyXgJOqnRJwEuznAYItt3QcV2j8Bp9L+CTgG+yfAYEfEpg+ijkjEoY5IxJmwf3xMxofI5tvDTA+REYceIiNOYf0TYSp1rl7ScnwUPks237TmBp2ruEl0UkctGtC5ils06fD7LSrQt44wiTlXLSvOVS/Yaje/uwq12hGHWu2IA612hMFWu/nmv+AJHnCo1Y440GoHmMqttm/+K7baAQdb7YBDrXaAwXp2980/eP6gn+XQM2PEgWfGCIO96u7bx0q96oBj1KuOONCrjjA4BfUlZ9ZH4XNiD0AV7vpxk/CkDjgN7vpxi6iqHbVowOEPMJPt+t2kXZ/fPO+++W/UakccarUjDrTaEYZbbd/8NzzBAw622gGHWu0Ag6328M1/o1Y74HRqtSMOtNoRBnvVwzf/nXrVEYd61REHetURBnvVw7ePnXrVEYd61REHetUBZlClevh2bFClOuJApTrCFJoOM4awmw3qj7zUqPEbSM318O3joP5I3CLqj0Qtgv5IhIH+yJiSPzKp+Z6+3Z3QfEeYDC9rzSLlrPVZ4GWtWZTeqzBBaWaFSqM407f1E0ZxIgzNnpqRiz+prZ8BB9p6HzOWBd6lmd3npGtSWSMY9ccjDvTHIwx1X+b0OdB9iTDUG09L8kHQHQ85VPV+rfDuoybMNE2LGy8dODz53CYflGgnBZzM9q7vffTGUP5ys7t/uvv4zHj34evd58f7h5cLkH/ePX55/QFredY5rebl2edu3779H39Nuus=
Copy blueprint
Final note: I'm aware that my original design without the buffer lanes has been posted before, I was unaware of this prior work.
Re: 3 and 4 way intersections
Posted: Wed Oct 30, 2024 6:24 am
by akulen
I finally improved my previous intersection, adding the last pair of direction/lane pair that was missing.
It can probably be improved on, but at least it makes for a reasonable 4 lane 4 way intersection baseline.
It fits exactly in 6x6 chunks
Blueprint: RHT, Size: 192 x 192, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 174.09, Set2: 188.80, Set3: 197.20
0eNqtXduOXDeS/JVFP8sGb8mLv2Hf9nExGMi2dixAlg1ZHuxg4H/f7naT1a7K7IrI3EcJ1cE8ZJLMa/DfD99/+v3Dr18+fv768N2/Hz7+8Mvn3x6+++9/P/z28R+f3396+r/P73/+8PDdw5f3Hz89/PHu4ePnHz/878N3+Y93xo+++fL+519f/bL88bd3Dx8+f/349eOHP7Gf//Gvv3/+/efvP3x5hHq3//y3r48A//jp6zfPg717+PWX3x7/6pfPTyM8In1TWn338K+H79b442n4K5yC49T8Bk7FcYq8gdPe/WVaXiZL+6r27QvO+lYeJ+7Hj18+/PDnL7KCKwf3h9+//PPDj8/SffP+rfmaV6hJge38Miztswcu3l6GK/Gmgjr5xVWlW39dlB9+ev/x8xtLU5a5NENBzwn/+K07wMfnzKuk+vW5kJ9fuc+vtA7llFVBG73eFpLQc2chdXVxv1e/biNVYOfl4Zi2qop42SY/vf/0P9/8+PH9P355XFv7i9ebcMsxdypSSfjclarPnbYzSqYP2ZwEOWVLoY/ZnBqw2sWzSUSd1Ksb5vni1TbI0MVTJ1To4xvD7XFcfTqH80RX9EA708qkj3RsQjx7S1WDmpyHOjgDlTHQ5gty/ytu0XCLYyPoFlt1zKWORNw7T2ea9q1dwyVuIdm4E5hDz520gG1VyW1V81Gqea1US8NnttU4E6IhLcfVsu5v0JbwJctTXzJNFRqxnaT8ifu0RPdUoRX+KswZuQpb5a/Ca4lVJWuNuBQqMRXEJbYtoEdcDYnwiraaZtV6bIO/R66/VVXT6T39bxdfO/0bsb3yQb5a/Ka5scT+kvYCXO4vvjiuKwj3sr8+fPrwz/dfH6fivm+ydUK1ioW4t47+60jMvbXeRBL+BryePu3Yk066JjkfMe+DEx7UkyDPuA1Y88lf2xDu4q/tLEgQJ0WUVDUve76FvH9aD30ydKGLQ3l1WStvVWTAWO+NtzGu10vFFeJwHYYeaIdrZ3dbMtC13dYHLrXs9Rp/xVWFng7LCHA0+opsCtVPGMlhuXRgL4zs2Au6iIU9cKu+VJoKjIqrQGJwGyl03+Drvn4NcVgcgBM2usPiQHDH2yevOtt16ROia9tEfYY6j9n4Zyj46fd///T+X08wR7wHbYzQ7lPD2DM5NomOlImDXfSZVdMVxWFFAc7jZPadoQkqLr3vXhao5Pv7bgpvnRXAzZudt84g3KvYx2+///rrL1++qts569Ogws7ARiiqUzkJO7KKLqp6MCzHDtNFXJkPo1wvkqaxi9hhKRG4xA4be/Wvszza8q/msKN7Y0YQzwhJH0GdG2bD7bUEXOs1eMMPwoWvt3ayAk/xkasjjbjs1nJc2Ttmdr0ETc0wezy8RkxaTjlyTumJxORw8SwoJthvfHdXgYkYSu4MMOHlJXn74/EdmNdkZPTYmn2vlACnU04TvlaPdXHlm1cVl8ikndMOCNLknBzn6XYcCuKmZ6ay4yBDsnuilZJ12XXRK7ycx/iCcD335HarsBHEc4RSs98jR6ga2spMlUidjLDTcTYbMi7e7bmWUT2eCpOMawxwJg7UzgDD6bgxju0xrm0PdcGYCpKxJ6MjwMQN2AsD7PEAIeAOW3gngFH6zSwTFl4uhHe4d/RAPsXjHjZqsojd2RIBXD3eohq0zDXzEXELCt6BOdm6URndqITzuPNblvSeazBNXeF0g+xVUco9TU5dB1bv19o9ojd9BPVwrYM4tY0TUAcm7sKx52QiW8TjGI7tGC5gBKZe5YQVENGpgpXJAHts1EaNwNRaFgbYkW8vekl2E4dmZEMz9I3eiOLLna0pU5fW4SfmtXRp1S3YJrG3jTXTgYnrb7xoWQXCxVkSfI5uc6zm+2VXWYi7cHvMNSMCFwI4M8DVoctCjdD4ygkMWPgdXY2OAyJMurebBcVcdEnXWXUzMJUtcwMj0UNZjnnUg109eU7GcTDvC9szfjDu4rbHWVChiH6BnZmzoKpDf4wpbJ7jWt7GxHdKnlNXHVUnO7Fv5svJX5EIRx8OQ2PsWdBDHX06jNyDCUm9uPaOR1C1ucjhnBnfPDJ60R2ruyJtY6MQGtX1KVQ1ahA7aW6JEY93EJXLO0qOAROly7v2BQP2OGVCjUBUOO/ICAbsCFBW3asei9A0QyFUTWNKUo4KI57GhDvcxoli1KcSHRWMSMMdtdXdlklsraOoBhThTB3FMaA8KfC8mPVw7KO86hlBxSSsvHPxIS7PZKy8l6u6IS7PXLwiNd3EZUpNtiJZUJlXJAuq8C0kDWjXyKs6bJF8Zwob7IDmi6wqEmPbJf2zVU1kSke2I9MQf4OpHTmaaHQ7T4cmGlDLoYlG53SKKIyBmTHTcvs81yuhNrSmgoFu7wcDrSBoZUBb4Ay/HkHvSk7ERtrBpgY4SSUxG+nlrmiAu1HSwGZ6+zCt6ao1HftRb2+nCjvqm1A5OfajAUXEDLZr1qBO9kyE5cpFSIAkIXTnGNPQCAXv+jSoCs4QdmwvswFuRMndoZk601AeqFHeT69tG98aM+m5dgy5wJDB9use502lvvDsFl2ikiOqZ2AqeSOoav1EthqQkC9EmUUehiKqGs6UWeyakzYRicWh4Uuf4+5QSgNqOLTJgGL5berlK4HpczAJXAOrZX6lhmw4fS4qGhh4dA/OGXRD46SLS8TjRtEVVNX8WlGZ+ynIbjd8Ejo0s6leDC4BXN1SPSGF7UxLBvKzxVUwscNT10Pos+PwkiTreue4riwoh5dkQLXIDrMwmeyQteDqBnNVPmxnzJKWCMi9grp/GjC1DrkywMR1taulMGBP+W26owzEDnoFBQhL7Kc0GGBidyVGIRjmjsQohHiMxfT2GSNMnxijZAR5xymAwYAJz2oxCkGUOBxLGQPukNtxcncYqCNp+5yDwkdwpHCPLwtdu0QxxHOeVjNKVOCOb8G6ux8FCKeWe2wfqjG8Q2OCdCmWXuBo9cq66FXFrU63sIyly69PPczrO/q2YaUYvj9RS3ECb6LHdLsjvGFB4eENOZ8Y6pss3WNVGtJ7rEodaiR0Ii60WspEqNCRwIglbsisNDBrxJYyMFvknjcwxRPTH8TRODpc/bILt69xRcX1lNTu1nPoyCIKKJ7rmjTRdeBFXEMvgQJBkhFMOcU5F/Ujdnr4q3Y8T5AuzjI9++6sIHJaTLzZcgdkMFzPTjy3BzSCIyZpraTHrduF0ZiwnkLBLswIni6vc+FBIziyZsaEL09QpTN6vTy3oDD6t1yN0IzSLKIRejK4nr0pjDIuTyO0MMpIMYbcUcYR6GjHhHV1YFLK6OHCaoQy1uRI3YlBK+7Zm00YYV0NYJUZgaEuzriBUpNnc7bMiC5g+bdx32ddbqIVrBjIKsF5GhHfw9DAGfE9DMwV8T10zOy4Jy++h4FJ1NqPo7gqEtoHnechcRdBnNia8X7n3N9ea6KepO5eYUFeGcie/sozpQMZoTucFf35gezJ0xlQnoiKAbUct7gO5SktsaCYat/8NlQJlI0LwutaS42cj4bYRBfKZqy61mjVo61MJUmuOrIO3B05Pwh4RO4KY36nI+cHCbscOT8EuMIBy3RYZ+SG82ISkdvKPA+ThPmW4kgzQsA1YgIYL9A0R5oRElYcaUYIuEeMFmMWhiN1CQk7HalLCJjI0C1GyQg6jrwYhSDoOJ7bdHBgpguTWTyiMuW5gQsHJjLlk1o8pg2GWjzc/TptAQIw4lQXL0d/ezcTlSl1EwQJ8mgVxcSxFUKtgqxMLcoxmA2o7DCYDajiMJgNqOowmA0o/EXa00oqK5LWrQyrxrHRDenh9NuhFpR1n2WlSihwYcgaClwYmKHAhY7ZQ4ELAxNnrbnkSQFioIrXjTwzSWi46vOGr+pGsC6CO5ufeCym7jXvGXnrj+AG2CXOHSlArkztyDavOlBiVTsRz9jmFQY8sejorpLGQFeAJwQaYTjy2l0tbKyuApLBzPGIpLWxEWog/YyN0Hj7wJpwCaSfMWF7IP2MjTAC6WdsBEfY0ZrwFUg/Q8LOFEg/YyPkQPoZG6HQ6WcMtwbSz9gILZB+xkYQ3g43lNFVfCKUMo5A+hkbYQbSz9gIjtpLY8JdxSeN0T9X8Ulj9G/hb/KWb4/oeq1wdTGHNEYDV+O9NWv1yOw1Zqeu7sjlFWMK9DzNGnyCvAO9ANVVXZLftgFd9STpTTOnufhGUn0bMwf8TAsTTmuvU6TeUyTV0RLcvjrXX7bz3a3XEuM07slG2i1a8vSv7kxCBwqjW3Lkv3vVF9WR/7agPIaoAeXIfxtQHiISC8qR/7agIo0DFmblk9M3Gq3ulexoSO3A21otOxpSMeBIQ6o1v46GVExYR0MqBuxoSIWAS+jK0qeXqS5JjJIVR0MqBuxoSMWAW+T2NqZX+EwxJmznM8UY8OAzxRjw5DPFGPDiM8UQMPHey8kUY8CZzxRjwIXPFGPAlc8UY8CNzxR3oBmsMQUluye5FwTYw4x6opcqFXp7VVAC5mbeNnQqSSBUzzUPPMzV6sI7m/d+U2t2W/PkCUSHggmEL5w7XSJZ39YcNMOW9A6aYQuqOax4A0ocVrwB1R1WvAEFt22X05n+xE/nf/CqtekJyIi+p9RzsK2Ia6JPlKSIOW5gRrhLLMwSMbwMzMqn5zvQANIY2pLdZNwbAixEaGR/PFC336RHIiP9PvFmEyKYuLksO/J2WxM2/w1UpzUJ5b+REbrnXlOr01oP5b8hYUP5b2iEUP4bGsGT/zYmPJT/hoQN5b+hEUL5b2gET9jRmPBQ/hsRdoTy39AIofw3NIIj/w3hhvLf0AhwPaYcBs9usAi3EenlxsR19HIbmj0ivdyYsJFebmyESC83NML05Ar0CZ+RXm5M2EgvNzZCKP8NjeDJfxsT7tmOldG/GXljHhsBf+m6MierqwylUsro2ZuVUcaVHL5DTcwIGa93H7pPUlXcUK5P1/YVIQmzMCMkYRamRBxqA5NIOOy69A7QxLc1IvFUpCm5vapJuRsMsMw+1fF9VZgCxln3wgFE7fKqROV+J//SgbOODAdL1yVYekNQ/rRb4BiapOLwidXWA0nV4e0ZUM3hxxhQnipMA8oTLTWgIn0/FubEH+I62qMjhSq7dOky/k71QdKly6FgpyEd7scdJEO6GjnlDekaTcdiSefJvwGPK0hmLqLGAJNJuNPVNICuJskzwM9yPcJUR3C0mw616FCKo93UgnK0m1pQjnZTC6rCMYlDFjRyJFsoDIvJdnMH8NSiFEfzqTUtPXBZWJgRxhILc8L8H+uN5VOhI/2nhrg10n9qYWY+DzUAznVhakh6YYCJGhLpDDBRVHyUtQKOgxBFJIf4dwC1xFI7nzEbSB201MFlzAZQpSN1BjJm2Aiey0stfhHXGzk7YwYJ23IgY4aNUAIZM2yEGkhzYSO0QJoLG0ECaS5shB7ITWEjjEBuChthBnJT2AiLzk1BuK4CFmE0yFXOIowGeThSjINNaiCdhAnbAukkbAQJpJOwEXogB4SNABegtZPQHDfPZQwVegbSS5jwK5BegkboieuJxOyaTviRhZmQTmzQQs0D81Ids4eYYpfMbB1X6Ut+2xpjOFcyswsZzpVMKcTk26Mw4Eiw05hehmklMUo2Mt8ehQEXvj0KA47wXVrT2/j2KExY4dujMODOt0dhwCMSxDCmd/LtUZiwC3yqjzFHZ/I8pGeMoEYyPI/4HHpDKPAwC5/GHQURnYju9MQAEwXX0hhgouD6nPOChI1m50neR0NWb/AZ4YE8mCBzBh5EHMjzUTIXHvM6oYyGzPdKBHKlkLPDe1MrF+VVQQr2XOPxSQw8x5sf1x+t5hNcFSn5jrCCukz5vDA4WoTFQlakGd36jBExMQzMGblXDczleWvP2M3a4dk99CmXm0qVuqfMZ3ZHQ4QlLr0ToIKAmZRGYYCJZ0L2m+wDeCakJ+HJjjFgT5fRMb+Q1xq6q5Rl908PoBixE4Ut+5FnDNfj+e0GbWgEz9s8ZXdqYyO4kh6LGcHViDSYEWokjwWNQGT5DzBSxNizRNJakOyeLbxrdwZA394ZMhe5iK5CRXjGLMxQgEbHDJG2WJgRnjELE+YZeyoE3VDXFlonLLReKs50Pc5WUZEaLPwhSRuh92A6w+xyyiSAeujOMLtIZ4AJZhdJDDDxgMLmrB/AAwqdYHZ5flgNBiaYXZ5f58OBs6NgBALGy0bPXpn3X+Xu2iNBd/3+k6QH+Ox7dfBRDLU6tb8qxwFd6Dt4HQ+n7Kal62+eKnCk6NoSdhJEc0UXNuu6Fbr2dGmbJy+xACOlefISELAnLwEBh/ISxvR68hKQsJ68BATsyUtAwKG8hDG9nrwEJOziadsgYEk8bRsGnHnaNgy48LRtGHDladsw4MbTtmHAwtO2YcCdp23DgAdP2wZZC54CmNM/MiYywsK9jkVI3lMkdzcBq6JnR4oNmZJeHCk2CJjYim0ywFcO3w8/vf/42Xb76oUJbN60AVR1ACI5uMuNJkA+33snJU+s5INIaw5G8slJnhsr+eITspDkI/H52JkAr2zgj4CdQOVE+Pn7gJ9UGOUv06yCEanCXaaOfT8R7dxOIwbs6KWdWf/4TjqN1KYYEU/Pkhjubspib7GcVeyIr2fIOyMhTgszEuK0MAvPCTiBNy+6h7LlNGXNhIzQCAYD66BRFXiimfks1VY2NbY0OyF0poRGK7BzG6zQBFdEE0roBQudSaEXccGVvZmBkre+MnzAPz8jjwMXQuLBAFcCWBhgIiV/LEIIWIg5LgwwUYa2K9sx4EHE5Sl1w2OcdT+mgQEvnlwVAR4peeLnl8lWMQmrshoqnHVp2Ro0Ri1GqhFbyJiLFrFXDEyJ2CsGZoc70i/XaEU60keKBDgtcafnHXVD16Y6wvLYRHtPA/W7I+NVn6f4CtsmxJNDuRHn28hEoKUxx1BmAi3CABPvM7ROTTIR9GyVEZkIejbmfCOqV3Kl1GISk5yoSV7EhbrtN6RgfBAUMYd0YSLHXSFMzp3nxIBx9+9UxmHAMJlMvxj2LcSmNkrD6wGS/i1DxRW+qnyqj3uMQnBcVENGXasL83hlZ1YyUlQ2RZ+GxT8Qh21BoorldEBC00BUsZwOSAy4RKw5fX4JWpnXUICwja80wICFrzTAgHvEsDWmd/CVBpiwOIfT5dSUSM3eYEhmEqPXLfHFDRhwKAyqr2gruLWxjANJNciJR4xOynY2BBhnJeyVEdjDk7s7TzDJuztPOZCc2WgsaeEJTQ1E/aY7WQmKvxwBH+TlmCGMfcrMCVEQc8lSQsBESPRcZBAwERI9FxkETIREz0UGATNdStTiMZ251OIR1+SiFo9go1jU4hGX4WIWj3n8aDGLx1DALGbxGAqYySxeJxLvszPAeD7wEsOFzk0XB8yr40jFJFPw2Vo99Y4liGAuSdeOAE+4qyTb9x5DEju6p3G3Wwusqs7w5AqBmsAxPLlCCNiTK4SAPblCCLg5UnoQsMSBVV0fpKGaL3n1haSox3A883B4DqfKMT7GdASrJlB+NWJlMmpR+Zg8L73x3RPfaflcKws5HGbBeHNGJ5TWVx7DbGSGI+bkmIA60zFdHiJzVHjeN7p4udAInvzhuVOgETxF28LcLZ6Xji6FUMgIy0NoIcxKLw+5k1Dbd4Hbt1moqklIMM0cJ31lSN7GO+krI3NN3JM56cDqgbA6Rm65y2gXwOA/FsjZvQ8WDHQGiIWXWkE5FkardkpyEUEn88zRtsIW8OTGTDlwieszMBNRQ9orsRdmqkSJ0p4GgFRuukpojiJUfRrw9ojThLsQyv2ZIrRNlrREt9Lm/1kVWjSiUVCMRdOBF1/cAmlDxth5j/ewgDTF9HDDXA50aITiGSEzI1T+ej4FCEuQqXdsxBPpxb5BPCMMZoTuGUGYEYZnBEqXpmcESpfAe3IZ6qPaYbMQNIeTUcySIzeEmmWcBTNFT/XEajpMxWCOAhgwDTOMdwTdghEqSpLl5MPWbb1PVUfofL0dqD3j/wFZ1XaC/+VU8kHbiOB/OZV8EDBROXMq+TDgzFfyYcunlc7ApewLiKPPipax1XSy1OuGROnpRoTj3bM2ni9ndeRjWKqYQU1VjxyYapJkVvwZ6oPUdaRJGOfGZ+vaTZSy7UD8AsgjZ/M8M52WPoLqZDYmZFr0OdE3JsEbk8ciZpsqp2GWkSCPyZujEANm3vysDDBR0n0iLxAwkzukFo+4Ezu1eMSd2JnFYxhkOrN4DINMZxaPYZARZvEYBhlhFo9hkBFq8cQRLoCAubzgq35bxTTI6ghkBdvpX8Hkn6T8mZYf5pO5+MFARnZ2hrRim5ITAc4EG0TRJdYdgV4C7yIuNWs6u+Ot9wWkY2ZvcNfGxdydzzqB27edKPU+1wAkPfGsUhcGeARebbTWcPJvQGPCEjVsPRPAI0UMfH0WmBeVhNFk5kUlYZSMqI85zy5iwC3w7KI1vUTnkhRGWKKPqVnnpeo6DKKPqU7i7sAZZF658jd1PIM56Qb+BmgyPkVrSJsTzw4eNj9s9pkqmp2GB5EZw5Q572YlRE4McKOLAkvKCLDQRYE3wKqKM28svcQiQIkHXRQIAk+aQAQEXnRRIDbHFK1MJiRemSYQAYELXaoCTkX1hF8vq6hiuvKB7QUzIVIT5ueaDHD3W/rmdAQsTxMTvgj7Zit8nIBvoYj8Wn4b0ZB3peQ3jEzMzLKmE8flIgpiSq34jlup0sHmG92dKnBzUPYkY070EYQoEjLOTVXnVup0nAdFHjTnCaggk+Y8AYEXzXmCATPEMq0zk0wRy1RG5EJnSkHgSmdKQeBGZ0rRSUYZDS/dtiUVKD2/cqdpgUsCyrJWHrDQiRZ60ozAoNAoo+GFCxgWuiSaDBgT2lPssnPPj9IjIxBX4hJddDXAukqNmF1qceQqLWJ2GZgSMY0MzB4xjQxMdNcVKbYC6/o7SatLDCXWFYEIfOa316omtMtxiT0Hqh1UcSLD3fJ58/nqEV8LTYd7u8N05EpWeNU3DrasjtBoVlxUdnHm6nDZO02Oi8o+nHk6XHZX1ee2PACyj1XxEOjaZx1QnrkaUfe5kg6s3yfMY0pz6Mg6MNNRLwwwkZKYlQEm2J5mZoCJGMxYDDCRAhzU4hFcFoNaPCIPOKjFWxG7SC1gXkQ9zGuo+8IS9TA7ow0CFzrZDALXiIloTG+jE9igsEInm0HgTiebQeARsZaN6Z10shkUlqgBlU4A91DoU5+FTjBpl7cntNPU2W/rP1PXku9AuQKalTEUOpFcP8gN6PdbnYhorkEhM7WdTUdWbdXOv3dbElC0vjr/3i0GPPj3bkHgDPcMXBzowRVRrVEcnXkpn89QMWHO3qe6iA1142k06js8kZZFLYdE7KChz1SPXP4GZujGMzBn5P4wMD1hFh2KYX/J+pKLiuthlThKhTBGrVk8JKSiD6GP4GGIWZUZoXlGyMwIHqqYuZgRPFQxx22HRvBQxUxqpT1UMZNaafx9z1kI3OV533MmfQT19F6ZZjG6OSNUg4V4bGk/HAoCV/rhUBC40Q+HgsAEs2jewBNZPKIeLRcGmKhHS50BDrTBl6QW4a5FNEPkI6uClJPrZaVz6yD9Co9j5Ii9tAzBS8RgskBrxGKyQOEWCLnkbxdnvT+OIhHDzBKdfdWz3AMcDlPPwiLeczlWzLx/ej0ie/hBh7EpujpEJgqu+9KR9d3GVL/0wkxL9uQDF4TM3HCJkpnhPns513OCVpC54xKF3OmHlFFkDz3oTnblDJ32eWJcItOCNRYyknzIWT9CiiP7kDOyC4sj/QAiO/IPIHIkAWFOsSMDAYrrSEGAyI4cBIgcCcmYU+zIQoDiLrrnDURmXlUSSi1qDhhC1hTXQr+UjorLdP9Rusa8rNQotWCeVmqcWhA7r3FqAbJ/1k6hesKhhZsSng7myRpQsZon+1eoefa8pXTcBnCIgjpU5dSN5dt2E9HBPZdgoTZm82QoMrVDPW8ulUzpZev+V/zQIRzeonWCN9ejg5xeekzUTKmOJD9vKzpEhlMoOVHArmcJKZ10ldAkSielETl60Z0z3cORwIPZqPAu2l9OQ13vaHMaygR+FrUEy/8QICi8pwDnpPnAIXIgzwcOQeQ61h3bumPko3k2KmDQidan0aiPF77kBdO/TlR+W26GgTz4opdckJgSU6ezq15A5BWoSLkeQq1eyomq2SmM9COS9chV3ysjkvUwQSNZDxMUz3rMY6QXqCf8ETyS7DAlJnzP42hZWHDLU+5vfT2VAhrTYS5bH7Do15NNrMm/22tjZcfFY2EVT5rnzg6dlS8vuD5QdKV/VVyDUfi92qIIvPCp9dyQk5Ahkdm5dRB50Ox9KPKMnN5i6MaKnN4G6EqR09sCDQVRLdDiOGAtLIa3Ip+V17Ga49y05BLHuWlhdce5aWENx7lpYeEvdl6udonwnj2Oufh8eQYaInJ+VQEDHquiwxcdPhMPDm3B1eLWR6ziSAwDFc2PyJWnMAKRW+QgtSZC4BjVgeoGVKTw2pQPZ5k/UJZ8M3K8W/ItlgXflC9HGoos+TIegzxQlnyOtoZNA/kkH+CO5OxxoKroY+inlOdVo8MEBQ7hcapqpobwbLayqCHwrVcTBRxK9WFDLIeBZGyhEkr1QeKWUKoPG6JEsnHYEMTVV+7cSyWU2cPEDWX2sCFCmT1sCE9mz5r0UGYPE3fB4ZxLxrkj7C2Pd0eKZA0h8WuOZA2xIQqfNcSAayRriA3RIllDbAiPW2jou+tZpETpex2RPCE2xIzkCbEhlsN/Nia9pUhmEBK35UhmEBuiRDKD2BDVEWiwJr2RmUHMXG/iyAxiH995StIboZMOPTzJsD3BSK18btORC5tIEKAtnqsvQ81F2VURc4ICemtJlhwJCligJeLJW6A14n5boB6qi1aNddOVTVD+0HIhIcvrloSMiSLm63eW3rBSNn/rtYJXHXg4PDdr9qfDIbGwHK31FhbxVNLFhrGwMkyHeAkhz1h+NFNFK3f2XfdccxZWc/Q8nyD3NECFDWsPff/q27eTnYH7kdRHjTXkdaTyCtL0lPvkif0K1OuUmZeR5tChdWSiLuVQ+4HImef2A5ELT+4HIlee3Q9Ebjy9H4gsPL8fiNx5gj8QeQSMKWtnM2Upg1OLxTfZYchEycppsgORI6alNcWz8E12oLiVb7IDkRvfZAciR3ixzSnufJMdKO7gm+xA5Mk32YHIK+B2WFO8Ev223I24uglAcL4c89yUsvDmuYnloCc0sRpvnptYwlvKJlbnLWUTC07uHfu4JANqEqEaam+sFYjUlALkDEpKfLlGQaqWS0IdszKOY1bAst2S4Ma9cXgMn1r4KCaUkiLPNxS9rLOkyPsNJmjoorJAIy84mKDDExEaB/S+R1kIOpey3wMqyHseuVyXu9zr/S3A4xC5uCpfyqCG8NxbxhLmEigIAMWF6T6L2IeHfuS5CmBKpcQXx81uzXYPFC6A4o5AsQE4xAwUG4BDrECxATYEw/KS7xzZrpqXTKmhq+YlU6rjYnpJlOqURhcEgMASKAgAh+iBggBwiOGw1i2dnIGCAFDcFSgIwIaoKVAQAA6RHW6NMem1BAoCQHFroCAAHKIFCgLAIcTh/1mT3rmCgFIhv6QSzRGDm1/iWc7BTesKJI0K1BxbiCeRnhMWuPSNeLNMjD1uCV3YzNReUb3dpbSKs62WA/XXXhcduPFVEUUgj6dFKOrNiYi0SpigEUY0EzTCUm+C4k0Tmyz5ZrVUYOYNpOPlGUIKHL8p51260mKJ9SKekKj1AZ6QqIXlCYlaWJ6QqIXlCYlaWI7IzCFJKANxvcWTQB/QOSWeBDpSile6J4GOIXsS6BiyJ4GOIXsS6BiyJ4GOIXsS6BiyJ4GOIYcS6HoZbOmeBDomrieBDiEPTwIdQw4l0I0pHp4EOiauJ4GOIcMMK/08Zl4Gm01hylg6pXyuJ49k3VnI4UjTY+JOR5oeQ16OND2EPCPNudYUz+xI0w8k+TgdBBGmlI62PhPLQRBhYjk6gUwsB0GEieUgiDCxZoBYp0D9EGUu/pmD0pFE5EoEY8OeiYUY0gt2zuZhhSoTTK6vEjE99NLksiKU8CZoixz8FmiEEswE7Q7ygM2lXSakbcOR9oZaY8qaZNobeV+krBVJeyND1BTpXQeHiPSug0N4oiK6ItYUYaUGxY30roNDRHrXwSEivevgEI7edXNdI73roLgRVmpsiBxhpQaH4FmpQeAIKzU4RISVGhzCE+k0dDJHeKhBcSM81OAQER5qcIjpML+tSY8wT2PiFvht3OeaXQLY9Thu04fo+hAOvmlrqkvl6ZshW64WT9/sXsQKtZzVwlOf1WRMRCSfV7MBGsnnmaCRfJ4J6rkY2x1Ja4Lbms9jjzVhLl6tmX8KpibEna7VYayac1D5y8jEgoOcqbw1n0zMs1ZHrs/8AEeuz8QacNf06ZmvGaqvrRofC9Y4PJd+gOkneY28rVmRBozaEk/BXBF+/toy36Rckb6L2nD+pF0Kcg0sOrDH+NxPstcKzXfzvCpZ9CGMa68J+KqkBWssqCMTCE7K4JN2IPJ0TPcZAqr8qs2RGMSkF0diEESOJAarXnFYxZEYBMV1JAZBZEdnLYgcaVgyp9jRWQuK6+isBZEdnbUgcqSz1ppiphhGKF3rTDIw6cj6jdhLxDy3JsKRFTSxHDEXE8tjcVpYjqTFqZgGr+M+PGMkSrMmHK7YdUXXl1vVgZnM4dSRdWtiwM7fhdWo3hDjG1PO8Lbsnt+KvHVRB96We9hNawN9VtfjQmcb60WPdRCV0+1MNDQXJG3SYaeuAmlId5w/1iQ4WohMLEco08Qi9tfuGrhWVH32GFaWHcKsyCsFVWNlwdb/eAUD+oLQpaaXW1RPqYuJ5bnULCyY4i9dzhWMNbl6Sl9MOZn2n6KrlbHchJm4A+J1QgobCl4akXGi8uXwI5pY2aGUFlbBnP+dbb2eQl2FlidMaUnYHOpoYRG24DCURldHgorlxGcawrFX1wioYzPCnYvoO9jvUDQojrcWr5yGlC05aDFNLEeDqomFbZoTdL6euamjEsmz0Yk1aYm4eXaXSUNiq00rO7kfMBN9CEN4rDH1hIgeUXWcgeHsOIiJA5Z+bWffxIlcM013UFtOjt1nYWXH7rOwHPywJhazTyajakypx9zIiB/YMp5aPkvcjM/vxNF9D2s41EUMrOlQFwvL8byAhVUSnNk7bZutQaZyK8SlskM0DfHHWmH61fZlgPhjTSMowY/sDk1LC9T2Xg+hp1FaIYr9zzYYhooQHs/OgrUOLSOxwXacsE1oGSderLKBF9A638pyTKxub7ea+KdErz/fWP/qqIw6Xgw6RsHFTyQ0/sjq5YQDoSPEI+ZKEp6Tpcj6FiGqOE4KWhDPqVUPs94OOklGTjqChOQYqGJ4FZ7yjWdSAk1cQzeI+o2zuS15WwZ7ILK+aPqMtuKpeKz6ENYsEBbkvlwF8rQaY0G+GAQCeVpNHJpmWNCNMCG3OyQFWj2i5WY7SCDydGiu9f3Emzm7MUUgipymvZlzd4zdh4GOgTP8nHJ6FLoQ0JmDrniNdDOQdWAiQLi9NoH8QWFoEjYy5A9Kd6jJrgYSKKvZPPQlp6JCkAe+m3g2peGniad6cRniGjpIFGvkHQgTyF9jmEt28E4gf60TRug5+CE3rXs8wV22LxALTes4V+VuJRak/751T+SxJ2oI/Mm5U+MkA5p5tNr4EW/HJGTEXuhqfRKfk6nPcbiMYvjiDLtJMTaSvkUH3udWjM83gOEij6dX1szVTNRquoo/SqImjOFm4JAZpoZGITPJ60Ih4x0ChxNG+rfYxUQ95LMnBIoTDc/eNIIALs6T4/5ZoEw2e+qfrq+YqyKkFGoIzxV6diH0nGObLdDaLUibYZt4eiJPCtjD8pCbPoSu4MwbP5lbXCaj0Slkl627mJlfjKnbGOGZ8pNd09OhgN0ivM9dt9+hOB1TkCKNkpm4JDd3KYjsyHB0I1a3euDkNkGJnVeT/umGijlYjg5LybVGGMeqj2ylEZ8hCS5azqdouQc7LIUodDknLfg5jtDs89sz6qo0fQymcmxS0nuSktv47Eh3pCT8Gt3Bs2vZqw5MPH6+m95BkZleur2HkYC1JKaPp1DIhEm7eZ0w5OxIj3Q9yCyZiNLWerAATXbxqpzD3BK34t7xoKR1vS5kLJsxBHFTZg658y4wiDzIboiU9VnX9zVTjbM7cXqD9giRPNnJow5FrIV5TWh3vGFCF2IztnqE1rGK45CwsGpkK1ugHq6UYiyVrr0F7j8oJ+TVb4uqKMOmMHvRUGnjaxwuJIg82V0u+jIYG4bYizs30KHAvbwq3cEkFwNf35DEe0EXt6lDyJ7tqQejpYa2pwVKeIw7VNSREKVUcZj+GDKRCknLUDQDmr0Id199X5A6OLIeIPLiOyW7HgQVT12OiUX0jdctFxL5kRYyPC1xK1+Mcb1AhrjNYRZiE8G2su704ECIfISpz9nNYiMZ0zt4zRrZwGLS/XIHawV0yQK9V33zZn/TgMIIknkrBEQuvBUCIhNbbFdlDYRJQsQR/RyQKy5XFuYPP73/+BnifBu3b2aLPgRhUJ5tZrjPAmf0S7UFXTr25A2GATmhzBtB22DAkHviL8dh+DMMEcp23kYzsArfPTMakGKQXjmFrYeHftzyVOgjNP5iv5Zdzz/Lq2qa++lLA9pQhM5f7wPyQfvgr3dQ5snHIQbknDCVMkeVDT9iJIeVgBSGCcOHcrTBkrI47kvIJ2Ge/zl3D1IzIdfP/xB3zwTvHqYC5iiCYUGPTp48kxd3ODTCEnc6rsqJXZVMtcu5KiGTfzoutGmYqUzJy158E6vwl+M0fIVX1SyYW7NvSFM45sYaRzhkOcSFrGN1rpHFxBn8JQp+7eS3n7kmjuaHmREpiZKTiyoa9jRTZHLW18IqjtmzsKr3apgNPGupipI9jYbpvMR7NeDidsdKWeI6rhkTy3HN3H60fs2s5Th0uypnT55dMwys7DgVLbmKY10tuarjZESMwM5QmxzkRyn/9u7h49cPPz/+2feffv/w65ePn59S3Z/ef//h0+P//dfX91/+4z9/+eXpGvjnhy+//UkC3ctqa0l76s7Pj6fr/wE/Pl1n
Copy blueprint
StarLoopTest.png (35.02 KiB) Viewed 2581 times
StarLoopScreenshot.png (990.91 KiB) Viewed 2581 times
Re: 3 and 4 way intersections
Posted: Wed Oct 30, 2024 8:23 pm
by Factoriointersection
akulen wrote: Wed Oct 30, 2024 6:24 am
I finally improved my previous intersection, adding the last pair of direction/lane pair that was missing.
It can probably be improved on, but at least it makes for a reasonable 4 lane 4 way intersection baseline.
It fits exactly in 6x6 chunks
Blueprint: RHT, Size: 192 x 192, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 174.09, Set2: 188.80, Set3: 197.20
0eNqtXduOXDeS/JVFP8sGb8mLv2Hf9nExGMi2dixAlg1ZHuxg4H/f7naT1a7K7IrI3EcJ1cE8ZJLMa/DfD99/+v3Dr18+fv768N2/Hz7+8Mvn3x6+++9/P/z28R+f3396+r/P73/+8PDdw5f3Hz89/PHu4ePnHz/878N3+Y93xo+++fL+519f/bL88bd3Dx8+f/349eOHP7Gf//Gvv3/+/efvP3x5hHq3//y3r48A//jp6zfPg717+PWX3x7/6pfPTyM8In1TWn338K+H79b442n4K5yC49T8Bk7FcYq8gdPe/WVaXiZL+6r27QvO+lYeJ+7Hj18+/PDnL7KCKwf3h9+//PPDj8/SffP+rfmaV6hJge38Miztswcu3l6GK/Gmgjr5xVWlW39dlB9+ev/x8xtLU5a5NENBzwn/+K07wMfnzKuk+vW5kJ9fuc+vtA7llFVBG73eFpLQc2chdXVxv1e/biNVYOfl4Zi2qop42SY/vf/0P9/8+PH9P355XFv7i9ebcMsxdypSSfjclarPnbYzSqYP2ZwEOWVLoY/ZnBqw2sWzSUSd1Ksb5vni1TbI0MVTJ1To4xvD7XFcfTqH80RX9EA708qkj3RsQjx7S1WDmpyHOjgDlTHQ5gty/ytu0XCLYyPoFlt1zKWORNw7T2ea9q1dwyVuIdm4E5hDz520gG1VyW1V81Gqea1US8NnttU4E6IhLcfVsu5v0JbwJctTXzJNFRqxnaT8ifu0RPdUoRX+KswZuQpb5a/Ca4lVJWuNuBQqMRXEJbYtoEdcDYnwiraaZtV6bIO/R66/VVXT6T39bxdfO/0bsb3yQb5a/Ka5scT+kvYCXO4vvjiuKwj3sr8+fPrwz/dfH6fivm+ydUK1ioW4t47+60jMvbXeRBL+BryePu3Yk066JjkfMe+DEx7UkyDPuA1Y88lf2xDu4q/tLEgQJ0WUVDUve76FvH9aD30ydKGLQ3l1WStvVWTAWO+NtzGu10vFFeJwHYYeaIdrZ3dbMtC13dYHLrXs9Rp/xVWFng7LCHA0+opsCtVPGMlhuXRgL4zs2Au6iIU9cKu+VJoKjIqrQGJwGyl03+Drvn4NcVgcgBM2usPiQHDH2yevOtt16ROia9tEfYY6j9n4Zyj46fd///T+X08wR7wHbYzQ7lPD2DM5NomOlImDXfSZVdMVxWFFAc7jZPadoQkqLr3vXhao5Pv7bgpvnRXAzZudt84g3KvYx2+///rrL1++qts569Ogws7ARiiqUzkJO7KKLqp6MCzHDtNFXJkPo1wvkqaxi9hhKRG4xA4be/Wvszza8q/msKN7Y0YQzwhJH0GdG2bD7bUEXOs1eMMPwoWvt3ayAk/xkasjjbjs1nJc2Ttmdr0ETc0wezy8RkxaTjlyTumJxORw8SwoJthvfHdXgYkYSu4MMOHlJXn74/EdmNdkZPTYmn2vlACnU04TvlaPdXHlm1cVl8ikndMOCNLknBzn6XYcCuKmZ6ay4yBDsnuilZJ12XXRK7ycx/iCcD335HarsBHEc4RSs98jR6ga2spMlUidjLDTcTYbMi7e7bmWUT2eCpOMawxwJg7UzgDD6bgxju0xrm0PdcGYCpKxJ6MjwMQN2AsD7PEAIeAOW3gngFH6zSwTFl4uhHe4d/RAPsXjHjZqsojd2RIBXD3eohq0zDXzEXELCt6BOdm6URndqITzuPNblvSeazBNXeF0g+xVUco9TU5dB1bv19o9ojd9BPVwrYM4tY0TUAcm7sKx52QiW8TjGI7tGC5gBKZe5YQVENGpgpXJAHts1EaNwNRaFgbYkW8vekl2E4dmZEMz9I3eiOLLna0pU5fW4SfmtXRp1S3YJrG3jTXTgYnrb7xoWQXCxVkSfI5uc6zm+2VXWYi7cHvMNSMCFwI4M8DVoctCjdD4ygkMWPgdXY2OAyJMurebBcVcdEnXWXUzMJUtcwMj0UNZjnnUg109eU7GcTDvC9szfjDu4rbHWVChiH6BnZmzoKpDf4wpbJ7jWt7GxHdKnlNXHVUnO7Fv5svJX5EIRx8OQ2PsWdBDHX06jNyDCUm9uPaOR1C1ucjhnBnfPDJ60R2ruyJtY6MQGtX1KVQ1ahA7aW6JEY93EJXLO0qOAROly7v2BQP2OGVCjUBUOO/ICAbsCFBW3asei9A0QyFUTWNKUo4KI57GhDvcxoli1KcSHRWMSMMdtdXdlklsraOoBhThTB3FMaA8KfC8mPVw7KO86hlBxSSsvHPxIS7PZKy8l6u6IS7PXLwiNd3EZUpNtiJZUJlXJAuq8C0kDWjXyKs6bJF8Zwob7IDmi6wqEmPbJf2zVU1kSke2I9MQf4OpHTmaaHQ7T4cmGlDLoYlG53SKKIyBmTHTcvs81yuhNrSmgoFu7wcDrSBoZUBb4Ay/HkHvSk7ERtrBpgY4SSUxG+nlrmiAu1HSwGZ6+zCt6ao1HftRb2+nCjvqm1A5OfajAUXEDLZr1qBO9kyE5cpFSIAkIXTnGNPQCAXv+jSoCs4QdmwvswFuRMndoZk601AeqFHeT69tG98aM+m5dgy5wJDB9use502lvvDsFl2ikiOqZ2AqeSOoav1EthqQkC9EmUUehiKqGs6UWeyakzYRicWh4Uuf4+5QSgNqOLTJgGL5berlK4HpczAJXAOrZX6lhmw4fS4qGhh4dA/OGXRD46SLS8TjRtEVVNX8WlGZ+ynIbjd8Ejo0s6leDC4BXN1SPSGF7UxLBvKzxVUwscNT10Pos+PwkiTreue4riwoh5dkQLXIDrMwmeyQteDqBnNVPmxnzJKWCMi9grp/GjC1DrkywMR1taulMGBP+W26owzEDnoFBQhL7Kc0GGBidyVGIRjmjsQohHiMxfT2GSNMnxijZAR5xymAwYAJz2oxCkGUOBxLGQPukNtxcncYqCNp+5yDwkdwpHCPLwtdu0QxxHOeVjNKVOCOb8G6ux8FCKeWe2wfqjG8Q2OCdCmWXuBo9cq66FXFrU63sIyly69PPczrO/q2YaUYvj9RS3ECb6LHdLsjvGFB4eENOZ8Y6pss3WNVGtJ7rEodaiR0Ii60WspEqNCRwIglbsisNDBrxJYyMFvknjcwxRPTH8TRODpc/bILt69xRcX1lNTu1nPoyCIKKJ7rmjTRdeBFXEMvgQJBkhFMOcU5F/Ujdnr4q3Y8T5AuzjI9++6sIHJaTLzZcgdkMFzPTjy3BzSCIyZpraTHrduF0ZiwnkLBLswIni6vc+FBIziyZsaEL09QpTN6vTy3oDD6t1yN0IzSLKIRejK4nr0pjDIuTyO0MMpIMYbcUcYR6GjHhHV1YFLK6OHCaoQy1uRI3YlBK+7Zm00YYV0NYJUZgaEuzriBUpNnc7bMiC5g+bdx32ddbqIVrBjIKsF5GhHfw9DAGfE9DMwV8T10zOy4Jy++h4FJ1NqPo7gqEtoHnechcRdBnNia8X7n3N9ea6KepO5eYUFeGcie/sozpQMZoTucFf35gezJ0xlQnoiKAbUct7gO5SktsaCYat/8NlQJlI0LwutaS42cj4bYRBfKZqy61mjVo61MJUmuOrIO3B05Pwh4RO4KY36nI+cHCbscOT8EuMIBy3RYZ+SG82ISkdvKPA+ThPmW4kgzQsA1YgIYL9A0R5oRElYcaUYIuEeMFmMWhiN1CQk7HalLCJjI0C1GyQg6jrwYhSDoOJ7bdHBgpguTWTyiMuW5gQsHJjLlk1o8pg2GWjzc/TptAQIw4lQXL0d/ezcTlSl1EwQJ8mgVxcSxFUKtgqxMLcoxmA2o7DCYDajiMJgNqOowmA0o/EXa00oqK5LWrQyrxrHRDenh9NuhFpR1n2WlSihwYcgaClwYmKHAhY7ZQ4ELAxNnrbnkSQFioIrXjTwzSWi46vOGr+pGsC6CO5ufeCym7jXvGXnrj+AG2CXOHSlArkztyDavOlBiVTsRz9jmFQY8sejorpLGQFeAJwQaYTjy2l0tbKyuApLBzPGIpLWxEWog/YyN0Hj7wJpwCaSfMWF7IP2MjTAC6WdsBEfY0ZrwFUg/Q8LOFEg/YyPkQPoZG6HQ6WcMtwbSz9gILZB+xkYQ3g43lNFVfCKUMo5A+hkbYQbSz9gIjtpLY8JdxSeN0T9X8Ulj9G/hb/KWb4/oeq1wdTGHNEYDV+O9NWv1yOw1Zqeu7sjlFWMK9DzNGnyCvAO9ANVVXZLftgFd9STpTTOnufhGUn0bMwf8TAsTTmuvU6TeUyTV0RLcvjrXX7bz3a3XEuM07slG2i1a8vSv7kxCBwqjW3Lkv3vVF9WR/7agPIaoAeXIfxtQHiISC8qR/7agIo0DFmblk9M3Gq3ulexoSO3A21otOxpSMeBIQ6o1v46GVExYR0MqBuxoSIWAS+jK0qeXqS5JjJIVR0MqBuxoSMWAW+T2NqZX+EwxJmznM8UY8OAzxRjw5DPFGPDiM8UQMPHey8kUY8CZzxRjwIXPFGPAlc8UY8CNzxR3oBmsMQUluye5FwTYw4x6opcqFXp7VVAC5mbeNnQqSSBUzzUPPMzV6sI7m/d+U2t2W/PkCUSHggmEL5w7XSJZ39YcNMOW9A6aYQuqOax4A0ocVrwB1R1WvAEFt22X05n+xE/nf/CqtekJyIi+p9RzsK2Ia6JPlKSIOW5gRrhLLMwSMbwMzMqn5zvQANIY2pLdZNwbAixEaGR/PFC336RHIiP9PvFmEyKYuLksO/J2WxM2/w1UpzUJ5b+REbrnXlOr01oP5b8hYUP5b2iEUP4bGsGT/zYmPJT/hoQN5b+hEUL5b2gET9jRmPBQ/hsRdoTy39AIofw3NIIj/w3hhvLf0AhwPaYcBs9usAi3EenlxsR19HIbmj0ivdyYsJFebmyESC83NML05Ar0CZ+RXm5M2EgvNzZCKP8NjeDJfxsT7tmOldG/GXljHhsBf+m6MierqwylUsro2ZuVUcaVHL5DTcwIGa93H7pPUlXcUK5P1/YVIQmzMCMkYRamRBxqA5NIOOy69A7QxLc1IvFUpCm5vapJuRsMsMw+1fF9VZgCxln3wgFE7fKqROV+J//SgbOODAdL1yVYekNQ/rRb4BiapOLwidXWA0nV4e0ZUM3hxxhQnipMA8oTLTWgIn0/FubEH+I62qMjhSq7dOky/k71QdKly6FgpyEd7scdJEO6GjnlDekaTcdiSefJvwGPK0hmLqLGAJNJuNPVNICuJskzwM9yPcJUR3C0mw616FCKo93UgnK0m1pQjnZTC6rCMYlDFjRyJFsoDIvJdnMH8NSiFEfzqTUtPXBZWJgRxhILc8L8H+uN5VOhI/2nhrg10n9qYWY+DzUAznVhakh6YYCJGhLpDDBRVHyUtQKOgxBFJIf4dwC1xFI7nzEbSB201MFlzAZQpSN1BjJm2Aiey0stfhHXGzk7YwYJ23IgY4aNUAIZM2yEGkhzYSO0QJoLG0ECaS5shB7ITWEjjEBuChthBnJT2AiLzk1BuK4CFmE0yFXOIowGeThSjINNaiCdhAnbAukkbAQJpJOwEXogB4SNABegtZPQHDfPZQwVegbSS5jwK5BegkboieuJxOyaTviRhZmQTmzQQs0D81Ids4eYYpfMbB1X6Ut+2xpjOFcyswsZzpVMKcTk26Mw4Eiw05hehmklMUo2Mt8ehQEXvj0KA47wXVrT2/j2KExY4dujMODOt0dhwCMSxDCmd/LtUZiwC3yqjzFHZ/I8pGeMoEYyPI/4HHpDKPAwC5/GHQURnYju9MQAEwXX0hhgouD6nPOChI1m50neR0NWb/AZ4YE8mCBzBh5EHMjzUTIXHvM6oYyGzPdKBHKlkLPDe1MrF+VVQQr2XOPxSQw8x5sf1x+t5hNcFSn5jrCCukz5vDA4WoTFQlakGd36jBExMQzMGblXDczleWvP2M3a4dk99CmXm0qVuqfMZ3ZHQ4QlLr0ToIKAmZRGYYCJZ0L2m+wDeCakJ+HJjjFgT5fRMb+Q1xq6q5Rl908PoBixE4Ut+5FnDNfj+e0GbWgEz9s8ZXdqYyO4kh6LGcHViDSYEWokjwWNQGT5DzBSxNizRNJakOyeLbxrdwZA394ZMhe5iK5CRXjGLMxQgEbHDJG2WJgRnjELE+YZeyoE3VDXFlonLLReKs50Pc5WUZEaLPwhSRuh92A6w+xyyiSAeujOMLtIZ4AJZhdJDDDxgMLmrB/AAwqdYHZ5flgNBiaYXZ5f58OBs6NgBALGy0bPXpn3X+Xu2iNBd/3+k6QH+Ox7dfBRDLU6tb8qxwFd6Dt4HQ+n7Kal62+eKnCk6NoSdhJEc0UXNuu6Fbr2dGmbJy+xACOlefISELAnLwEBh/ISxvR68hKQsJ68BATsyUtAwKG8hDG9nrwEJOziadsgYEk8bRsGnHnaNgy48LRtGHDladsw4MbTtmHAwtO2YcCdp23DgAdP2wZZC54CmNM/MiYywsK9jkVI3lMkdzcBq6JnR4oNmZJeHCk2CJjYim0ywFcO3w8/vf/42Xb76oUJbN60AVR1ACI5uMuNJkA+33snJU+s5INIaw5G8slJnhsr+eITspDkI/H52JkAr2zgj4CdQOVE+Pn7gJ9UGOUv06yCEanCXaaOfT8R7dxOIwbs6KWdWf/4TjqN1KYYEU/Pkhjubspib7GcVeyIr2fIOyMhTgszEuK0MAvPCTiBNy+6h7LlNGXNhIzQCAYD66BRFXiimfks1VY2NbY0OyF0poRGK7BzG6zQBFdEE0roBQudSaEXccGVvZmBkre+MnzAPz8jjwMXQuLBAFcCWBhgIiV/LEIIWIg5LgwwUYa2K9sx4EHE5Sl1w2OcdT+mgQEvnlwVAR4peeLnl8lWMQmrshoqnHVp2Ro0Ri1GqhFbyJiLFrFXDEyJ2CsGZoc70i/XaEU60keKBDgtcafnHXVD16Y6wvLYRHtPA/W7I+NVn6f4CtsmxJNDuRHn28hEoKUxx1BmAi3CABPvM7ROTTIR9GyVEZkIejbmfCOqV3Kl1GISk5yoSV7EhbrtN6RgfBAUMYd0YSLHXSFMzp3nxIBx9+9UxmHAMJlMvxj2LcSmNkrD6wGS/i1DxRW+qnyqj3uMQnBcVENGXasL83hlZ1YyUlQ2RZ+GxT8Qh21BoorldEBC00BUsZwOSAy4RKw5fX4JWpnXUICwja80wICFrzTAgHvEsDWmd/CVBpiwOIfT5dSUSM3eYEhmEqPXLfHFDRhwKAyqr2gruLWxjANJNciJR4xOynY2BBhnJeyVEdjDk7s7TzDJuztPOZCc2WgsaeEJTQ1E/aY7WQmKvxwBH+TlmCGMfcrMCVEQc8lSQsBESPRcZBAwERI9FxkETIREz0UGATNdStTiMZ251OIR1+SiFo9go1jU4hGX4WIWj3n8aDGLx1DALGbxGAqYySxeJxLvszPAeD7wEsOFzk0XB8yr40jFJFPw2Vo99Y4liGAuSdeOAE+4qyTb9x5DEju6p3G3Wwusqs7w5AqBmsAxPLlCCNiTK4SAPblCCLg5UnoQsMSBVV0fpKGaL3n1haSox3A883B4DqfKMT7GdASrJlB+NWJlMmpR+Zg8L73x3RPfaflcKws5HGbBeHNGJ5TWVx7DbGSGI+bkmIA60zFdHiJzVHjeN7p4udAInvzhuVOgETxF28LcLZ6Xji6FUMgIy0NoIcxKLw+5k1Dbd4Hbt1moqklIMM0cJ31lSN7GO+krI3NN3JM56cDqgbA6Rm65y2gXwOA/FsjZvQ8WDHQGiIWXWkE5FkardkpyEUEn88zRtsIW8OTGTDlwieszMBNRQ9orsRdmqkSJ0p4GgFRuukpojiJUfRrw9ojThLsQyv2ZIrRNlrREt9Lm/1kVWjSiUVCMRdOBF1/cAmlDxth5j/ewgDTF9HDDXA50aITiGSEzI1T+ej4FCEuQqXdsxBPpxb5BPCMMZoTuGUGYEYZnBEqXpmcESpfAe3IZ6qPaYbMQNIeTUcySIzeEmmWcBTNFT/XEajpMxWCOAhgwDTOMdwTdghEqSpLl5MPWbb1PVUfofL0dqD3j/wFZ1XaC/+VU8kHbiOB/OZV8EDBROXMq+TDgzFfyYcunlc7ApewLiKPPipax1XSy1OuGROnpRoTj3bM2ni9ndeRjWKqYQU1VjxyYapJkVvwZ6oPUdaRJGOfGZ+vaTZSy7UD8AsgjZ/M8M52WPoLqZDYmZFr0OdE3JsEbk8ciZpsqp2GWkSCPyZujEANm3vysDDBR0n0iLxAwkzukFo+4Ezu1eMSd2JnFYxhkOrN4DINMZxaPYZARZvEYBhlhFo9hkBFq8cQRLoCAubzgq35bxTTI6ghkBdvpX8Hkn6T8mZYf5pO5+MFARnZ2hrRim5ITAc4EG0TRJdYdgV4C7yIuNWs6u+Ot9wWkY2ZvcNfGxdydzzqB27edKPU+1wAkPfGsUhcGeARebbTWcPJvQGPCEjVsPRPAI0UMfH0WmBeVhNFk5kUlYZSMqI85zy5iwC3w7KI1vUTnkhRGWKKPqVnnpeo6DKKPqU7i7sAZZF658jd1PIM56Qb+BmgyPkVrSJsTzw4eNj9s9pkqmp2GB5EZw5Q572YlRE4McKOLAkvKCLDQRYE3wKqKM28svcQiQIkHXRQIAk+aQAQEXnRRIDbHFK1MJiRemSYQAYELXaoCTkX1hF8vq6hiuvKB7QUzIVIT5ueaDHD3W/rmdAQsTxMTvgj7Zit8nIBvoYj8Wn4b0ZB3peQ3jEzMzLKmE8flIgpiSq34jlup0sHmG92dKnBzUPYkY070EYQoEjLOTVXnVup0nAdFHjTnCaggk+Y8AYEXzXmCATPEMq0zk0wRy1RG5EJnSkHgSmdKQeBGZ0rRSUYZDS/dtiUVKD2/cqdpgUsCyrJWHrDQiRZ60ozAoNAoo+GFCxgWuiSaDBgT2lPssnPPj9IjIxBX4hJddDXAukqNmF1qceQqLWJ2GZgSMY0MzB4xjQxMdNcVKbYC6/o7SatLDCXWFYEIfOa316omtMtxiT0Hqh1UcSLD3fJ58/nqEV8LTYd7u8N05EpWeNU3DrasjtBoVlxUdnHm6nDZO02Oi8o+nHk6XHZX1ee2PACyj1XxEOjaZx1QnrkaUfe5kg6s3yfMY0pz6Mg6MNNRLwwwkZKYlQEm2J5mZoCJGMxYDDCRAhzU4hFcFoNaPCIPOKjFWxG7SC1gXkQ9zGuo+8IS9TA7ow0CFzrZDALXiIloTG+jE9igsEInm0HgTiebQeARsZaN6Z10shkUlqgBlU4A91DoU5+FTjBpl7cntNPU2W/rP1PXku9AuQKalTEUOpFcP8gN6PdbnYhorkEhM7WdTUdWbdXOv3dbElC0vjr/3i0GPPj3bkHgDPcMXBzowRVRrVEcnXkpn89QMWHO3qe6iA1142k06js8kZZFLYdE7KChz1SPXP4GZujGMzBn5P4wMD1hFh2KYX/J+pKLiuthlThKhTBGrVk8JKSiD6GP4GGIWZUZoXlGyMwIHqqYuZgRPFQxx22HRvBQxUxqpT1UMZNaafx9z1kI3OV533MmfQT19F6ZZjG6OSNUg4V4bGk/HAoCV/rhUBC40Q+HgsAEs2jewBNZPKIeLRcGmKhHS50BDrTBl6QW4a5FNEPkI6uClJPrZaVz6yD9Co9j5Ii9tAzBS8RgskBrxGKyQOEWCLnkbxdnvT+OIhHDzBKdfdWz3AMcDlPPwiLeczlWzLx/ej0ie/hBh7EpujpEJgqu+9KR9d3GVL/0wkxL9uQDF4TM3HCJkpnhPns513OCVpC54xKF3OmHlFFkDz3oTnblDJ32eWJcItOCNRYyknzIWT9CiiP7kDOyC4sj/QAiO/IPIHIkAWFOsSMDAYrrSEGAyI4cBIgcCcmYU+zIQoDiLrrnDURmXlUSSi1qDhhC1hTXQr+UjorLdP9Rusa8rNQotWCeVmqcWhA7r3FqAbJ/1k6hesKhhZsSng7myRpQsZon+1eoefa8pXTcBnCIgjpU5dSN5dt2E9HBPZdgoTZm82QoMrVDPW8ulUzpZev+V/zQIRzeonWCN9ejg5xeekzUTKmOJD9vKzpEhlMoOVHArmcJKZ10ldAkSielETl60Z0z3cORwIPZqPAu2l9OQ13vaHMaygR+FrUEy/8QICi8pwDnpPnAIXIgzwcOQeQ61h3bumPko3k2KmDQidan0aiPF77kBdO/TlR+W26GgTz4opdckJgSU6ezq15A5BWoSLkeQq1eyomq2SmM9COS9chV3ysjkvUwQSNZDxMUz3rMY6QXqCf8ETyS7DAlJnzP42hZWHDLU+5vfT2VAhrTYS5bH7Do15NNrMm/22tjZcfFY2EVT5rnzg6dlS8vuD5QdKV/VVyDUfi92qIIvPCp9dyQk5Ahkdm5dRB50Ox9KPKMnN5i6MaKnN4G6EqR09sCDQVRLdDiOGAtLIa3Ip+V17Ga49y05BLHuWlhdce5aWENx7lpYeEvdl6udonwnj2Oufh8eQYaInJ+VQEDHquiwxcdPhMPDm3B1eLWR6ziSAwDFc2PyJWnMAKRW+QgtSZC4BjVgeoGVKTw2pQPZ5k/UJZ8M3K8W/ItlgXflC9HGoos+TIegzxQlnyOtoZNA/kkH+CO5OxxoKroY+inlOdVo8MEBQ7hcapqpobwbLayqCHwrVcTBRxK9WFDLIeBZGyhEkr1QeKWUKoPG6JEsnHYEMTVV+7cSyWU2cPEDWX2sCFCmT1sCE9mz5r0UGYPE3fB4ZxLxrkj7C2Pd0eKZA0h8WuOZA2xIQqfNcSAayRriA3RIllDbAiPW2jou+tZpETpex2RPCE2xIzkCbEhlsN/Nia9pUhmEBK35UhmEBuiRDKD2BDVEWiwJr2RmUHMXG/iyAxiH995StIboZMOPTzJsD3BSK18btORC5tIEKAtnqsvQ81F2VURc4ICemtJlhwJCligJeLJW6A14n5boB6qi1aNddOVTVD+0HIhIcvrloSMiSLm63eW3rBSNn/rtYJXHXg4PDdr9qfDIbGwHK31FhbxVNLFhrGwMkyHeAkhz1h+NFNFK3f2XfdccxZWc/Q8nyD3NECFDWsPff/q27eTnYH7kdRHjTXkdaTyCtL0lPvkif0K1OuUmZeR5tChdWSiLuVQ+4HImef2A5ELT+4HIlee3Q9Ebjy9H4gsPL8fiNx5gj8QeQSMKWtnM2Upg1OLxTfZYchEycppsgORI6alNcWz8E12oLiVb7IDkRvfZAciR3ixzSnufJMdKO7gm+xA5Mk32YHIK+B2WFO8Ev223I24uglAcL4c89yUsvDmuYnloCc0sRpvnptYwlvKJlbnLWUTC07uHfu4JANqEqEaam+sFYjUlALkDEpKfLlGQaqWS0IdszKOY1bAst2S4Ma9cXgMn1r4KCaUkiLPNxS9rLOkyPsNJmjoorJAIy84mKDDExEaB/S+R1kIOpey3wMqyHseuVyXu9zr/S3A4xC5uCpfyqCG8NxbxhLmEigIAMWF6T6L2IeHfuS5CmBKpcQXx81uzXYPFC6A4o5AsQE4xAwUG4BDrECxATYEw/KS7xzZrpqXTKmhq+YlU6rjYnpJlOqURhcEgMASKAgAh+iBggBwiOGw1i2dnIGCAFDcFSgIwIaoKVAQAA6RHW6NMem1BAoCQHFroCAAHKIFCgLAIcTh/1mT3rmCgFIhv6QSzRGDm1/iWc7BTesKJI0K1BxbiCeRnhMWuPSNeLNMjD1uCV3YzNReUb3dpbSKs62WA/XXXhcduPFVEUUgj6dFKOrNiYi0SpigEUY0EzTCUm+C4k0Tmyz5ZrVUYOYNpOPlGUIKHL8p51260mKJ9SKekKj1AZ6QqIXlCYlaWJ6QqIXlCYlaWI7IzCFJKANxvcWTQB/QOSWeBDpSile6J4GOIXsS6BiyJ4GOIXsS6BiyJ4GOIXsS6BiyJ4GOIYcS6HoZbOmeBDomrieBDiEPTwIdQw4l0I0pHp4EOiauJ4GOIcMMK/08Zl4Gm01hylg6pXyuJ49k3VnI4UjTY+JOR5oeQ16OND2EPCPNudYUz+xI0w8k+TgdBBGmlI62PhPLQRBhYjk6gUwsB0GEieUgiDCxZoBYp0D9EGUu/pmD0pFE5EoEY8OeiYUY0gt2zuZhhSoTTK6vEjE99NLksiKU8CZoixz8FmiEEswE7Q7ygM2lXSakbcOR9oZaY8qaZNobeV+krBVJeyND1BTpXQeHiPSug0N4oiK6ItYUYaUGxY30roNDRHrXwSEivevgEI7edXNdI73roLgRVmpsiBxhpQaH4FmpQeAIKzU4RISVGhzCE+k0dDJHeKhBcSM81OAQER5qcIjpML+tSY8wT2PiFvht3OeaXQLY9Thu04fo+hAOvmlrqkvl6ZshW64WT9/sXsQKtZzVwlOf1WRMRCSfV7MBGsnnmaCRfJ4J6rkY2x1Ja4Lbms9jjzVhLl6tmX8KpibEna7VYayac1D5y8jEgoOcqbw1n0zMs1ZHrs/8AEeuz8QacNf06ZmvGaqvrRofC9Y4PJd+gOkneY28rVmRBozaEk/BXBF+/toy36Rckb6L2nD+pF0Kcg0sOrDH+NxPstcKzXfzvCpZ9CGMa68J+KqkBWssqCMTCE7K4JN2IPJ0TPcZAqr8qs2RGMSkF0diEESOJAarXnFYxZEYBMV1JAZBZEdnLYgcaVgyp9jRWQuK6+isBZEdnbUgcqSz1ppiphhGKF3rTDIw6cj6jdhLxDy3JsKRFTSxHDEXE8tjcVpYjqTFqZgGr+M+PGMkSrMmHK7YdUXXl1vVgZnM4dSRdWtiwM7fhdWo3hDjG1PO8Lbsnt+KvHVRB96We9hNawN9VtfjQmcb60WPdRCV0+1MNDQXJG3SYaeuAmlId5w/1iQ4WohMLEco08Qi9tfuGrhWVH32GFaWHcKsyCsFVWNlwdb/eAUD+oLQpaaXW1RPqYuJ5bnULCyY4i9dzhWMNbl6Sl9MOZn2n6KrlbHchJm4A+J1QgobCl4akXGi8uXwI5pY2aGUFlbBnP+dbb2eQl2FlidMaUnYHOpoYRG24DCURldHgorlxGcawrFX1wioYzPCnYvoO9jvUDQojrcWr5yGlC05aDFNLEeDqomFbZoTdL6euamjEsmz0Yk1aYm4eXaXSUNiq00rO7kfMBN9CEN4rDH1hIgeUXWcgeHsOIiJA5Z+bWffxIlcM013UFtOjt1nYWXH7rOwHPywJhazTyajakypx9zIiB/YMp5aPkvcjM/vxNF9D2s41EUMrOlQFwvL8byAhVUSnNk7bZutQaZyK8SlskM0DfHHWmH61fZlgPhjTSMowY/sDk1LC9T2Xg+hp1FaIYr9zzYYhooQHs/OgrUOLSOxwXacsE1oGSderLKBF9A638pyTKxub7ea+KdErz/fWP/qqIw6Xgw6RsHFTyQ0/sjq5YQDoSPEI+ZKEp6Tpcj6FiGqOE4KWhDPqVUPs94OOklGTjqChOQYqGJ4FZ7yjWdSAk1cQzeI+o2zuS15WwZ7ILK+aPqMtuKpeKz6ENYsEBbkvlwF8rQaY0G+GAQCeVpNHJpmWNCNMCG3OyQFWj2i5WY7SCDydGiu9f3Emzm7MUUgipymvZlzd4zdh4GOgTP8nHJ6FLoQ0JmDrniNdDOQdWAiQLi9NoH8QWFoEjYy5A9Kd6jJrgYSKKvZPPQlp6JCkAe+m3g2peGniad6cRniGjpIFGvkHQgTyF9jmEt28E4gf60TRug5+CE3rXs8wV22LxALTes4V+VuJRak/751T+SxJ2oI/Mm5U+MkA5p5tNr4EW/HJGTEXuhqfRKfk6nPcbiMYvjiDLtJMTaSvkUH3udWjM83gOEij6dX1szVTNRquoo/SqImjOFm4JAZpoZGITPJ60Ih4x0ChxNG+rfYxUQ95LMnBIoTDc/eNIIALs6T4/5ZoEw2e+qfrq+YqyKkFGoIzxV6diH0nGObLdDaLUibYZt4eiJPCtjD8pCbPoSu4MwbP5lbXCaj0Slkl627mJlfjKnbGOGZ8pNd09OhgN0ivM9dt9+hOB1TkCKNkpm4JDd3KYjsyHB0I1a3euDkNkGJnVeT/umGijlYjg5LybVGGMeqj2ylEZ8hCS5azqdouQc7LIUodDknLfg5jtDs89sz6qo0fQymcmxS0nuSktv47Eh3pCT8Gt3Bs2vZqw5MPH6+m95BkZleur2HkYC1JKaPp1DIhEm7eZ0w5OxIj3Q9yCyZiNLWerAATXbxqpzD3BK34t7xoKR1vS5kLJsxBHFTZg658y4wiDzIboiU9VnX9zVTjbM7cXqD9giRPNnJow5FrIV5TWh3vGFCF2IztnqE1rGK45CwsGpkK1ugHq6UYiyVrr0F7j8oJ+TVb4uqKMOmMHvRUGnjaxwuJIg82V0u+jIYG4bYizs30KHAvbwq3cEkFwNf35DEe0EXt6lDyJ7tqQejpYa2pwVKeIw7VNSREKVUcZj+GDKRCknLUDQDmr0Id199X5A6OLIeIPLiOyW7HgQVT12OiUX0jdctFxL5kRYyPC1xK1+Mcb1AhrjNYRZiE8G2su704ECIfISpz9nNYiMZ0zt4zRrZwGLS/XIHawV0yQK9V33zZn/TgMIIknkrBEQuvBUCIhNbbFdlDYRJQsQR/RyQKy5XFuYPP73/+BnifBu3b2aLPgRhUJ5tZrjPAmf0S7UFXTr25A2GATmhzBtB22DAkHviL8dh+DMMEcp23kYzsArfPTMakGKQXjmFrYeHftzyVOgjNP5iv5Zdzz/Lq2qa++lLA9pQhM5f7wPyQfvgr3dQ5snHIQbknDCVMkeVDT9iJIeVgBSGCcOHcrTBkrI47kvIJ2Ge/zl3D1IzIdfP/xB3zwTvHqYC5iiCYUGPTp48kxd3ODTCEnc6rsqJXZVMtcu5KiGTfzoutGmYqUzJy158E6vwl+M0fIVX1SyYW7NvSFM45sYaRzhkOcSFrGN1rpHFxBn8JQp+7eS3n7kmjuaHmREpiZKTiyoa9jRTZHLW18IqjtmzsKr3apgNPGupipI9jYbpvMR7NeDidsdKWeI6rhkTy3HN3H60fs2s5Th0uypnT55dMwys7DgVLbmKY10tuarjZESMwM5QmxzkRyn/9u7h49cPPz/+2feffv/w65ePn59S3Z/ef//h0+P//dfX91/+4z9/+eXpGvjnhy+//UkC3ctqa0l76s7Pj6fr/wE/Pl1n
Copy blueprint
StarLoopTest.png
StarLoopScreenshot.png
nice one! added it. You should update and use the latest scenario=)
Re: 3 and 4 way intersections
Posted: Thu Oct 31, 2024 6:48 am
by Avona
Frog Eye Intersection: 6 tile (3 spaced), 94x86
https://factoriobin.com/post/wg4eu1