Page 1 of 1

Lane balancer and merger compendium

Posted: Tue Jun 06, 2017 10:34 am
by plneappl
Yes yes, ANOTHER balancer compendium, but I haven't seen one of these yet: The balancers balance both belts and lanes. Here are my most optimized results:
http://imgur.com/a/P25Y7
Blueprint:

Code: Select all

0eNrtnUuTVceVhf+Ko6ZNKU6+MzXsSU808rTDQSC5LFcYAVGUFFY46r93IUCopbz3rvzO3kcgMbINZt98n3ysvb7/XH39/PubV3e3L+6ffv3y5b+uvvzPhz95ffXl//7if775u9tvXr54+8evb7998ez5mz+7//HVzdWXVz/c3t1///gnT65ePPvuzR+8/X9c56uHJ1e3L/5+8++rL8PDE/gv48PfnlzdvLi/vb+9eVuAn/7Hj09ffP/d1zd3j6F//tc3/351d/P69fXrV89v7+8f/+7J1auXrx//4csXb370Mdh1+KI8ufrx8b+0x1/4++3dzTdv/za/Kd+vAseFwNtC3LRS4J8D18uB828C3989e/H61cu7++uvb57fT8JHOXjBwcvl4PU3wb9/7P27b+9ePv7nqfBhHv7J+9F1++LV9/dXk19ry1UJcjN1UJONVmTQighdEjY0TJMQOeChlP9/9DiLHtejh2n0adnTcvRND55pf/4qeJ0FBxM4vY0ehKJX3KdBKHvbsT6EU9Pq5ff3J+ZV6Lg2UWirgUdovNxWcaODKFyeXDHw5Q30Q4x0tkWhLok2lNDHcX0qR3myRTyVNyF4XVn347t1Xyl1o5NKKXWnc2oTphT9zgoFTxsc4tvlEZ5WtsZB78kU4eBW2mN9Vl6/LbgwK1OmwZPQ2mBW5lnJZ0MwLc3Kt2HTF0UodaNriVJqsht+Fz4t74bTICdBYdjkja5c6XIb5UBXLmGrnckZVmkRug1Wykx3wcIczQWuXMJ+Iq9vgZMcuy30Y5rP/ungIxM0wvmZ1z+jWR2QZYOxhRlaAl0iheNqiXyJLOs76pLoaiNcGZRM6hJnTSXVpdC6CMflgg+0wke3NLh8Kp3QYWxlsNKNsLAU1Q0MnkDHTg3wQyAMnRrxogpmdE10daqXO7xmOsWEq9KKr5SV4BUOVSU2nb5K7A4HZv31wPzbk6vb+5vvHgN9eMh5cvX82WOQxz/LT/PTr//r+bMXN49/+MPN3eu3/yrnWGofW+8fXmC2N8Xc+xjUf6/HIPWSsws3Rvjerj9I70DqJeM0HL48nkYr9OZtGq3S27B+eblt9Ex/LSyAnZ7pleCDb/1+eme8fI+94ekgFD/gk+tj6Y1ebuL01TXavNxcz5/9qvZ0I299f4p/uS8Lnd9NKH6l033ekw3v5cTGoJtcaVwPeJBXBkrc8OZQm/OR7myl0kd4zJaC46vf6/Jg8wbzPl5+MHp2ydP39qi9u6hrtXAmiW3Ht6Y8XL7cifxLOW9s/kg6HQxps9KvVO2lRRcd2LywfJBI2LyqBHnkgleV7VxPFa6C0F5OZMWGzXtJ0odRp8HnZR30UyDcBeUdHzJlQQHvIvnMqMr4yzVt2sy/VenB5tHj/fKpvDFx7c+8tEuvkem9Niw+aE8b6tI5LxvX7szjoVfFeV0L1uZMiwYeJrZz4ZDgdV7RRBcy4RGvYG3NvNplodrxfLUrXWTmJWtGOp+ovRPoO8KgnETAa8G7NW170B4I1CUyPNg8AfwsGdJu/dV1bF68xG8Uft39l7+2dc/9hTQaarERUVXtsl++b9AK32xUWlW78V/SVF4uPL3PmI7zttGlfTrMW8DbyJOj/HRTNP40p7V1w69x89bJXFM2C4dvMOalq3TJEyQvDctF51XH20JBn97ou7igbOl0zzjtsk63jNNG7REvXUE4AvaEFVWzaBlGEwZAN9KVTWPTxzOl3M1R2tTxlaASfJhJS6uwrg+8+Zzu7Efg0qVZOHxdOA+XyJF3XlH6Ki0MgVFshKKziTGqn4pqNLxqnhy5p1ME6ZXifGQMLJuaPk9v4Oid5qECSVup81iRTvYT8dI+jeelPg4b3iaWeYELl31N41WuOp3Ga/y0qjVoB5kzJ+o+sFhsqrngMkmp5iFgaeo0XITLz4na0x3hidLlXUrNy41ZyD35XFIRKvkon4jVwE3viVAdLOGPoc6rE7uuTgyftDpRv3KVdDERv/MICqpkZS8RTb0rmo188YPYy0S/eFbp1rh6yUSjeE67NYzMMaqNHvGsYJDfHYoyM5roKmnu0g550mURW15PGL3OSsbo5KOmr2JZ+WxyJZRS/GblPlI1YaL+jlKkMTlspUbAL+KE8061USOeU99wQ4jiaQghzMeY+ROVNC5i4YuhMiuXfCHSifWk2vhC6MI8IEvMuqhy2IqA0uYpAlpyg7gg2tmhT0xG+sSzIqCU7UQ7qZiqbFI11QClZiba4epDxR1jmKls8maqssnBWwiTo6OOhygRz8liuBJxKhfIxVYWk6u3UIULErcHK4sFrOPJw1kJUzZntQoQNco6oRL9ZDxc8jgd5yU7K1WAe8IZVVCpR8p4uDBy3tbdVBbDdY/RSvcoCwC4CFKQ8NRoKuGpyVIJgxSPunYFyx2ji7fBGRFPbX66GOxmoMQeluogIGuUFTwtHKpVadFR1NOSqRCGCxyVshYzHQuXOk7vsbi4MRuJG2UlTBsHqlWw2FFRjAU/SU+PVkIWrHnMRprHM8OsF18dC1A6npOx9GYmCeJSxnm4YaqHGZuvHIarFauoVrSUsCypF89qd0a21MKMYikEGtVSCTOapUxndFdZzRh2qpolBeIFVc2SBPG8qmaLv7OqJv6+qpruBoD5+V1jEACMerPajSkwYaHUmXz1lBIX8tIwCPxFthq7GLvtsGwDrBfhSUNokAE+YEp5A07d6z5Ulywzk0K0MmITqS76o0JbNkIOZqCmaq3PAZWpVh5z2Uats+mDyspFzJjyorDJNk83uxj2mZStjaAYPR3LEn8QA1XJjmixSF9spAFVPU3vGtqiFR/uS5aBXETgE3XfrM3Y5CtYOchFTfIjbP+KC/FlkyVaKduRBYXn91Q84XOp7rPcWnxlTc1ID5lNxUbKkBrcR82FBpNlnVTm2+iIeDC6bs+DCnOtK8hytoLyiWQYfdcc1x/pcjVC22VNwqSvegDs0q2AhtEGG6MP2UKffRUUI5YySS5o/Bb99Hg92cVmhm7ZxtAtyXOhlB36yMvRkROiwMErbafOcRWms9cObvX3kK2i0HCVAhWV7q7kil8pdDwWcIvM5fjgqhnclG6IILOkdl2tRuUSTw+ozHWVFWM7FI6Xgw9H8CXQZc15oHbCrKlCTcHOR65avfzQkcizjzB02o4TNGgj+kiuNFElRHuliRpeTUELdayCvVyR4YfHxNKuiKRdlzsgwQ7o0YbzmW3UX+8+AsKJoXtqLfuS1rLogOKOEn4yZJT2HcLMy257O/bYgHHYhxG2OBsZ4iXZfS1gzSlopxGNOKJRU6MhUnK00afp6OixZIuuI4dHtZH4VitnvQCXCuysp0yAwfWmggxkM0KGVlEGt6RGXZy9yK0v6rVJDnzmJSc/ebeNGq+QPbE0yCpew0m7tSOZu9QfUGi1gXeypB5YESbhISnBRwq+Puv1Xgg4yUkBUa5ZM71t7yY5MzHpV5yVXJl0ATPSu1IZrN1UzLew9kvRlYXBV/EOpnGkd94CXjdE+oolyTqp9kuZaNjQSRmekSfooy5e+VDn+Zox796KvzhgyYg00UQaqR1+E5QFIw5+DzFAh6eNbzzR7+3YtqPfw6fuoQi6E959ospwdzf0cxQ3ITUdXxAu1uVSflJX85OSRX7S/xjlJ638y69+8S+zaWZTe6+5DIGkNp27rV2JnJDUV4nMPN2UyCizSQlcSYaQEnhFUJ1XAq8cbOtKYHCj1d9F31xSm96HHyi3Sfg2tnl8ZZdEfq7in1uash86XekWjrVVuqVg/00leuXCsc0ls+l6peX36LnAGBoo61SpSdzhbgBqEjnKXaoNdjCWonMfVSUfGoPeB8puErJepUbZQQcF44ffRJNfw2kUwyX9SV+8E+eICn2eMD1eir6yfS4rYxWdWwsdPejYivcZ4NTaFlqu0ujKYG14eyncJYJcqPfRG3JeFjVFSto/yYZqcsvkPRvvtu6ey47FzSc1Sjd2yBkdupVyF08PlMy9A7pXFlS8MHjOpHRhxPC1cLudh5WVSdXyoM5drrzL/FYeJUswsncxS4La6PJQMCBEqQq16pOsewq5iGrG+U95JXCjGzilObqjEQ6wf67yPK0b37GBJQ3YQ+tfLWAP3eTxA8yim94LGW/Y5ni5guMVF7vo9xtAQSFH8paaHr3v2ACW9bTsunSP9fOCJoiKGrrGOmGjIaSJBP5cTX4uWjmlVCPTaR09yTKc0oUxZpnidMIwK2pJTvKOCHR7c3TQan0fMm3xVR0nPyl16ZsR5Czbpj+BPl/yuk4LK2Qnd194xQLZUAtVKXybBoYuMM7W/Zk6OUbPv/BKt6APfp+79wg/x5+lWZKUvnshmUwB78WUpJQ9z9KkNgndxin9kq3Qu9nG6Ptah06OusN+ysb6+4RpU7VJkjrrcTfGTvjwcqbH5umYxZKltnnzOyVL6WZ7s2Spy7eIUtbgLDFK3EApsOytGFndVTEVijlYVTH1iblMZTHTiRk/VTHdieF5s2l2kzRmQiBXn0qb49wmrVUSvZ/MLLlJ3vmu84JCwG/KUlPhN2Vl8Af+qByVwvNX5cBynNS9plJ6YnBdZWe+EPc8LAeg6Iy4OkpnxGTlGqrmOqn7ZSl82XE1GsAuKPJ3Z6k3mqdTKUlzuk4LM28c6zwIM50CnospWNmVZqPEpnnjVbPEphOlV9pqB4Y42mQ2UUc/ZfuQKncencbDr9bKRyt1vrci82RwLSJZB4CUbOEjA4y1qz7pibF2nxmQzcueaHQpRyOTezblQ0jUY1Uvd+V7uLAs/gkZJ2xIlen8vXYDWyAiJ0tybQq+NduE6VCCkZHmPHo04q3PWyaZ2WkqAp5QsEeY1BNLmZNvw0pOJoVemUmjk9uEgXWjGDHQ51UZ8PJP6V0kNst4qNaAf25b3/pVesmmdAtQn00/FdNtYM38iZTsyWshaejKRWfd8QVHNWlG9qrz2nRHB+9QB78kSaCtmF4t898LRkbf06WsRSOP8nl0rE9Ter5lI6vVeXQsR5PKXolpg1TuHYwbsnYgNdrGf24ATwql3bASTenuHkCegVRqTrshrd8TeNuT6pGxVA/Vo+AtFfo5qkOTxlbDt1+oLsQJRRoCA+vpSD0GdkYpCuQ20OjK+ytx5m562RONLpUd3apJkQvfmQFrXSI4K3onIDSs1Ezd3kT+TCsNKKxSILcbpj0Ldy1xC0b+9/OyRxu/93lwmpEptTqVnEklpxZ+Usnps5ZUcmrhKY3Fjjcs60tb3PgLVwbGQht8gVJ6JdBMzaLg4CMsuRScZmpKzZJhcGWaBZy2qdDeif9YV42XY8Bpm1LZ8VWYVPbBrw1BEnSMmEEnJOzFuOTy+c4hX3lEiRED55oSPTlyN2LckZS5nnUUo4dz/rkhxdM00c/RPE2pq/q66r8qov8YVy7Bgg5KiGnzs52PiRrmKysrVpcpSxESl1Ev+Jiyj6V9BEZjSW+j6kc1iUA/pn9okHys4DUHycfq+QX8zM9l7owCxi5QkzV5Qc2RP/D2ZYFCzIm8746HaaxMt5V9Hg8ryIYwIzJ2RumKW2rj93QdbFP3SMgGmXE7XqTH+jDlmjJlKBBNWZSHAvIp4zCPWHZQ68AKUqgxsNQzxQgUMo9ebdBJ8+A0NVPyS+5+EJBYxpF0o7hDaTbASglszWQKUcTCMqVfasK7HPJJqdQkRWoomrspNRRN3VSWc+55FrbpNodLx8KmtPSgF1hS+LZRcZUWnsu9BZVr5NZlWngKgJas7RuWd2uFp74IWuGpyFuL3vBlxm/iK2tl409X7Pf4+Rr9XqfpWVJvdXqg/m3085CxUH+mjD19fvOP+4uosfyposb++hk19hk19hk19hk1toYaM2N/pWMpZtkX11VcSWbVFwbWXEFp3Y39Fcax7K/tUGjaZ9TYR4Ma8wSCVTew2ceOGltYXwFrLHmyxhZAZsEVZBYPRXQlN7BZPhRs9qdEjTVX1Fj3QY0twMC2Y2FgwQ0GFl2JbMkV2ZVdQWbFDWRWD4aBNVe02WfU2J8ONWYE7MqeDLPiyTCrnkSw5kkE616QtHEsDWzzJJt9nKgxpeTJk2P2h0eNNVfUWP2MGvuMGnNGjaU9qDFLkFk5FmRWPeFf7VCOWXfEcx0NFvOEpP3uqDFPIljyAptlTzxX8eSY1WM5Zp9RY8eixqolaswKzhUPhqYlV2jax4oam8PAqiu6rB0L7zoAPmaISvsdUGNmcK6jqWK+jLTsiusqriCz6goy+3OhxlZgYJsbDCy4ItLisbiu5Eo2y65ks+IKA6uuILM/GmrMF9a1+cK6gi85LfqS05IvCywfzQIrvui06gvr+mhRY+ETQY2Zor/CwSSzeCwt60/HHrMEt33qqDFDWhbQia2QvraDuWXhUCwbR41JHKrkCjLLxyK7juaPWXHT2sEwsO6KNhuuQK3NFWQWXEFm0RVklrzgXEczxXwJadWTz/Wxo8YW+mU4Itl2GMAQ9lc4FmwWPWlgyZNjlt3QX+VgiNkngxqLrqixxFBjlrCs3x8s5gtOi64gs+SK6/roUGPxM2rsj4Qac4V2BU+yWfQim6VjiWD5WCJY8QKpfUaN/YFQY9kVNVZcUWPZFTVWPkHUWDVEjVnBwBrd0haGGhM3NlJ0LDs7lC1Wjdhimx6cys4gWkze9AE4FBCdLfRx8eSBVRvylBVsrOgl7/jzmE1gY5a0qM2IFhWN6GJzWlQU8WKU5yQ5WQIV2nXVa5ON2FdVZI7JtxmAi8SNyaTK4K+ygtEgqrSsl30Y4a+iFXIsyYtFDEZgsGqEHdv0hkkGsKloRhzbgeSi1spSFyy5ga4Qufh7FqGyUUW4QhFE4rP5+iDhkDYbKFUVkWOXfbuccGNF7oGUrJBNleHGxB2SYimYCt/DdMBO2/GcNcjobfwigABBUvfkPqUl64V3RAvpI5IxCkHhyeRwMOEJ61OGgjmzgxRJyLalW7I47/RqBCnbdIpYtWErqYgyxlaqdkCygBeNzKFFY/17UugHXWm6YkQoUmlkmnRY8tZNMLhUcprhNacLlgK2TXPwYalYdNzB97hwpwTEk8MJXhIhouCrMclauG5WdKUs0sR0UXMgtDSc4SX1BmKMneJFQcqY/oOoAXHOl9aA1YqHZUYfW+AmMR+0tKM3uD5c6Q1AJ9tc4WTbtOzVik0WFgqPPfy1ls9c/IyIWJhWJvUF9R/VusKOVqZsXhvN7zoBMAQeZ+1E4+j4rrvbb/95md9VPiZ+lyWFa4nGE934XsmVtpTd6GHFFblTXWlEzY185sfyGa6wm7C5IdtC8AK4BFdCT0herLmQvWBzoXjCVEL1YtmF5gVOCa7YnTC8IHzgBXsBwRKDJ4QvxkMhfDF5YlNi9kS+xHIo5S9WT5JdbJ5wk9g9sS/MSwWz69LmyUMETK0Fhk2KnmyW5ArGQ6YonIiYiidoBniiLIBmUnNEnaR+JEMQGKboOMS8OWJz0JM1Hq7gwVqnCAJrlOTJ1Yp7sFp2/MNcjyT75eaIicndETGUx5Ekx7I5Em/A67QOAirRka5YkiddseRDCYUAt7VA2wG+KGfJQ6V58RRL9+QCFTdOT928aIc1eFJsajyWpViTFzGwuvJ4kMcJRgZWTxxPbU48wtod4ThLiK20j7BlB11pwQkX2OKhuMDmycVDb8sYFdNcqXmtHkueY34mGHzT+rFAlzYOxd/1g8k7wOZkgSiDkFucIdeTJ3AGmZ1wMmEvx/JtevUiuvTmyVjsxlweZHOCWYHjWOIesD3RiS7DE9wDTE90qOLIjjgXZHuCKYejOhKBRnNkD45+JJ8R+KAskHC2zRNNs4VDQYqEyLWAwtmSJ6xmy66wmq14chgJgWsBJ0gQXCvwmK17YR0JgGsFHBM2V+xNCK7sP6AEW6HQhORKoSGWJ+cwlIS1tYJCDNUVAxN8oTyhe1L4wjiWthi3Q6EyMXhCBoH1yQI6MiZbhEw8GLATiyeyJlYvBGNsnrgaIAtb2C/EcSjgEcjC6i6+liVnMMVjOYMpeZJ8UvaE36RyMKePaMUWoIypeSJwki9HL42DeUGuzB3mcrKDCpjjsdi+nDz5OTl7IotyORQ5uMTYWmEY5eaIysndkySYPUE8ZXNk1ZRwLJmvxCOpQkBbpn9vsfOJ9AEpxZP6V+qh1L/SjkULlX4sWmhNkLbCHeRGKRK0KHiCcaorS68mTyRSzZ5Qn1qOxdcw1BYH+O3wQ3FCbelYmToOReS07UgcISJv7eAYRUf+T0uOlEgkZuMMIKBmK3swXJ5sxdYc8YetHwpLAiYq+te305s5paF6OBQ0tATjuu4LnJievICXPXsiG3s5FnLYqxdyqLdj8ZC9eyIP+3AjGm1H8mlm9C0juuJwpPjMwFs2bMNB8zUhdssGNjioh5kTY2thuHcnkOBYmaHtiwW60OZD9SNMreshAzaAcuxd9MKoWgwkVEWIlnzzU4HhIJeSKV7y245rswL4VM2IilRF1pZ4+SNFx9qy4sTWqjLFLgQjCJLK1rIDH0auKyuMpCXnU5DpzFVnEo4KZGsUiT8QGn8wBQsF0J/pTMdAH7eU4Ro3sK9yAmoVHXlF7fqlJqF2/ZUhtRAaMhoBtJo8DIHPmE4IjNy8nyxrsWMJGFgd4voE7jrnaoPBlamQMORSQWgS0zEd0EmkZEXGbqQdBv3rRgaRmI5VvamqEaKpiqAsBp3MVlgsHdyYMGhaAhltfJdCECk5UJWVZKq5QzNGcJFAM7ZQGW7U3wCIqyxrupoGX6s20KRqhMrSWZRYMKZM6x1YLELhwgoyCQAVrKCdUaqLJ/6y0CxKZbgCvVjTS17wjrID0BrOqAybYmDczFCabiytIqMtC74JkxrLDqUV7VBaUzidstGsVnxLlaOlKtIkTlP2pUwVIzSkisiSN4MDLOR1xxUZYhER2VhY6J3hSAXdoRIjbGEkE9uDiYpGQLBsxNSKes9Q1xOt6IVq3KToFe6lhhc+K1P0a+uuKLBBJW1KdGRXVvFupwcOGqNgsItIsGqBBMsYCZbdkGDhg4flTgbYdjZS2mEPJkG+9IS/N1KMi8Ow4PRLwQ6n7nMfu+xnuCM7UfoBvFWRXMAcHcbCTiu2y+rAJfTXgsFeiDvsZDTWFzRMiXt5Xx+ocHPXiUIHhGJ3sCP15Kf4l3MaaOmVPCCcNjpv6eFoRgLwXkFuiIg+enMyacQTIzzYsLq2c+EypyJ6wbk+5K0Ix9x1TUuU7vLpPFNGV9+Xn3a5VcauLCsH9NY0z6lq4K2VfLSLTZPwdJw6vyb82RO+esBAZSpMr0ZcrSAH5ztS5RuYGuChzruPfvCmeyDwfB1mY6FqjKwlid1FrFEAZ7P5WWrHw/RvS3r+zJ2f5qdvDtx/efni+Y8XT93tYzp1r/zLv/7iX+b187qh91+0snGMJof67czuM5PLhum8LsDlPEj0F8I0mRaRrIjzZuuOFnnD1j5wiV6UF7x5wo4tu+C3Z+RdFbVjuE4AkPaWYcdd2Sb9wA5oEfAIqEZWWNXysL65nNXDmXNgMPJ0Eo/qss2ndt7hhwZpSGIBvHyEl939gUVBXPkSpvkyWbXDvar0UJQY3KvHCKyd1TNr7Eb+L9UYq+10mJ9b/4ineeEebdqDCT+aP5gysufhyGZzXs0Cl3VhTqFjedRHUrO5Foo2B/WszrBEsR7zY8cGN7kRsayFZ5AkntIvnxgeI4nn8bvbb/95f/FA3j/VA/lXzgfyIltSm2Ebqs0re5KDsyc9wZ+gIMGC0NaV3CgIcdHhXWiIHa95l7FO/Cgv4H2M7iCy0eG+/EEO96s20ev3K9faBUvZd4ewbAj5cZ3xTzl325zyrxecnMeuc/OyW4nfbQjIf9/kTgDH/4Un8uR48ZL3Xbws5tWV5XuGa+2iofLrF0HtanT+tXvpn7oCZ/buf/GlQnqoIJcE+tkuGF2fRJtrg6C6TqYENm7CFgW/+yux+e36+uV6qjZn4azdNqiXqOAONfVdVyeL83jHjQQREqCblGwlIhAOMkuXFSftCMWri+c3/7h8czFm0a6/fvnyX78I+dWzu29v/vLVm6D//ewx9jePIR//+tljiX64efpelHDipx7+D97lmEc=
I tried to keep them mostly inline where it matters for my setups; the 8 to 8 balancer has a overhang of 2 on each side for example (but two can be used side-by-side), since that is a sort-of needed spacing in busses anyway.
If your input isn't fully saturated, the balancers may be blocking, just add a row of splitters at the output to circumvent this, if there isn't one further down your belts (as for example in ore busses).
Otherwise the balancers are all throughput unlimited.

Bug reports/improvements/suggestions are welcome! :D

Preview images, so you don't have to click:
ImageImage
Image
Image

Sources:
Base 4-belt lane balancers: https://imgur.com/a/sgAsj.
Belt balancers are from:
4 to 4: https://wiki.factorio.com/Balancers
8 to 8: https://www.reddit.com/r/factorio/comme ... er_i_made/
16 to 16: https://www.reddit.com/r/factorio/comme ... _balancer/

EDIT: 16 to 8 righty was broken, fix: https://imgur.com/a/AVQ2Y
EDIT2: smaller 16 to 8 center: https://imgur.com/a/KiwoR

Re: Lane balancer and merger compendium

Posted: Tue Jun 06, 2017 12:34 pm
by Shokubai
Why do we need this again? Also, I dont know where you got that 4to4 from but it wasn't the wiki.

Re: Lane balancer and merger compendium

Posted: Tue Jun 06, 2017 12:38 pm
by plneappl
This drains all input lanes equally, given even an unequal demand. I like this because it helps mine ore equally, so your ore supply drops evenly.

I took the 4 to 4 from the wiki, then merged it with the 4 to 4 lane balancer.