Bulldog Tic Tac Toe intersection
Posted: Sun Oct 21, 2018 10:42 pm
by zOldBulldog
Designed with the goal of achieving a balance of compactness, high throughput and supporting any size trains.
Factorioprints page: https://factorioprints.com/view/-LPNlfISFe-D9aoDepBp
Some considerations:
- The return loops on the inner lanes before entering the intersection help reduce traffic that goes through it. The same for the outer turns. Using similar loops on your lines will allow you to use mainly exit/merge/lane changes instead of intersections, which (at least for me) has significantly improved my network's ability to keep trains running at full speeds.
- It is Left Hand Drive (LHD). Why? Because even though in real life I drive on the right lane, I noticed that the left exit from trains makes LHD much more natural in Factorio, as LHD typically leaves the things you want to access on the side of the train that you exit. Also, LHD allows placing the signals on the inside, which leads to cleaner interactions between rail and neighboring belts/structures/water. So, after a little RHD use I ended up switching to LHD for my rails.
- You need lane changers (between inner and outer lanes) a train length away from this intersection. So, if you are using 4 locomotive 8 wagon trains you would roughly need between 2 1/2 to 3 chunks of straight rail before the lane changers.
- bulldogTicTacToeIntersection.jpg (12.95 MiB) Viewed 2363 times
0eNqlnd1uXEeuhV8l0HUU7GL953JeYG7mYoCDgwPHFjICZNlQ5GCCwO9+WlLvVrtFdq9v62JmEE97hZvFYpGsRdbfV7/dfbv5+nB7/3j1699Xtx+/3P9x9ev//H31x+3v9x/unv7s8a+vN1e/Xt0+3ny++vnq/sPnp396+HB7d/X956vb+083/736NX3/2fkrf94+PH7b/cnhb7384vofR3/T0N/899HfzOhv/vPob5bv//vz1c394+3j7c3L1z7/w1//d//t8283D7vPOfzt325/v765u/n4+HD78frrl7ubHfDXL3/s/uaX+6d/6w7tevfrv3b/M+b3J4lOoOxVkMed0n7/z+P1s+4cmGWPs3g4WcYp52CKCmPnUKqKMs6hNKyaPjycTlXjwwyoGh9lQtX4KE8fTHXTXKCElePjGNWOD5OpenyYwtVTXKCK1ePjtC0eo+9c2NXO497vfn377Hj/vkpP//Vw8+nYLd3u/qk+O63fH25u7r3/67srVaeL5n/coIvmw0y+aOa61AUvmo9ztDc+f7i7u7778PmrA2K/1BXml+oC2Q/n4vX+UHqDtFwEynTB/A8rmjztojzU0QfybPD07olh3NX7ONjX+zDY2ftHO3f2zT01Mnb2AQ519gEMdfYBDHf2zT01Mnb2AU6j6vFhOlWPDzO4elz/nCdWj4tTFqoeHyZR9fgwPABvrhMrOAIPcGgIHsBQ1xzAcNfc/MQCu+YAh7rmAIa6Zh+mctdcXSdWk3YkX4/1TK59dyb/fPXp9uElOnxKWx1co2oP5MuifAblK1sC49r1wDi1o3/t8x8scajs/9gNnmuVosPlB314OPS0CBaInhYBzOv2+vjt4c+bT6E5r0uRf1zk6oHik6O6R1mjJ0cAk7RvnP4XembcTFTbagzpstZahllDLb6FtaIJl33Z3O/VQ6W0X9IyfoTtHmzDsHX5ETZ7sPLeSOajuuszKOqpCpKHCrLgtodtlzXbFw47Lmu26xnFAMIaRlVklQO0QAGeEfRCQdtlG+jy7oo2lytqw6iKrHpcl9bFKoIJDA7bBBuY8Hgr+bIKBg8CFRWMxGEFFQyDgcIpqGdbI6MjdadVD6RQyYqwOPpeauB7G0ZVZNX3kq0rboIhDQ5bBEMCJ5Xp0s5F3aL7eKWky5qdicsqqGAazdpKOc2KPPOaGRZo38K6qpU3WOSnXGGrtmAHl5rce7GGZTNh3fXIb4AvHhhVkVXfT7ba6HJ50dOycFy7bPtpSTwHkOQ1jivJm+F1TgluPdKyqWjx7Kf027wf6xB5sXP3e86P/Ru/BVYtYh00nP3Y5Z2VFpyqndpUcmH1quFCpJ0YVpEW3O7bfgdkIbtOSSx8XNt+9XNXpDUsbRGS9qRzAQ4pq6aFwlNhSd4qBgPpsLvyVGqk6Yg9oHmuZ1wXqbPtHwMNnEwKJZWkcwBSYPiuieqMgOhkdaU1cT9ZPmwnF8aodNpH6/vH1v0jFGeSFY4rlGeSqfvHXu18KNF0IvyCQTTBax+aJobqSepBE13TBK1/ZMU/5QVl/1mRVOcqRM7fhzUMKxTBUhYTNlti03VNTCc3RJGAr4aKYSU16BvN1g1RFC10jiuUwlLmlRFN3slxFXnLglOjHBAk1fvm9OpsqxSsFLEmchQF1SDI0CkVazIQfW2hCXsWioBJ51ikwNrdXaRzLqJz25e2Y1hJWn0P5dXWhTJg0hkar7hCyS5VXg6R5K2J40ry8nJIDrjMfDsFQIWmvVmoqqVaMaxQVkuAYDGItB3DStKC7bSuklJVAxyMHJi9a55tQ61CkbclnmWYT71Xi/RWDieSSUddy/zbJZ0WvuWDb6/0Jj0rda8jnoZEd7GprHhHNJVTTHMxB7ye19ZnYkfqL0/HdQlpefpJcPfxPx9u7+OcxH4wexeQVyiUOqfOyLDzZq6zMKIQxNdjxbDSZ+tZUt5/tymFTUDFyIErds29q+WI/BrSL1I5ok/s5CVNAEbG4fBQNDHSFlwXST6U8i8HJyrpdGR+eAQyFuzmAqCK/FGKv9hf7YbdiFLd1dkYFuxSd/frbAy7sDxTrDmNeFe6+pzy7okiUFefOgdjhZX0OfX8KK8+RCnuzsxxleLuLLiWpclbOa4kb9vio12kTtzAUThuUitBmgN7vkjSiatjmox2RMYQdPBaI7Oge8B0Fkayc99si20LGmPJMq03mVC6tqVscMsuUMXyCTVw04kRUXDnf3bHsJK0oNyweg2hAm6LetH0VNp/Rj3ZPc1tyF64tEJd3cAUhDXSl7QAqBGHM69dTmsNUCMO8kp6KO/G9eWt7z7zfNwNZ5OE27fgukgDl4g0CTlZUMIFsxOMWIAlfFWu4Rom82i4PIsKLMDKFiRBwoopzRou7/jVcDstRWqw+gZD649bFiVYMMqBrJlOliArhsc8aKjyzkKKpX1YGiptotdQMdVdg8XUWQ12bIB1gTC3T5JP50SgA0AfL4HOK33cBDpedaYEigYKz7X8tS91A5AgH77aNYEpYZwpoUk7sLQCAcN0ogSKrXWeBEoFqsiZzdXPC928RedIRCVA1w50wsQBVlkwnT5xXVbVCgwUq5XjFkW7jWexkrysHphfS05vut3casEGKoWmj8nqmPMgd1ZucKwtDL9DvWygVljx57YZk3Shkm7IwgJJC+wqNWEKhjV0sXVcLS5StfiIZyHhU/V21rlpSbHesbHCHUwvMc62CGygs9r7gNrUZ2HYeVvtrBJfqZwqV73Hfsv155yFYQLRzrrYF5Kpd9F5GDk4ht3jXadhRBV1Xw0Dw0rSgkLHur0E/p4BCkYJggb38B0qcT2/7l+Tjt1hnJYjaSJzXEkTvA/L/PGrg09zipBop+IT2cNHgp2KMRCvXwTfNrF/94E4v8IEtppt4FcIbDVTZ1zkFu83d1/oBIsoC/LVUDCspAaQXO2XPw1FCw3jmkBVs9kxfUWTd3BajCTvBipgMC152UozWZSgPG+YexFJalvmSDyrUx1+uZzOhqh9xNMv/V9/94XH3SSRFspG4snie/y88GJjIBmncghEuMypHEkgwmWdyhEFcr60k8JK0gIqR1n9k0CDy+RBi8DvZRfXMPVEkzdzXEleHh2mYGg8jw4jJH61nARuVAZ0jQNuU2x0wGj2qWbgf/lk0WwIZOhwO4Rk6Q070f1gozPVJRM3OnFQMnDD509glYYvuSKgSq8LJOvWCRm5AePW+RhRPOtLOzCsJC0oU6xWJDD0MiBklMDmXeskT20sRF7juJK8fFhM8p+byJzvFCFtra6nJgXyYFpFsPTuDsjsWqvHUvsrNbDUwqVk1tkZDZirTs5owFhL2nbF8KxhF9DwWeKbbMEdjRGQ+ERTPlT/U1WqLllnYmRi9DoTIxOr1JkYUZLgSzswrCStSnqv+0vGlC4zJjIYWFGDo8TdRWBgxSGzE671c1XfQij7gkbKly9rcs1cWkkLhdfJirJqFVf9NVxOxtBwO6b+a7gDU/81XF4vTP6zVm3ZgnRZwiZP2wz2gWuvjU/b1KTNuKFAwy24oUDDrbihQMNtuKFAw+08LA7sdWxBEiTk89wl3M6fR9Bw03sDYR/WaENBEq7vsz7r4pqYlc65OMAKrIDc8VOImrSNtj9osB22P2io9KU5DXXC9gcp5tLZFmS59HEXBURcOs+CbIRBHxPVUPGLCRpsxfmmBNs2wLpAnbZqaPIN2qqhwYppV5og39BJGii80EkaKBqaeECTBsvLGcHTsWUDkCAfbuHXYHFbiQbbKd9Qgx2U96PBTnxLLcCWRZwVnaeeFBWdkhEV26sLaxhWCK6KzpyIrjJ8aUWKe01+8am7oFUt5gQlreaictJTWhRpO8c1xb7UV1HXrqVTLfio6pSZoyKvKczmkrZ2kKj4vIMk+c9LJ9tI1lIlzbxMINABSyrsbqpRuTeQLgINwx6ShUqKH/ZOAo2zgMEZhawb7N06KCMpl3OF0TOuqa51foYBr2loD6ZYZlfjOk/DgEc2tP8G1TPPz/zNZ2jzJerddA7HIaGSDGJsY2SqUmMifaDdvIidTPT8zGqTMgl6skqkz1Ra8fHVkkBwotM4ostB163rEzWKAbdOqByLj+tmK+DhkT4Irn669UZw9Rp+LwAXPDzSjeDqgWQn61ZAEZ+sWwFVfLJuBZTx0brpYWRD66bvt4bWTd9vFa3bwKxwoRmmgDdKSmAOrvMFlI+1piNw7kvdkLa5nRGl8rFrSWg2KJW/+Sh9+AZOYvDhmzmJUnNRqfyGTNIrvSFTrJ9QO8BaTXqZp+yotnHubgqajErDc3cDi9IJHatpKmuj0zlSIWrkdfzgq/HTCtJXNzHE7vG2dEPsxsnyyrZsmCyv7CCdyFFJjKLzONDRrNM4UCSh0zhQ4KPTOFCcptM4UFip0zhQFKzTOFDQrtM4UI6h8zhQSqQTOVAGpzM5UMIpj83oh4hlSJ5xqGzf9dqpKtJm3JUjtIyVIZLqr0sJleD68aHektlcleDC8HHWwwdiLSiph5/rHrODMxCHosW5AdYDmvyZVKEHrcxE412hO7KA90tMN3WdubHoC6SzOBagVVxrl7SKqVCBKXWOI6zO2HYtID3yXSaur7vfXlWqhnXXsycXUzyHiiGXVAFVo8kGXxe1sj5dDfiSiodQreggrkvFh0fzl71t8J4uUMeE8qYsysCwRbFMdjN8WJ2q3IJWMu7Cldm1JTLswlVwdlHp3Hdl1RK9BlbWjLEwcrhkvhoq5f5KS4aHv0tL1vkh6uLgx+kCnInv4wTyYAWvk6zZkQSb8G2cBGv4Mk6CzfguToIt+CpOgq34Jk6CbfgiToLt+B5Ogh34Gk6CnfgWToEFMzEqWDIwEqOCJQMTMewA6wLxYdMBUNl4RySN2a254n46gT5c84Z3f4QjGjAomovq6wC/+iN0JtVMe7MUvRbamqVotdBBTYpSC53TpOi04DFN/qbiT5EEOPLuqcDB63wI4tp0NgTxwzoXghwaOhWCnHA6EYIcxzoPgsQOOieCBDo6I4JEZTohgoSQ+swLEu/qlAgSnOuMCJJJHFEilImuY21y0ie61jrD+a3P/587rbUesSoUwXreINg4HR7b7Iyo7q994duCL68k5mw9JnGcG/BY+zGui8RG+da+aeFPNVbPmoLz60C/4osQ17VA/RZNv8Uu6rci/R6ozkC/zd5o7MxW838d6Fecip/nRTVseJjWB1JHm6aLIjHPcmhrJitTwRDr4Nf+yhxzWs6p4egxmEANfcNUcB/ItjIMFYJhBXNI/NTBTXLAGJIXVKENpYIhJL6obkLS2/tEdfOx3um7F5EZjS0j4cFmyovnuE7+ZPSTPxkjdoXvQAw2JRyWHOlywOGTik3qI1GavnvwRBTFznUOTZPNfKDK1gyDBV8LmAjgO1DxDZrXltzQfjrZi4f2YXCw9TdB8DwTMvu/9vfQ0M73dDHiGHNjL2CAp3Nz7OwxObXQPV+M3CeK3POGjO2N76uzxKvs/9pf5WOWzxkllIuu8ojZIyihVq6E+eaQmD1Wgv/rQAmVEiq05GVqfqRfVi7yI31D6jLfvNsyzwTI/q8D5aJ4ZGxIa8+aQbzo4uyM0dGit0VMCA6VhqA/pKlEp9fawptOBHNxDabUoYAZJqUhUGHk13w5FmiczLT4srWN40Wkbq22dJhFhzocMA8NgTCH1lccnCCTUmTEyUVP9K5RuL9q4ImeParQ8tQSHdwpNP60RMd2mqLVypLQyIZSQ/lXCNPZxae0xINhSgs82bWnsr46UWnIy2sbXz2I1sfoowe+p7DM0q1QnMIylhCHvv4WfFZD5OcsnBbWWcoSfuFgUX+II8ZQ1VCEkrUQ6hCOR+JlMYLqCxPPKDXRFNRMmYkSaqHERAm1Ul6ihNooLVFC7ZSVKKEOSkqUUCflJCqoYPRK01cLDF5p+mqRsSv6aoGhK1VfLTBypYLVqqwdUphu2gpuC3RLZq3gJwgCHNyAIRDjW8HPDwhV8FZp34VQr2+Vtl0IvQytwq4LRacVNl1IGqUj0SWN1k2xrTSUsVXaciEtF+248PdSpQ0XAcxEjWrCAPSmP4tT9WNHn5oCfK4+QQUcD/oAFXCS6eNTwKGrj1IB8YH+DA4IZXT2Coi69BkqIEDUR6iAWFYfoALCbp13AjIEfXgKSGY6HuogtI+3jt+5dnnhreOBy0Ibeuu4l1bg1LfeOaqLMza1vEptKq1PONdAaKZoOqVjkddo0LEOilnqlI5FXvaRt3S7ZoV80cBDN2C1KgZ1YegsB2mBOgy8AtnoS6KSRU56d9ik0heYi+JL664yGIuyRxWGmLVp7OGJKeh1Zjr/R3qSuc3CnoeYylpVOgK0KZLiUoLb391mp3M6h7I+Y9ujCtIIhjYnlVnQaF8WHje4OPQUEhTaF3vf0eZ/cX7XGVxdTDhZSPAgfan42HBhGpykKX0vfWBN+mA2VagSH9cXOlTI16Y+ByXr1pPYuH7hqOjJ0Ex9waP3lOHoo6a4ta5TCUqRHYc++6QU2XGkBi/0pKimgwdohus9fNRBL/Qk1Ekv9BRUMhal6KiJXuhJqEYv9CTUTC/0JNRCL/Qk1Eov9CTURi/0JNROL/Qk1EEv9CTUqV69uceA67LAKBTfu7rnFZiEskdVHkHpWU6ZXg4t5QHAntWc6cATHZLXzrhu5w4p7Fkevep/tC8cfDNtZWV26cQGnIbkmr9vqngoa6DQua3/cCiM2V7ofazyYFUv9EJWUWiBF7LKzi/wQlba96VsujwdPu+qF5o3+Xaksxb8CoGvv46eepY8XKFXsMH3TvSwreSHdPZCMX236PSFYvJuqYZen52Xb6C7zl6oevSl0xdA6KEPPgFRkk5bAAGdTlsAsadOYgBhsv4ODIjodVIDSD50UgPIk3RSA0jpdFIDyD51UgNIlHVSw3V9WSnl6e3ewMPTvkd1jyUwlmOFlaQd9IHoJHGge1MvmA4vQ4vAOsVhjer994F6T9sat1Q5bdtNgwqPR0lGaijbHm9W5aywDSkJTTodkB6au8fcAKOzNy1yqAl3B0MqRIJ6RjnVuohT4Vn0AedLSg5N50QU3Z0N2/Jms6jiQedMBjuOjbhI0O+MummagoreYCYT6QBtNYOHzxjwHWQVV5/euujOTOdMrKiKM9M5E3sqnCarUYad8mZzn5i4lwQGdddfk7kOFsyXtmJYSVr9UMv+WekaLSBS5AJgB2WPaLD69VVeZNgBOBQ2ACx+7laDtQ2wLpC+r6wA+UBl3QAsGMlA1r7RYrgGiwlKGiwuskdrPzcAXZYPPDOTwNrzeQ0arMFRfEloehqJTjjUZC3vRM0u6nsTMF/WRi9ZJNQOyWQa6mDMLw10wmsWBdSW9+VEPiicJ6iEQMPsfaC+pHCeoBJVDZ1hAbaq0YebNFTKQg88v3WOI0g3IKFQQ53wDk9C1UkV5MTXSRUkPNGnRZBYSp8WYWejiFw4jiCdPkGFrLpenCCr3iGfVEOVd1Mmqy7vJpDqDZ1RkUEQpTMqMgh3Cn2lU5M1U1RJ1kLbWpLQEzVKxbBCO9MAMyICM/Cl7eoN1OGiKCt08gFmSKzySmqYODd3+7pGxW0dEVDaRqd6qixf5lONimfeJaEDbdSMYYUOxlFRcb2GqvBlrjCWVDaATsIAVlr7tmkXxWdsDZ1/sYaUga3SHo8AR2dZ5KbbpE6zyE03SZ1nsVJxJVkzRZVkLZg3LLTPDMC1WGGFdqTReMVckrZjWEnagU+O5hs/r+z5QF18fv06vfDZ0xQ+E/IqDpewVblFH93YBNInXoX/7RmNII1x0IHTj+Eub/IuUs9TWtfHRcF1hcBcaEN7hDNoljIUXeHcR+goGwPzYxVZB+XHarIa5ogJjOgxMoU1gVM+9HkQ14EZ+NJWCqtJi9vak0viHoz5cEQ7k7ofxuDXR4Gcc8MzQc8rtPlpkrSMBN4mefm5O7x/6JyKZOe0MNM2Nk3Q+TB0/oSdXR2dMJH9Lem6JZ0vkX3/4bolnS6xZ0tosjbKmpFk7ZTaYQLZbQCyxAor0N3GVPsR88sIacuXFTsX9SnMvIZutigFmQnIEoHRVhfWMKyg20moE22V1gUqeCZqAASH7z/NMfeB2PT9GAcPqAw+DE+oDHAmrNSbQHmbeJ6ECfS8KQ+UqO7ONRfTRNpjCzeuuxV0usO+kKrptVBUSa+VVn1NuO+eCRe/rSialYvf66Y2U5iqE8yWCPaCrwa5q2Nt1TZpgO4E8yVWeRX9Guzx6EzLhnl65t6yTstMzgXKyY+gQM667arhrZzFhWdN8VQL22riFjy6No3WxCOlotaNwyQA8aszfQ0xkDKnTYx9VUqDV/cmXNvOjLbV6+5P0rEIqBH+SeN6woy2WIZ7QKdI7Cvbmp47RZU0MWgZ3oT7tgne0FhhhRu3CcZOrGlIERYMzJ0IdoarBPCMRnDe+tJmLK2k2/JeJfjS4icANdi2AdYF6pS9r8k3KHtfg52UvS/BEpoEWHvwwEYCa0/IEmDJat4A6wIV/ASKJF/Fry1KsA0y4jXUTl9GlFAHfQZGQqUjziXUBmeca6AJvgQjgRp84VEChTxzDRTyzDVQyjPXUOl9cOBMWuc4gnSUZ66hUp65hNopz1xDpTxzDZXyzDXUDJncJpCbZqes88BCe+U4wjc3+s0C9WoCdgWx0PHOxNpHxZV2BVXnWqw394ot6VyLXPTVAlyLQFg3LxvyLMx1dIFVqcDK2RYmcNrm4CmUpAaeQknS9g3SukBjG4nj7WK5ddCBCX6BnHPZWK/V5JxJnYf7gtovj+Sb6qsc2YV0bV99lOO15FuDku+kb9hE67JtSEssFx3LYgJLbU7K97OmrMbgqC7OpBQY4ZvTotIfcgr3SvKBE5VX0OYOltMfBBrdDjdT3LxIaijqCXfYjUM54XbIFZfLNE1sOYx8JMj9O5zxXdTAoBoQ14yfR4EGwPSI4Qrob9oEe9y1z9aHRyQ7/9UZpl7iV4tbyVJoR8GHV5oqDsU804ZTygcSaRM2QhcSfPiAeY24UDhdkvTJSRN5URweeJZjxTVFu5wukRffAChfYo2/86LEtTt8POBI1GzFuJpm8SOgoWa72hK0f10+S/INDXWumD7KhP44+kjAifDt29/meD5EXpRtnkVa3yFNeLZyH4pOhQg1SLkPogYrhdU02Oj9cTZlO+dOhxznpEVygPuwSlyUjZhVxrjt5ZXcJeA+BBvK1y8hPyxACwXf0mbz90GhM2FDoAJvEnJRNhR4acM3fN88jygOZ83IsmtFwWrTArioAnEY7IGylpMWLOqEh1VeSbcVDzjPRVFvxbMqc1PUQCgPg8ibMa4mLybD5uLv2VpF93+oq+asxZ+1wYrlM7APRS9pw68d8AY1N2V7Vnoxm4uyixqlvWrSApJDIdIaLtw0ZQ81PP81D2UPNbWI9xqTNi3wAZMiAjMLNNEwrqaJzkYo5Kns/zZQ3/8paKCCCYkVWSqYd7FgntZqZhYL5joNIvl7wrewrqZTS2i6gby4yqfpt1BYTQ28FCFVy8HTHHvcIhVje8fHtiYvbpgX5Z2skFKS4hiOKRJKD+jT0DT/OD+iRej9/c+ORuzvH2OeNuwn62F/f/Tz74H4hnpYz+ghk9LU6Sr5NjXE43Fclo6+lFikgvSgDMAsFaR1fsU+XRelHbSupkmLCetFKvJOXA0pUpF3JsrdFuU1jKvJm5mvKmHZ8ph2IWz2M0CUT1uksqVOv0i+IfkGqvMv9gmwKO2gsJq0k+brRSkCpgU3gBSlCJgW/OKAKC+elynKq1ID11OlmJRyJZWR0ULcQGA4LbMo5by0wHGZxSQddFiFEIWlNRNR2kmT2aKU3BJ522OPq5TcEnjcYxBx6eMeorSwPaQolaOkj7vwV8y3BJ2psSYvmrCNwmrS4hyuNMkQeA43JEuYiN9a3PGLOzNdCKW1TEU0naOxxmxKsSEZpTwVpdiQLLNkuKZAk4UkazVJmlSr+GucWqVhFjtg+kZOLcFX9w2peq16qv48Se80+W4lzNXD338PPmCw1sBQEZOGVrX5SDoDZF2bCCixJKcGFO4dkliXXC4jZaju6NtgYHhGIhgKhhI1bAAjQOrUACIgatsRzoQqCnAAF2OvorYESAmqKAQypqIQJzMVhTgFq8gCpEpVFAE1qKIIp0MVRTgDqyjw2WAsRDkLpPMi7DxOgiqKcHCe3wKvBpgO5TxQgSqKcKC7DnGwu26BV6vUXYdA0F2HONBdRzgNu+seeLWWYH2oa2ToBMgJ5byEGUbasoRlQ4DcEwiQn66iTgPecSZAjn4fBMitogJ3jwrcqcFzJFwqeI6EOPgc6cGJ1Og5EgF1eI6EOPAcCXHwOdKDE6nTcyQEgudIiAPPkRAHnyM9OJE6PUdCIHiOhDjwHIlwBj9HghNp0LA/BIJhf4gDw/4QZ8spMTo5Jc7VTNYCye4Ht483n5+kuPt28/Xh9v5x92+/+/Dbzd3uz/7x7e7u05fff/rX7cef/vVh958vNz/tfnHz8MeLAD/9abtf/7n755cW+tHNRprLk3f5f55rbnE=
Factorioprints page: https://factorioprints.com/view/-LPNlfISFe-D9aoDepBp
Some considerations:
- The return loops on the inner lanes before entering the intersection help reduce traffic that goes through it. The same for the outer turns. Using similar loops on your lines will allow you to use mainly exit/merge/lane changes instead of intersections, which (at least for me) has significantly improved my network's ability to keep trains running at full speeds.
- It is Left Hand Drive (LHD). Why? Because even though in real life I drive on the right lane, I noticed that the left exit from trains makes LHD much more natural in Factorio, as LHD typically leaves the things you want to access on the side of the train that you exit. Also, LHD allows placing the signals on the inside, which leads to cleaner interactions between rail and neighboring belts/structures/water. So, after a little RHD use I ended up switching to LHD for my rails.
- You need lane changers (between inner and outer lanes) a train length away from this intersection. So, if you are using 4 locomotive 8 wagon trains you would roughly need between 2 1/2 to 3 chunks of straight rail before the lane changers.