Page 1 of 21
3 and 4 way intersections
Posted: Sun Nov 14, 2021 1:48 pm
by Factoriointersection
2.0 intersections!
If you want your intersection included you can post here. Some might need some adjustment to be added. If you have both LHT and RHT versions of the intersection that would be great!
The testbench isn't made to test elevated intersection so it might be changed in the future to more accuratly stresstest elevated intersections.
The testbench mod to test intersections here:
https://mods.factorio.com/mod/Testbenchcontrols
Tberras mod is also mostly compatiable as its based on the testbenchcontrols mod, so you can use that aswell if you want.
https://mods.factorio.com/mod/RailTester
-- 4-Way --
-- 2Lane --
-- Elevated --
Zaanza
Score: 114.6
Details
Blueprint:
RHT , Size: 365 x 364, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 114.6, Set2: , Set3:
Author: zaanzabar
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Zaanza | 114.6 | N/A | N/A | 114.6 | 365 x 364 | 6 | 2-4 | RHT | zaanzabar
Presorting minimal conflict intersection
Score: 113.32
Details
Blueprint:
RHT , Size: 213 x 213, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 113.32, Set2: , Set3:
Author: Locutus123456
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Presorting minimal conflict intersection | 113.32 | N/A | N/A | 113.32 | 213 x 213 | 4 | 2-4 | RHT | Locutus123456
Propeller
Score: 105.37
Details
Blueprint:
RHT , Size: 160 x 160, Spacing: 8 tiles, Train length: 2-4
RHT: Set1: 105.37, Set2: , Set3:
Author: FactoryEnjoyer
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Propeller | 105.37 | N/A | N/A | 105.37 | 160 x 160 | 8 | 2-4 | RHT | FactoryEnjoyer
Short v3
Score: 104.22
Details
Blueprint:
LHT , Size: 184 x 184, Spacing: 8 tiles, Train length: 2-4
LHT: Set1: 104.22, Set2: , Set3:
Author: PiggyWhiskey
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Short v3 | 104.22 | N/A | N/A | 104.22 | 184 x 184 | 8 | 2-4 | LHT | PiggyWhiskey
Chunky Mk. 4
Score: 103.5
Details
Blueprint:
RHT , Size: 96 x 96, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 103.53, Set2: , Set3:
Author: lucyisgamer
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Chunky Mk. 4 | 103.53 | N/A | N/A | 103.5 | 96 x 96 | 4 | 2-4 | RHT | lucyisgamer
slimline cross
Score: 103.43
Details
Blueprint:
LHT , Size: 166 x 146, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 103.43, Set2: , Set3:
Author: tbterra
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
slimline cross | 103.43 | N/A | N/A | 103.43 | 166 x 146 | 6 | 2-4 | LHT | tbterra
Windmill
Score: 103.43
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 103.43, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Windmill | 103.43 | N/A | N/A | 103.43 | 130 x 130 | 6 | 2-4 | RHT | Bocian
3 chunk Square
Score: 103.1
Details
Blueprint:
RHT , Size: 96 x 96, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 103.11, Set2: , Set3:
Author: mmmPI
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
3 chunk Square | 103.11 | N/A | N/A | 103.1 | 96 x 96 | 4 | 2-4 | RHT | mmmPI
Minimal conflict
Score: 103
Details
Blueprint:
RHT , Size: 208 x 208, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 103, Set2: , Set3:
Author: Locutus123456
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Minimal conflict | 103 | N/A | N/A | 103 | 208 x 208 | 4 | 2-4 | RHT | Locutus123456
Partially Unrolled Cloverleaf
Score: 102.7
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 102.70, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Partially Unrolled Cloverleaf | 102.70 | N/A | N/A | 102.7 | 130 x 130 | 6 | 2-4 | RHT | Bocian
HJ Ramped
Score: 101.43
Details
Blueprint:
RHT , Size: 106 x 126, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 101.43, Set2: , Set3:
Author: Hans Joachim
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
HJ Ramped | 101.43 | N/A | N/A | 101.43 | 106 x 126 | 6 | 2-4 | RHT | Hans Joachim
Compact mess
Score: 100.14
Details
Blueprint:
RHT , Size: 96 x 96, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 100.14, Set2: , Set3:
Author: ManDeJan
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Compact mess | 100.14 | N/A | N/A | 100.14 | 96 x 96 | 4 | 2-4 | RHT | ManDeJan
Whirlpool
Score: 99.58
Details
Blueprint:
RHT , Size: 132 x 131, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 99.58, Set2: , Set3:
Author: DemonXanthRank
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Whirlpool | 99.58 | N/A | N/A | 99.58 | 132 x 131 | 4 | 2-4 | RHT | DemonXanthRank
Frog Eye
Score: 99.1
Details
Blueprint:
LHT RHT , Size: 93 x 86, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 95.47, Set2: , Set3: | RHT: Set1: 99.1, Set2: 0.00, Set3: 0.00
Author: Avona
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Frog Eye | 99.1 | 0.00 | 0.00 | 99.1 | 93 x 86 | 6 | 2-4 | RHT | Avona
Frog Eye | 95.47 | N/A | N/A | 95.47 | 93 x 86 | 6 | 2-4 | LHT | Avona
Buffered Celtic Knot
Score: 98.46
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 98.47, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Buffered Celtic Knot | 98.47 | N/A | N/A | 98.46 | 130 x 130 | 6 | 2-4 | RHT | Bocian
Twister
Score: 98
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 97.99, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Twister | 97.99 | N/A | N/A | 98 | 130 x 130 | 6 | 2-4 | RHT | Bocian
Semisymmetrical Loops 6 Tile
Score: 97.4
Details
Blueprint:
LHT RHT , Size: 74 x 74, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 96.02, Set2: , Set3: | RHT: Set1: 97.40, Set2: , Set3:
Author: Avona
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Semisymmetrical Loops 6 Tile | 97.40 | N/A | N/A | 97.40 | 74 x 74 | 6 | 2-4 | RHT | Avona
Semisymmetrical Loops 6 Tile | 96.02 | N/A | N/A | 96.02 | 74 x 74 | 6 | 2-4 | LHT | Avona
Windcross
Score: 96.81
Details
Blueprint:
LHT , Size: 127 x 127, Spacing: 4 tiles, Train length: 2-4
LHT: Set1: 96.81, Set2: , Set3:
Author: Krispite
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Windcross | 96.81 | N/A | N/A | 96.81 | 127 x 127 | 4 | 2-4 | LHT | Krispite
Paperclip
Score: 96.6
Details
Blueprint:
LHT RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 96.60, Set2: , Set3: | RHT: Set1: 96.60, Set2: , Set3:
Author: Xortle
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Paperclip | 96.60 | N/A | N/A | 96.6 | 130 x 130 | 6 | 2-4 | RHT | Xortle
Paperclip | 96.60 | N/A | N/A | 0 | 130 x 130 | 6 | 2-4 | LHT | Xortle
Celtic Knot
Score: 96.43
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 96.43, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Celtic Knot | 96.43 | N/A | N/A | 96.43 | 130 x 130 | 6 | 2-4 | RHT | Bocian
Pinwheel
Score: 96.1
Details
Blueprint:
RHT , Size: 130 x 130, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 96.13, Set2: , Set3:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Pinwheel | 96.13 | N/A | N/A | 96.1 | 130 x 130 | 6 | 2-4 | RHT | Bocian
The Pill
Score: 96.08
Details
Blueprint:
LHT RHT , Size: 62 x 94, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 95.89, Set2: 0.00, Set3: 0.00 | RHT: Set1: 96.08, Set2: 0.00, Set3: 0.00
Author: Avona
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
The Pill | 96.08 | 0.00 | 0.00 | 96.08 | 62 x 94 | 6 | 2-4 | RHT | Avona
The Pill | 95.89 | 0.00 | 0.00 | 95.89 | 62 x 94 | 6 | 2-4 | LHT | Avona
4-fold rotation symmetry
Score: 95.06
Details
Blueprint:
LHT , Size: 64 x 64, Spacing: 40 tiles, Train length: 2-4
LHT: Set1: 95.06, Set2: , Set3:
Author: ella
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
4-fold rotation symmetry | 95.06 | N/A | N/A | 95.06 | 64 x 64 | 40 | 2-4 | LHT | ella
Reverse Manual Nightmare
Score: 94.2
Details
Blueprint:
RHT , Size: 96 x 96, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 94.20, Set2: , Set3:
Author: mmmPI
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Reverse Manual Nightmare | 94.20 | N/A | N/A | 94.2 | 96 x 96 | 4 | 2-4 | RHT | mmmPI
Inverted cloverleaf
Score: 93.79
Details
Blueprint:
RHT , Size: 67 x 50, Spacing: 44 tiles, Train length: 2-4
RHT: Set1: 93.79, Set2: , Set3:
Author: sparr
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Inverted cloverleaf | 93.79 | N/A | N/A | 93.79 | 67 x 50 | 44 | 2-4 | RHT | sparr
Lilac+U
Score: 91.85
Details
Blueprint:
RHT , Size: 118 x 118, Spacing: 2 tiles, Train length: 2-4
RHT: Set1: 91.86, Set2: 0.00, Set3: 0.00
Author: coppercoil
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Lilac+U | 91.86 | 0.00 | 0.00 | 91.85 | 118 x 118 | 2 | 2-4 | RHT | coppercoil
Wide Boy
Score: 90.2
Details
Blueprint:
LHT , Size: 59 x 65, Spacing: 24 tiles, Train length: 2-4
LHT: Set1: 90.20, Set2: , Set3:
Author: sparr
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Wide Boy | 90.20 | N/A | N/A | 90.2 | 59 x 65 | 24 | 2-4 | LHT | sparr
ti-v1
Score: 81.1
Details
Blueprint:
RHT , Size: 111 x 111, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 81.10, Set2: , Set3:
Author: grossws
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
ti-v1 | 81.10 | N/A | N/A | 81.1 | 111 x 111 | 4 | 2-4 | RHT | grossws
Cube
Score: 80.7
Details
Blueprint:
LHT RHT , Size: 93 x 93, Spacing: 2 tiles, Train length: 2-4
LHT: Set1: 79.27, Set2: , Set3: | RHT: Set1: 80.70, Set2: , Set3:
Author: DaveMcW
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Cube | 80.70 | N/A | N/A | 80.70 | 93 x 93 | 2 | 2-4 | RHT | DaveMcW
Cube | 79.27 | N/A | N/A | 79.27 | 93 x 93 | 2 | 2-4 | LHT | DaveMcW
-- One plane --
MultiCross
Score: 85.83
Details
Blueprint:
LHT RHT , Size: 262 x 262, Spacing: 6 tiles
LHT: Set1: 100.63, Set2: 85.10, Set3: 64.73 | RHT: Set1: 100.27, Set2: 86.37, Set3: 70.87
Author: Tallinu
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
MultiCross | 100.27 | 86.37 | 70.87 | 85.83 | 262 x 262 | 6 | 2-4 | RHT | Tallinu
MultiCross | 100.63 | 85.10 | 64.73 | 83.49 | 262 x 262 | 6 | 2-4 | LHT | Tallinu
MultiCross Expanded by Tallinu, v2.0 Sample | 108.27 | 98.00 | 89.83 | 98.70 | 362 x 362 | 6 | 2-4 | RHT | Tallinu
Small turbo roundabout
Score: 63.47
Details
Blueprint:
RHT , Size: 116 x 116, Spacing: 4 tiles
RHT: Set1: 80.40, Set2: 61.97, Set3: 48.04
Author: Hovedgade
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Small turbo roundabout | 80.40 | 61.97 | 48.04 | 63.47 | 116 x 116 | 4 | 2-4 | RHT | Hovedgade
Simple
Score: 46.42
Details
Blueprint:
LHT RHT , Size: 35 x 35, Spacing: 8 tiles
LHT: Set1: 50.01, Set2: 39.99, Set3: 43.21 | RHT: Set1: 51.27, Set2: 41.18, Set3: 46.81
Author: HansJoachim
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Simple | 51.27 | 41.18 | 46.81 | 46.42 | 35 x 35 | 8 | 2-4 | RHT | HansJoachim
Simple | 50.01 | 39.99 | 43.21 | 44.40 | 35 x 35 | 8 | 2-4 | LHT | HansJoachim
Simple 6 tile | 50.40 | 40.72 | 42.00 | 44.37 | 37 x 37 | 6 | 2-4 | RHT | HansJoachim
4-way Intersection, Straights
Score: 46.01
Details
Blueprint:
RHT , Size: 39 x 39, Spacing: 4 tiles
RHT: Set1: 51.57, Set2: 40.57, Set3: 45.90
Author: Sente
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
4-way Intersection, Straights | 51.57 | 40.57 | 45.90 | 46.01 | 39 x 39 | 4 | 2-4 | RHT | Sente
Symmetrical Cross 4 Tile RHT
Score: 45.31
Details
Blueprint:
RHT , Size: 32 x 32, Spacing: 4 tiles
RHT: Set1: 51.73, Set2: 40.62, Set3: 43.57
Author: Avona
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Symmetrical Cross 4 Tile RHT | 51.73 | 40.62 | 43.57 | 45.31 | 32 x 32 | 4 | 2-4 | RHT | Avona
Symmetrical Cross variant | 50.83 | 40.50 | 44.36 | 45.23 | 31 x 31 | 4 | 2-4 | RHT | TimEv
Small Askew
Score: 44.65
Details
Blueprint:
LHT , Size: 31 x 31, Spacing: 4 tiles
LHT: Set1: 50.29, Set2: 40.60, Set3: 43.06
Author: sparr
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Small Askew | 50.29 | 40.60 | 43.06 | 44.65 | 31 x 31 | 4 | 2-4 | LHT | sparr
Compact 4 way 2 lane - fast
Score: 43.87
Details
Blueprint:
LHT , Size: 32 x 32, Spacing: 4 tiles
LHT: Set1: 48.67, Set2: 39.17, Set3: 43.79
Author: MJDSys
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Compact 4 way 2 lane - fast | 48.67 | 39.17 | 43.79 | 43.87 | 32 x 32 | 4 | 2-4 | LHT | MJDSys
ElevatedCompact
Score: 42.2
Details
Blueprint:
RHT , Size: 53 x 51, Spacing: 2 tiles
RHT: Set1: 46.97, Set2: 39.20, Set3: 40.43
Author: mmmPI
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
ElevatedCompact | 46.97 | 39.20 | 40.43 | 42.20 | 53 x 51 | 2 | 2-4 | RHT | mmmPI
-- 4Lane --
-- Elevated --
Multicross ramped
Score: 212.8
Details
Blueprint:
LHT RHT , Size: 276 x 276, Spacing: 6 tiles, Train length: 2-4
LHT: Set1: 212.8, Set2: , Set3: | RHT: Set1: 210.91, Set2: , Set3:
Author: Teknolyth
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Multicross ramped | 210.91 | N/A | N/A | 210.91 | 276 x 276 | 6 | 2-4 | RHT | Teknolyth
Multicross ramped | 212.8 | N/A | N/A | 212.8 | 276 x 276 | 6 | 2-4 | LHT | Teknolyth
Star Loop
Score: 176.6
Details
Blueprint:
RHT , Size: 191 x 191, Spacing: 4 tiles, Train length: 2-4
RHT: Set1: 176.60, Set2: , Set3:
Author: akulen
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Star Loop | 176.60 | N/A | N/A | 176.6 | 191 x 191 | 4 | 2-4 | RHT | akulen
Roundabout 5
Score: 137.2
Details
Blueprint:
RHT , Size: 288 x 288, Spacing: 8 tiles, Train length: 2-4
RHT: Set1: 137.20, Set2: , Set3:
Author: akulen
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Roundabout 5 | 137.20 | N/A | N/A | 137.2 | 288 x 288 | 8 | 2-4 | RHT | akulen
-- 3-Way --
-- 2Lane --
-- Elevated --
Slimline flyover
Score: 80.2
Details
Blueprint:
LHT , Size: 120 x 44, Spacing: 4 tiles, Train length: 2-4
LHT: Set1: 80.20, Set2:
Author: tbterra
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Slimline flyover | 80.20 | N/A | N/A | 80.20 | 120 x 44 | 4 | 2-4 | LHT | tbterra
Bottle
Score: 78.67
Details
Blueprint:
RHT , Size: 75 x 47, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 78.67, Set2:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Bottle | 78.67 | N/A | N/A | 78.67 | 75 x 47 | 6 | 2-4 | RHT | Bocian
Airplane+U
Score: 78.23
Details
Blueprint:
RHT , Size: 102 x 53, Spacing: 2 tiles, Train length: 2-4
RHT: Set1: 78.23, Set2: 0.00
Author: coppercoil
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Airplane+U | 78.23 | 0.00 | 0.00 | 78.23 | 102 x 53 | 2 | 2-4 | RHT | coppercoil
Trumpet
Score: 78
Details
Blueprint:
RHT , Size: 97 x 88, Spacing: 6 tiles, Train length: 2-4
RHT: Set1: 78.03, Set2:
Author: Bocian
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Trumpet | 78.03 | N/A | N/A | 78.0 | 97 x 88 | 6 | 2-4 | RHT | Bocian
Bottle+U
Score: 70.6
Details
Blueprint:
RHT , Size: 54 x 69, Spacing: 2 tiles, Train length: 2-4
RHT: Set1: 70.60, Set2: 0.00
Author: coppercoil
Title Set1 Set2 Set3 Score Size Spacing Length Blueprint Designer
Bottle+U | 70.60 | 0.00 | 0.00 | 70.6 | 54 x 69 | 2 | 2-4 | RHT | coppercoil
Re: 3 and 4 way intersections
Posted: Sun Nov 14, 2021 3:36 pm
by Factoriointersection
Legacy 1.1 intersection to look at if you want inspiration.
Intersections
Re: 3 and 4 way intersections [Work in progress]
Posted: Mon Nov 15, 2021 8:38 am
by Tallywort
Great to see a new intersection thread. Hope this one will be as popular as the last
Re: 3 and 4 way intersections [Work in progress]
Posted: Mon Nov 15, 2021 1:53 pm
by FuryoftheStars
Indeed, awesome to see this brought back to life!
Re: 3 and 4 way intersections [Work in progress]
Posted: Tue Nov 16, 2021 6:43 am
by aka13
As always, thank you for your time, great work
Re: 3 and 4 way intersections, Ranked by Throughput
Posted: Wed Nov 17, 2021 1:27 pm
by Factoriointersection
Thanks=)
Now the post is usable.
Still work to be done though=)
Re: 3 and 4 way intersections [Work in progress]
Posted: Wed Nov 17, 2021 5:19 pm
by Koub
In the old thread, there was an additional criterium : the intersection's deadlock proneness (which I found tremendously useful). Do you plan to integrate it at some point ? Or is it out of your scope ?
Re: 3 and 4 way intersections
Posted: Wed Nov 17, 2021 6:10 pm
by Factoriointersection
Koub wrote: ↑ Wed Nov 17, 2021 5:19 pm
In the old thread, there was an additional criterium : the intersection's deadlock proneness (which I found tremendously useful). Do you plan to integrate it at some point ? Or is it out of your scope ?
After the 0.15.27 update intersections will either deadlock in normal traffic or it will not. So the old deadlock rating is useless. For posted intersections that deadlock we'll comment it:)
aaargha wrote:
With the changes made to the path-finding algorithm in 0.15.27 almost all intersections rated from B to E (inclusive) are safe as long as the player does neither, disable the train station the train is heading to while travelling, nor, destroy/build rails/signals that makes the train's path invalid.
Re: 3 and 4 way intersections
Posted: Wed Nov 17, 2021 8:04 pm
by Koub
Haha I feel stupid. I confess I have almost never used trains, I guess the last time was before 0.15.27. Time sure does fly.
Re: 3 and 4 way intersections
Posted: Thu Nov 18, 2021 7:55 pm
by hansjoachim
Koub wrote: ↑ Wed Nov 17, 2021 8:04 pm
Haha I feel stupid. I confess I have almost never used trains, I guess the last time was before 0.15.27. Time sure does fly.
it does=)
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 12:22 am
by farcast
After looking at junctions for a while, especially the multicross junction, I thought of seeing what would happen if I just spaced out that triple crossing you see in a lot of T-junctions. This "Double Image" junction is the result.
RHD Scores
Set 1: 53
Set 2: 59*
You can improve the set 1 score to 57 by breaking the exit block into a 2 car block and a 4-5 car block after it. If you do this, then there needs to be another 6 car block afterwards, as well as only using 5-6 car trains, to prevent deadlocks. I chose to list the score for the more general use case.
* The set 2 score is heavily dependent on two things. The signal spacing leading up to the junction needs to match the length of an inner buffer, and the three inner buffers need to be near exactly the same size. When these two conditions are met, then crossings will synchronize in an extremely satisfying way. My efforts to disrupt the timing revealed this behavior to be stable, meaning crossings will naturally synchronize like this. If either condition isn't met, then this behavior will be unstable, crossings won't synchronize, and set 2 performance will drop to 43.
Synchronized crossing.gif (164.77 KiB) Viewed 114538 times
Extending the buffers to fit 2 trains only improved set 1 TPM from 53 to 57, and had no effect on set 2 TPM, so I decided not to include that since splitting the exit block could get the same benefit, though I haven't tested using both.
Using oversized 1 train buffers increased the set 1 score to 55, but crossing behavior became unstable. I tested again after increasing the signal spacing from 6 cars to matching the inner buffer length, and crossing behavior became stable again. The set 2 score after increasing the signal spacing was 63 TPM while the set 1 score dropped back to 53. At this point I realized ~63 TPM might be the hard limit for crossing performance without using multiple parallel crossing lanes for each entrance, as there was never not a train passing the chain signals at near full speed.
Bonus RHD Double Double Image scores (without split exits)
Set 1: 54
Set 2: 55
Set 3: 74
Blueprints are for 6 car trains and
7 car 27 rail tile signal spacing,
but would also work with 6 car signal spacing. After figuring out that I can switch between set 1 and set 2 without waiting for trains to clear out, I found out that the tolerance for self synchronization is even less than I thought. Signal spacing really needs to be near exactly the same as the buffer length. I think it might actually be buffer length + chain signal blocks, but in this case there's not much difference.
0eNrtnV1vHTl2dv+KoWufRvGb7Ou+mAlyldtgMLC7lY4Qt2zYck8agf97JOvUsVtm6aw1cgXvC+gmk/FIS1XcZJHcfPjs/7l4/ebj5bv3V9c3f3/99u1/Xfz4P1/+5cPFj//+1X+9+98+XL96d7h5e/j1/dUvd//9vy9+jC8v/rj9v59eXrx6/eHtm483l4e7n3p3df3rxY837z9evry4+vnt9T3sw9Wv16/e3P3mzR/vLi9+vPj96v3Nx9t/eXlx/eq3u3+4/4lDvLgFXl3/cnn7F8Knl5PfvLq5/O3Lr71/dfXmq1+J01/Z+mPpq99M8I8dfv7PV1fXh+NPfvn9/OlvLy8ur2+ubq4u79/583/54+/XH397ffn+9m1OmJ8/vv/98pfD50d/efHu7Yfb33l7fWzWQ8yfG/bQb9m/XL2//Pn+f6x3z/cAGb+80M0t7df/vNmChnEPHX+Gxgk0cWjD0MyhBUMLhyYMrRwaMLRhKI9Tx0wepoGZPEphwVAepRB4mDgUjyfBxMNJvDweTSJKeDDx3hTwWOK9PuChJIZnwGNJfEgCHkzikxfxYBIf54gHk5hGIh5MkQcqJjaJxjqdQ9MMmeG8nJZ7ZgaPWf68ZDguFiZzff/hGPv6Q/kzN8y4lT1ritNHbTNkY4+als0nnbZqhy3QxsrND7nTlh2M26PCJj5H9WNvTYDKJ6k2OJWv+lrjVL7sa4VT+bqvJU7lC78mosVXflVEiy/9qogWX/xVES2+/Ks8WpmPrcqjlfnYKjxamY+twqOV+dgqPFqZj60iosXHVhHR4mMri2jxsZVFtPjYyiJafGxlHq3Cx1bm0Sp8bCUercLHVuLRKnxsJR6tYheF8fySqBSaAIpT5iwBVKpO1pC3bzpbQ6hdp2sIdeh8DaDWxSZsCDTYjA2BRpuyIdBkUzYEmm3KhkCLTNkQZpUpG8JsMmVDmF2mbAhzyJQNYLbFpmwINNiUDYFGm7Ih0GRTNgSabcqGQOEMtZ5QgEmvyYwFmPMaHkpiGdHwWBIrnoYHk1icdTyaxDqy49EklrwdjyaxOu94NImNROcJdREoPDWJ7VnHc5PYSXY+OYlA4REl9ucdjyiRShh4RImsx8AjSiRoBh5RIpc08IgSaa+BR5TI0A1+RiUChUeUyHsOPKJEinbw9Z4IFB5RIvEdFjykehJUvoGK97EK5w9AwsJ3ULHNqGFKTfQIqK4nFYEcrIQFj6w4eBvgkWWaoD4inPkW3DfbYU5vLkWTSQfrT+wK84iNJ3bbMhVALC6dBM4Cw1eqChCxQ0zHkLGe+5W84syQWLnLQ+68JZLatpCO8JXCgnTdsvW881aGp8MnLBsQXG0h+i6XW8y/NvOAdbUpRD13uJ67fnQT6mFfqS4ej1jfwk4fmusu1lPnQkRM0Z46I2qyp86Imu2pM6IWe+qMqNWeOiNqs6fOiNrtqTOiDnvqTKhCe1F5tIT2ovJoCe1F4dES2ovCoyW0F0VEq9hTZ0St9tQZUZs9dUbUbk+dEXXYU2dCFdqLzKMltBeZR0toLxKPltBeJB4tob1IIlrFbWkqWMBlfUKMnlSfECMqXBcegnj/wZghzpB1qpS2Glzy7sVqcBE0qoU2evkkT1/Qc2Z5+oKgRZ6+IGiVpy8I2uTpC4J2efqCoEOevhAoF1uIuZ+LLcQyhYstxIqKiy3E4o+LLcQ6lYstxJKaqy3E6p/LLcRGhestxJ6KCy7E9o8rLsROlSsuxKaaKy7E/p8rLkSqgisuRFalFXn6gqBVHr4gKLwncujrRZFv7olM1xOtu2uxYQGJNS68OCrtBsivcuHFmDGnD9qDus/08OXnd9lgmr0HFaie7J2mjpKgnUptj/GPn6YUuHWqKwTEu8qbUR3lkjs9twrzZ53ucjocRXeZ9wlzHvBh9bqBHFNwtcVx5xhILxrBbR1Dn3ajEdVuMXTywlZMG9r82eSt3y1MsY8z5pwqH2cD0+TjxDDndPc4W5ghhd8xfZpe07WX3rc4Qb7WBiZKCe4WJ9nmKXNOts2zwSmyeTYw1TbPBsf6PMQ253TbPBucIZtnjglWwL3FCbZ5xpwTbfNscJJsng1Mts2zwSmyeVKYc6psni2OvLOwhemyebY49tOc5t+wiIUz95QHWdE8ZcLlR54iyxRpP9lbrwvVMYf7pWHq5HXhmv242HrInL8vVMWsq+3UkA9BVCK0sAmf2jHww/v7EGWgxYv87P4Y90FadzwNOm1bfnI/f/1pm6ag9oM5T3t9imqQ50yejO6A116UF9SLUjYfj60XLqafp80nnAe6mt01a0yaT1qVWjmSdEJM0Hikb2Kn40ccz9/PqXk+x/MD+fIoJsjHKfM5lZ+5l0cxdotb5nNVllvcLYzd4pb5cj7LLe4Wxm5xy3z5nOUWdwtju3KZ98Eiu/IWxnblOu+DRXblLYztynXeB4vsylsY25XrvA8W2ZW3MLYr13kfLLIrb2FsV67zPlhlV97C2K7c5n2wyq68hbFduc37YJVdeQtju3Kb98Equ/IWxnblNu+DVXblLYztym3eB5vsylsY25X7vA822ZW3MLYr93kfbLIrb2FsV+7zPthkV97C2K7c532wya68hbFduc/7YJddeQtju/KY98Euu/IWhu4i83GHMu4uk0xJNok+5r25yyT6FsamHcfGa8m04xYGbgTX/eX4xijys6P3ZwPwH78yQ3958ebV68s3t//209uPr99cvvjrb69+vXzxb3/56cXrj//xH5fvL395kQ7/ePXH7U/+fvn+w/1BfQ+5jdvPTx23i43+xTV8uXv0fZ3WH/VLD8ovPZ51Wud+6emfdmp/dlp/dlp/dlp/dlp/dlp/dlp/dlp/dlr/3o7oVTt3ZHSG0OQl8m+x7XGn9e9oXS6u+hrr8mUX6/Kwi3V53MW6PO1iXZ53sS4vu1iX112sy9se1uXGZj3sYbNurMuXXazLwy7W5XEX6/K0i3V53sW6vOxiXV53sS5ve1iXG5v1sIfNurEuX3axLg+7WJfHHazL0w7W5XkX6/Kyi3V53cW6vO1hXS5s1sceLuttD5P1sofJetrDZD3sYLIedvBYTztYrJcdLNbbDhbrYweLdVNcYOxhXb7sYV0e9rAuj3tYl6fvb12ev791ednDurzuYV3edrAu5+fLYh0pTNbLHibrbQ+T9bGDybqxLk97WJfnPazLyx7W5XUP6/K2g3U5N1kXWQ9hsl72MFlve5isjx1M1o11edrDujzvYV1e9rAur3tYl7cdrMv5PWLhXD6GroYakCmDuGZsjLv39llHFr1F+oGnPSzMdzZbf/wgqEln+Gpr48JOtq/TOuoMXTlsL8N6lUCL7WUXJ/ewh+t8iDv4w+/qtP4dDcbLHlbo9fu7ljd1aW9xdvtd+tdAt/1hjaDSD8hceqFjtvyzJuvEyr85Y3jrtQTbIu1iDJ93MYYvuxjD112M4dsuxvB9F2P4sYcxvDFbb7uYrZc9zNaNMXzaxRg+72IMX3Yxhq+7GMO3XYzh+y7G8GMPY3hjtt52MVsve5itG2P4tIsxfN7FGL7sYgxfdzGGbzsYw/ddjOHHHsbwZfn+xvAlfH9j+LiHMXzawxg+f39j+LKHMXzdwxi+7WEM3/cwhh87GMPXZQdj+Br2MIaPexjDpz2M4fMexvBlD2P4uocxfNvDGL7vYQw/djCGb8sOxvAt7GEMH/cwhk97GMPnPYzhyx7G8HUPY/i2hzF838MYfuxg4N4Xewenopyo8AIQxvBxB2P4tIMxfJYXkCo6FKHW62cM3Ov3N3B/dlp/dlp/dlp/dlp/dlp/dlp/dlp/dlp/dlp/dlp/dlr/xmn9jPbqJF0YyI6An9wb+/L/F4zWkX353kbrj0t5NkNV/k+s1pmhHTUdTztYuH9nq/Xv5oZenVkddZZX+rJFWqJDfVmQBu7PTuvPTuvPTuvPTuvPTuvPTuvPTuvPTuvPTuvPTuvPTuvPTutPcVp/mj96lnW/RvrWSvz/K991lGT4bJh+xnkdG7gLp/V//eec1sP+TuvENj1A2/SzTutbfyyf9VjnHu3CaR2aLW0sEUxC5dDi+cGV9INNB1fWmOmnyE5ih/my15o8V5BabeoY/lDr+RROV3m7Q83nwwnvHH5x5K0VXbTTHs+1fE/H9NXgCFG1yzOi8lvzSVD5pd4iqPZWL6NWeQGZUfFCMZlo4Zk1mWjhVWQS0eL+6UlEixuoJxEtfgKYRbT4Ld4sosVv8WYTLXimUZb5Rzs9bqQOXaQqOWGTR4HfQMvjJurgXOhQOjjIgLrYUk/MJzmmH7t7ad/TMH11NUTUaG0NETVZX0NEzXbiR9RiJ35ErXbiR9RmJ35E7XbiR9RhJ35C5QeEUUSLnxcmES1+ephEtPhhYhLR4keLyUQLTlD5uKso4A5ohqfuJ1OuUohhEj+FXGfoks7Pe5lOUf3IXD49yR999Uucn/yKI8mVM98ZB8uZn9OLM8mVM02pUqfztZVzPL+4oJdt17VVBvmNUtzqAj0nvIJRunhOmFTMJ7c3Jm0ptLrjss1NjxudPx7/40rwocAwPMnn/OSm2s6vL/kR6IkK0kFVmfSVU+umTsQ9NT31mdOTTM+32jc8bnv+aA8rZbsNyuPW548nO+Ophz1udo6+KQmo0Gp335Q0lcdVmKsr6dRuhfSdtqieGbfp5UlO5ydr6ul8xk9h6+McnTuYS935MezqOb3B0T7LG5xq22eD03T7TOd7YUk+HuXoddWcw09i66Pv1XV/nl+04Uexp/aZc5Junzkn6/aZc4pun+k6mB++ntpnzmm6feYcbQi+wRm6fabfMX4H9dQ+c47eJ2xw9Pd5g5PcdjSAiyhDf6vnNz2H/lZvcOhKJc/fMT/Js/v0jtPvm7iE2h7lDP080++JcOI+PdAGCF7KSMdVGLr6z2+lrscmIRHHablbfvis5YznNtqGPoTmM57bsPzAwwYoZyy3H33WtsyftT3Jb7tVXL8+LNqklFUc1y6lrOa4tillWO1TyrDaqJRhtVMpw2qrUobVXqUMq81KGVa7lTKstitlWO1XirBRG5YyrHYsZVhtWcqw2rOUYbVpKcNq11KG1balDCvk0iZkwrTBhAw7WfGa918bbj9u5NT5XE7v7bYunpOWi+jHHU12XtuwVsCBeU7Re7yHuEyftp1x2z5jOhY2nzadMdx+vA+YpoUHKzHJlu1uY5u/q932Oh80YmC82IJqDazoc3CbXtKxMhxb3TCTLfbD+mrGlx3SaRTkH6Th9uP3xVOWYFOdmRftCuI2cUhBcIXzdhyCK2zkIq/dFkT18xCL4AbBFXErolpzFHETF5aDKF0bTCX0YOImaqEHEzcx3oKJm6mHbuImxtti4ibG2yLiJuqif85rYa4Yb4uIm6mOvoi4iVvVQ4SNywUOw0RNeIqZoPHBNkzMhH+eCRkfat2EjI+0LkLWFrnnIQaxjZoqtYzrhgvf7oOodCucuw/VtGvWadb0Xd27D6LasfDvPojKzMLB+1BMyLpOsybn4k3TrATL5QwHUUnc2HiLqufCyPsgKrQHcQ9dVJMPXApxSrMibNFpVoStOs2KsE2nWRG26zQrwg6dZiXYseg0K8LSmWzNXZLpcUSZuSPTozD+Nhudka0vO8OafZnAVunayqhNVkxgVDGLCaq1QyFUYzAeBDXIa4wIymUeAiq9mxmUl3cR0CIvSyKodSxn1GYvSyJqt5clEXXYy5KEGhZ3KAIml69tzx/XTvG5RVigiylbGKIn06ZZ1oxi1CKLRjEqlU5VEf/mDlpQ/HnRJNOmeEyJ9Evkgg6RK4pczyESW8J1XWThIldziJRh5GIOk+CMXMxh8rHGgX0xAeNT1mIixuesxYSMT1pm3k6iQIcImXFkECETlgxm6haeDOIcLApThmhCxkdZNCHjoyyakPFRFk3I+CiLJmR8lIkTcuHdbg70hZd7MGs5UUv9WFaSVKcQTu/HupLEPAfLO9paBPDO1RIsvYQT/HGUoUbgOY3jIEONoMoiHL5IqAKqusD1HVF0hyGdVUhDFFhXJBbXGbiy41i9lLQAl3WI8VCS6QpfZIqsJ1Dnh/WAMROjrvLE70J6mmv9xjesnDGxR2ehmXSDrgZvW7su7LmDfh9X7oKKpdTF5dJJT/hKz4E+Y3XridsZa3xYgpeNCaHqmH/J0tOc8zemn3LGSB8dVpD+W50YGHWE9rS5IT3NbT/yD0IdKkFH2tP5QpxqG7PPQQuyZDL7GrSocl+kDzQ1kbWmvgUNrhpPWPYpEOXY+UzG5RzztUc54/tPEouo38p5bO1hifUwOo+dFrcJ9YTuRltRD93haDstw+AzR60PJ46pQtaxbn4RNmt1OMIWLQ5H2Kq14QjbtDQcYbtWhiPs0MJwghWyjjV9h7BBy8IRNmpVOMImLQpH2Kw14QhbtCQcYatWhCNs04JwhO1aD46ww8rBATUJdcdonBqsGBxRo9WCI2qyUnBEzVYJjqjFCsERtbo0DbCWTaJAfRXv361gG1HpxefK35/KOw55mTHrlBmsfJK8valxz0dVSC51gN4/W5kjetJiVY6IWq3IEVGb1DgiaJcSRwQdUuFIoMKwg0dK2HXwQHF1h2Amp25ETFsHmTCL0zYipqz9hJhNKhsRtEthI4IOqWsk0GSLPyFoUNldMpMmK0BEz2n1hwiapcscghZZmwdBq7S3RFDr+4+g3KBWBMq6HhIoF20UHqhsXc4RlBcL4IHK1uEWQfn0JAJVpHEKglpjZwTFI6qKQHVpBYmgQyqvCZQbbzQeqBLUUQbZl3Blhtjqc7cNkZXgVhsigcIVGSLXwwUZIi3FHTZEBq10K45G1GG10YTKrTVEHjVxYw2R9E3cVkNkqFNNVheNqNnKohG1WFU0olYrikbUZjXRiNqtJBpRh1VEE2pbrCAaUYPVQyNqtHJoRE1WDY2o2YqhEbVYLTSiVuwet/rSVVJSLTXpiU2MtpPx0rjvBeO8qiUJK43j5nKAZ+2LMycltvCpB2VOihq1R2VOyp4zUevApHpVz9afFJW5Sp3qBo+llEKc1n7t9FwqnzDnu2dv1uUUlbVKvUtDUtiUQ/pcsqcddDjVPm3aaaYOG2akPIVO++iwpT9DIBVVbelPRrWlPxm1yLQio1aZV2RUW5eKUbvMLDLqkKlFQs2LrfjDqEEmFxk1yuwioyaZXmTULPOLjFpkgpFRq8wwMmqTKUZG7TLHyKhDJhkRlZdFqSJaXFbRRLS4rKKJaJmaKMdwASV6FsqKdeYCi5ccihPWhD6t2Ryq09KETl65Wce/eQWtLOQT6zyyAdIehPO6ZdnXNdkCBftE82px2dQuaY+CdE2geX2/LOqTrK+2ASr61TZA2iFwC9R0G5U5qOs22gAN3UZzUFp0G22Agm6j+aDl6oRTG22AtEvmFijrNtoAFd1G889I0jWstkBNt9EGqOs22gAN20bzesc5L7aNtkDBttEWKNo22gLpb3aaf9gyvU5e7vMLCRTkzJmuUY5FHBOoZJqz/pZvvTLN+9b7pU/q5JU7feU4hc5fmd64K2teLTVyBzUXdeXuUJZN/HQdWLSXcgZuDVkU4Thi0wCtLGpwbGDnbZyf2gjztpV54Jyng6BUN+5zJs9G88BlTdjmhXWo7j4oWy89VLfPffMppxHHhgy58jatgbbp6WkjyYJnbMaQ0yZ4Op6EG8Nx2s3zhUDNrj1LBB9qUVNjVerNp+CqV2BlPh9VvWsu8wW4qJSxSlBRPIdLFZQOeh+uk3H8/lRQkTlTa4XD6ilQGqkGlkWpjPVgexBs0reEEDbbUpYMK9y4hsAKO64msM1awjBst54wDMu3PFGETJTKCCJkolRGECEzngoiZMpTQWCzvoyGsMXeRkPUaq+jISrdSMXpJ3y6huJ2CveNWhNYQwkzhTLHTidGfOB/XJXWCiZGeuCfV+QUouta1wYCPnRda4bVda0ZVte1Zlhd15phdV1rhtV1rRl22MUAwRbhnBCbwAa7GGDYaBcDDJvsYoBhs10MMGyxiwGGrXYxwLB0ygrHK/SgznlZOpW/rVWIaydawsJP/I/TdgMZpMJtFO6Z01xK4Sf8ZX20KSZKTJpjZEGZVuYYeXW7tU+f/vby4urm8rfbX3n95uPlu/dX1ze3P/7m1evLN7f/9tPbj6/fXL44/sdff3v16+WLf/vLTy/y4R+v/rj9ud8v33+476493G4DYrvdbse63HW7q+tfLv/72I+/oG///IfrV+8ON28Pv76/+mVVQN4fqNz+1qvXH96++Xhzebj7qXdX179e/Hjz/uPlLe7nt9cfLn7899vfv++ft79588e7u3f9/Px/6sMXX/7+5z70za/8fvX+5uPnTr621+efOMSLB08O/tif83Bffj+pv5y/+s18F5XPwb26vH/nh3WdbFWneYeBuuRjuZEG8lNJP9g8qaQx8+FpMXWayZNGA3eUs6tv+CEPx1I/ZO3d1XbmUPP5cOoyR5VUp+e3Yoag4jGxVkpAVPx9XwslIGqS7rSMmqU9LaPiQRRNtPCYSiZaTQrDGbXbcleIOmy5K0LlOq8kosVFX1lEiyvAsogWl4NlEa0Iz3LKMv+4zp3V4fWQ1U38UBNZd3PV2FpguJK6AE1WZ6zERbibbNGBHM1EeNxzPF++Y04N4Fhsxhqa0n9AHlhyKVEa8QKy5RgRNdlyjIiabTlGRC12nYKo1a5TELXZdQqidrtOQVRbYQVRua4timhxkVsU0eKKtySixeVvSUSLO+MkE61i1ymICvU7R7nZoQBbsGzNpg4Fnb7AJz1W/C7L/EhDXlU6zNUW3P/mxNlIXFnOXOTCNW0nzlRZXJJr5RzPLy6KXLNlkN+g8rV1dYGeE46F0sVzQilbWe8IH5hIzJUaOunkDkwoV+DaLR/Xgw+FtzNmhSu5vIpqDgndl67Whu2Q2vnVa42aCpJNXNK2RZ31Be5ws9UC03jBEXa8H3bXB2YU6LpxUh1Ooj6NT3PflAQ0khWev5xkzAemY65yJ5SmJyWumFAp288460Pcy2bNAcxvFHCJW32ck+zzzG+BcBHb8cr3FqfY+XWDY70ItzhNt890vudCtFP7zDl6XTXncKlZffS9uu7P89toXEx2ap85J+n2mXOybp85p+j2ma6DuSLs1D5zTtPtM+d03T5zztDtM/2OjUW3z5yj9wkbHP193uAkt28M4GrW0N/q+d3oob/VGxy4H6h5/o7Tg7ym33H6feN6rNM7zjlDP8/0exIWvSHeAkHhYjqulohLV+ASq/U4JqTzi6awyN3yw2ctU2h229AArjQELq+qbd4A82eFQ6Qt82dtU6g01Dv082cxQZSnOVqJHAbpWMPW0kFYfjS/FtNh2GAtShiWCxjXWQVh9eVkhs3WWpFhxYUwEzJ9PYxhxWUxE7JuFfIMK0wqRMi8GQvDimv+ImRRi/EZVovxGVaL8RlWi/EZVovxGVaL8RlWi/EZdjgf1wMQNYe0KB9XNJfTSjati+eMrtDeIRN5may0dgDVmUPKqo4Pe9DitnOIWe0xYCNxatK/7yF1uo5N3W31UJyGqmaBmHmhN5NP+fRMDlFCDrYo97fg+RNDe4BTPW76wEkW5KbPm3VF7kMimtCiS3IzbtU1uRm36aLcjNt1VW7GHbosN+KWRdflZtygC3MzbtSVuRk36dLcjJt1bW7GLbo4N+NWXZ2bcZsuz824XdfnZtyhC3Qjbl10hW7GDbZEN8NGW6ObYZMt0s2w2VbpZthiy3QzbLV1uhm22ULdDNvlBgLY9gfsmdPyFDrdPrVF5yxJA7Sgc5YIG3XOEmGTzlkibNY5S4QtOmeJsFXnLBFWO1ExbNc5S4TVrh4IK0xzsghZ1x6iDBt1zhJhk85ZIqz20WXYonOWCFt1zhJhm85ZImzXOUuExcnFzqdH7Jyz5tfI9DiCtYxADSC8dMw+ZyTrH8WwWfpHMWqRRhSMKmYxQW320jqiiu2YoA55JzCRG6z8CquASrsPBuX1PAQ0ySuCCJrtFUFELfaKIKJWe0UQUZu9Ioio3Z2JgMklLnDGSnxuiVzXIabsyGUdYn0RuapD7BIjF3U0MQICPBNbFUMk/rRCTs8i/lWWI2dv32Q9ckbtsiA5ow5ZkRxRuZJDZOEiF3KIlGGM0RYlZ9hkq5IzbLZlyRm22LrkDFttYXKGbbYyOcN2W5qcYYetTY6wvMCPOViK3IrBnINFYcYgju2icGMQp4xR2DFEE7JiK5QzbLUlyhm22RrlDNttkXKGHbZKOcJihcdtG6zKhoDcaET1oXYsPQdcXkQpojZm1KnHzUN1x5kKG61tNsUcn63jKmqKYu1hUVNU6wr6bSNM17dc4RFFd+jSqQQ1gaq38sWmiXUGrvDoAbcDl3eIUVGglqoN1xMKrmGf3SeHOj+sZ6JAVhgLdOs6nJRfsBtU9ck50RciK4tC3jHvEPPA9Sd+0qdeYEUeOgPhYsQ1jY7pf9ITanji93bapjU+cW6YtmmVSmDUppnODGGrr86ftaiRcKKzj02tKlWHOgI0WTlpV9kXoSqPlROcfRDqeNpEOW3btjxtSp92hxZUHpT03BZVuo70Aa7nEN9XruaYLw3m7enyiqg94RqxR/UhaM0MgBOcfQdaxxudFZyItWNstNrladeQ0IjtrtjlaTmeUFv3IE1I4UNH89CnhSN8ZrxuTCqC3WvwEdZL8BHWK/AR1gvwEdbr7xHWy+8Jdnj1PcJ68T3Ceu09wnrpPcJ65T3CeuE9wnrdPcJ62T3CetU9wnrRPTFDXrzmHmG15B5RteIeUbXgHlG13h5RtdweUbXaHlG12B5RpdYemNYm7+SBfMa1kQeiBlp6nr9/iK48bz2f/0vCwSPxUSUMPPjqMFG5x5qhQe+vq4+hJ226Eimhdl2IlFCHrUNKfPYXW4aUQINUkSJolCJSBE1SQ4qg2UlIEbM4BSliVicgRczm9KOI2Z18FDGHVI8SqJB18CgJUQcPk5B08DhRi47IZ9Jk/f/Rc1r7fwSt0hYPQZssUoSgXfpxIuiQDiUEyqtqZB4ort3IPFBculF4oLK1OEdQ7nAuAmVtQhGUT08iUNbzBkGtUy6C4hFVeaC4QENsobhAQ+z2uPlG44GiJTmO50VkX8JNN8RWnztuiKwEt9sQCRQuxhC5Hq7FEGkp7rIhMmjcYsNk+7gaw6Qma7Tyc0RNVn2OqNmKzxG1WO05olYrPUfUZpXniNqt8BxRh9WdEypXYIjzqsStNcThWmrRis4RNVnNOaJmKzlH1GIV54hareAcUZvVmyNqd17bxMA7cQXG6lJYiWQkCUuN4+p6nJd5JeOokWbUaRv06MxUiY19ooKLLy6NlSjdUs/KpBV1gl6k8SPsA1V5v7JmbdJLErYqHVvHwk8hTivgYueMfMKcfzbsnFH7FDqNzaDHUilPodO9ChdVHD+mIZCCqknm6Bg1yyQdoxaZpWPUKtN0jGrrUjFql4k6Rh0yU0eoebEVfxg1yFwdo9oqh4yaZLaOUbNM1zFqkfk6Rq0yYceoTWbsGLXLlB2jDpmzQ1SupqgiWtw+o4locfuMJqJlaqIcwwWWKtlIKtoU26bY4nQqoU9rNofqpCmhk1fWJoXzClpZCCfWeWQDNPQTTeuWZV/XZAsU7BPNq8VlU7ukPQrSNYHm9f2yqE+yvtoGqOhX2wBVa2q4BWq6jcoc1HUbbYCGbqM5KC26jTZAQbfRfNByUcKpjTZASbfRBkibY26Bim6j+Wck6RpWW6Cm22gD1HUbbYCGbaN5veOcF9tGWyBtELsFiraNtkD6m53mH7ZMr5OX+/xCAgU5c6ZrlGMRxwQqmeasv+Vbr0xrIdb7pU/q5JVpYupY7uchdP7K2kY5AyOFLOpvHLFpgKctQV3mK6cLbINcu8uiCsfGU6cpNj21jadL4UIvkue+2QzzVi4uA5qnle9zoRYoZb0cmReSTM6luQ9KzqQ1u/ugbL20TPuiZ6vUXSiXzZacg2n9qLLm0HNEI6lGN1DDJn7aQ0WhjeO0m+cLgZpduEoEH2pRWGMVvs2n4KpXYGU+H1W9ay7zBXjt9tStoHgOlyooHfTBtrjPRAUVmbMol7Ge54IijlmUy1gPnxE22ZKTDCuMuIbACieuJrDVGs4wbLOOMwzLR1g0IRN3UEXIxNl+ECHr2syfYbWZP8NqM3+GtWb+jGrN/BmV5nrj9FM7XebR8/3DaghSF2JvlrmXwn2wagIrqa73UQ+x04kRH/gfV6W1gomRHvjnFTmFRGtwWAuxEclDF5+pjWB1fo1hdfEZhtXFZxhWF59hWF18hmGHXb0QbBG+CXEIbLCrF4aNdvXCsMmuXhg229ULwxa7emHYalcvDNvs6oVhaYYiHK+6gwLqRfgn3LdAA6mpEvC0dc+c5lJKkFVnWphjosSkOSZJTJljssS0T5/+9vLi6ubyt9tfef3m4+W791fXN7c//ubV68s3t//209uPr99cvjj+x19/e/Xr5Yt//ctPL/LhH6/+uP253y/ff7jvVT3c7gNiu91ux7rc9Y6r618u7wRos79weP327X99+2fu+f/y8fpz/D/c/sCr2//v98u/H1nLI3/w0/8CFyFGZQ==
Copy blueprint
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 3:41 am
by mrvn
Wouldn't it be better to have 4 lanes between the 2 Ts?
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 8:20 am
by farcast
mrvn wrote: ↑ Sat Nov 20, 2021 3:41 am
Wouldn't it be better to have 4 lanes between the 2 Ts?
Good idea! I was going for minimal buffers, but since buffers need to be there anyway, I might as well make good use of the space.
New RHD scores
Set 1: 62
Set 2: 56
Set 3: 77
Maybe there's a better way to do it, but it's hard to make changes without making crossings unstable. I get the feeling this concept doesn't scale very easily, if at all.
0eNqlnc1uHUeSRl/F4Fq3Ufmf6XUvZoBZzbbRaEg24SFapgSJco8x8LvPlXjrSpaiyHNaGxuWxcOsjMisrIwvIv7v5tXrD7dv393dP/zj1Zs3/7z58f8+/8n7mx//9sV/fvx/7+9fvj09vDn98u7u54///b83P+YXN7+f//nHi5uXr96/ef3h4fb08W+9vbv/5ebHh3cfbl/c3P305v4R9v7ul/uXrz/+5MPvb29vfrz57e7dw4fzn7y4uX/568c/ePwbp3xzBt7d/3x7/g3pjxfBT9493P76+cfevbx7/cWP5PBHjn5Z/eInC/xlp5/+5+Xd/enyNz//fP3j7y9ubu8f7h7ubh+f+dN//P6P+w+/vrp9d36aP2MugBc3b9+8P//Mm/vLtJ7qX9qnmT2lbftL++PjsL4i5c/P8XBm/fI/D6dP0/Atq+ykFHEK5bQnMdUOZ60I0+RoYkpns9z/cqWc5/jFzc93725/evz/NaAO/YgjGty0jxhSlh5M6EVps6OJMUkPp4ScbIcTY4oeTujUqdrhxJhmhzNDt05dDucAox15hi6YrCcfYLQrz3hDtK58gNGuPEMfzNaVDzDalWfog9m68gFGu/IIfTBbVz7AaFceoQ9m68oHGO3KI/TB8tmVf/rw7rfbnw8o/QLJz7+8inbrEfpj0eeOER87tF/30AMK9ut1xfxpsloEbWz+U74w+5+ZI2J2xjztzAqMOthBJ8/9pNP71yedHHHxcvj4LvnEJVS8OtLi1Iq3/Y87O6bi5ZKLoOLFk5ug4qWUhbUqXljZWAu/P4qxFn6bFGMt/HIpxlp4bRVjLby2irBWw2urCms1vLaqsFbDa6sKazW8tqqwVqvsXdAO3gUlYvJP5/3505+pKaLilZViaPR6bYM9fn1Etvn827VNOKPzyowoSx4m2nje2B0vopQEFS+iVAQVL6LUBLXY4wSiVnucQNRmjxOI2u1xAlGHPU4g6rTHCURd9jhBqGOzxwlETfY4gajZHicQtdjjBKJWe5xAVPhZVfeNvz//2hvwrjel/ROota8/gXrEHfbF38rzr9NBX1PbhblFr6mB11Jb17FFN9Gb5oTf8jNZTg2/5WfWnPiGvbhZrvn5M8uUR7YK7mRmc4cWNE54zdA3MU54zVDHvsbq9vUai1bDnDBOk4+50Z4wF9xnLvdnpT8/1rU9EQAMvGAfcZlfjzg6vq5kD+8FXGOtrKkDjLV8LzWc3/q9MxB5wmrMw9o4tlc4s3SV1auHRZTh9pRSwTzKD6EzM6Is5e3XaHVpZPbStkGztGPwCMHJXgKUOGK34aXTnwEVO6IcB+02vkDS06Bm37JHoG7n6Ag09BzFkcRt6jk6AOkT1gGIx9f704+WtGfng0h91nN0ACp6jg5AVc/RAajpOYrlAyLQnp4GDT1HB6Cp5+gAtPQcxRubCLenp0H66+EIpPfsI1Bx36mpg3de1vt3infLrPfvIxA9xPT4MWsIHfox4w1PhOTX06ClRxRvL0V/Lh+BEpv4MnfJ3fN3K4kH5vdYTSrPH6BTkd/SX481XAuluo/Ur6Gh5xW8LvqKJyAeK1wlI8djDc+pNHB/PjF9FoKSyH0q8Js6bxYMP6pP4+K18/lLtsSD96exK/XAWHn0/jSSwHLty+5iCMulMH0ILJfk7u9DhOUKsG5M1jnWmIwLxJox2eRYYzKuH2vCZDyMf2rCZDyOf2rCZDyQf6rCZDySf6rCZI2vsmpMxldZNSbjq6wakwkZpjEZX2XFmEyoNIXJeJz/VITJuhBuCpPxSP8pC5PxUP8pC5PxWP8pG5PxVZaNyfgqy8ZkfJUlYzK+ypIxGV9lSZiMR/xPSZiMh/xPSZiMx/xPwmI85n8SBuMx/5Oxl04YQFS+woy1hhS7ISjXewrosolJAMrlAMKruDZALAAuFDCLdRYrqUPUaiV1iEozFOKP8fCqZ3Yr00MjHVamh6jTyvQQdVmZHqGuzcr0EJVeIm78OoYLBszhjQsGzEmTCwbMsXg1K/1DVHiHODe+Wql44DQvUYpKBgpvD0/zKnDpROmTFrw9zHywedOZP2CkeYMp+vl4BkrIzUZSkZua37zJkBWa32olkIPMA7+mLyG1hVQZy6rPX9LnDa6waZhwgc0qvWvBhZvKVQhbyb1/5gqGq3Qd2CslG6aAo812tEC1m7+QOjwtMi5dDreKr9l4wDG3CW4SXPHdtb/MEVdcbexHD8QVdxv74QtxxeVGFnbL4nYjC7tlc70h7MYlF6eUhN1E1YOUhN2yWG/J2E2st2TsJtbbZuwm1ttm7CbW22bsJtbbJuxWxHrbhN1EtYUlzCaKLyxhNVGLYQmj8dIMp2VsxtfaMibjS20ak9nPtAxOe2VSLUYPoT2ELi2aIBMgJB5dzKuQeHSxFIzEQywFI/EQS8FIPIzJmhZNIGzXogmEHVo0gbBTiyYQdmnRBMEKiUcVJhMSjypMZiQewmRG4iFMZiQexmRNiyYQtmvRBMIOLZpAWPom26+xyeuxUalizvz1KOQd5ktHyDvMh46Qd5jvnF50mBxhqw2TI2qzYXJE7TZMjqi6kB2iThsmR9Qlw+QEKio5CGiSYXIEzTJMjqBFhskRtNowOaI2GyZH1G7D5Ig6bEgbUacNaSOqDJGRN+HUoWeQEpG5pmOngkpT+QtRx9MBbfHSnro6CrHU1NVREBWvK/P5zUUdQ6zWCW819lwQ5KvThduQ/XlBLzGnXNBh7rV4DQhzCcclHebGkEs6zPUml3Soy1iu6VB3x4u/scxV9+KvLHMzv/g7ywQSFj8LijNG2UTNvCKwvGieOGWUTcgRh8ByPaI4ZxQu6zAhxsJ1HSYiWniRCRPALbzkhIk3F16AwoTHCy9HYaL5hUs7jPigJFGaUpiMSzuSOMwVqu04zc8Zs0SSU4S2Yz4aDZySi1B2jBVRw9rkQtdxWQ5orMNm7aCxTiOkO31W0iWipCtc2rFvDKDibeHCDjG/XNWRuStkp1McblFwYYdYE1zVMQufh2bm4bMelnkZrb2xh4WBXrMIUUe8NcSeO79zG4v9YLkINtBWlgKrip3G7rQbqVZWSlIbzpXOVkTJLgJCPKHQd9q1MQTz2i8UHWjrnUfzHNuvfefrIrbe977aYqsNF2JC/jvt8xdiM3etSNxLtNzg+4zouMHNVN2dIrFShWurbGqTqWppXeFsj6lNXdchH4B1l8dSO0wdZhqucLbBcElHfE6IDbe+70QTGqxt6i6U+G1zb7Hr105B7isUHZev/0Ko5d876hfkDkLXcRkz8eDW/q3zM5xmuOqux1E4E0OnIZB+T6J+x35vgbBLJyEQrBF4XF5BCJt0CgLCZp2BgLBFJyAgbNX5BwjbdPoBwnadfYCwQycfIOzUuQcIu3TqAcGa+h0bN5mp37Fxk4n6HXvsCGGLTjtA2GqzDhC12aQDRO025wBRh005QNRpMw4QddmEA9S5cXMXS6DFSpm6nCIaqa6miKgwEfrUxfPDcqWnmiNmD5nNynTR03er0kVUedmBnn/aGlnkfMz1HjsVtKYoS0t/UTdUrfxFVC38RVSt+0VUK/tFUKv6RVAr+kVQq/lFUCv5RVCp+EVte6XgFzGl3hcxpdwXMaXaFzGt2BdBrdYXQa3UF0Gt0hdBrdAXQZfUpKJ21ZuUpCJokiXlETTL7r8IarvsIKitf4OgvEeJMJTtV4KgvJODMNSUbb4QlFdD5IbKttsDguIV1bmhRN8Tbigu1OjcUFyo0YWhbN8HBO1SjI+gQ2rxEdTJ5sG3Wc1WNU/GWaxoHkGtZh5BrWQeQa1iHkG1YB5RtV4eUbVcHlG1Wh5RtVgeUbVWnlCrlsojqlbKI6oWyiOq1skjqpbJI6pWySOqFskjqtbII6qWyCOqVsgTatMCeUTV+nhE1fJ4RC24ruQuOeikvXpt1bWTIm21qiipcTlfr+evf6tpmtIiajxWfKkeT0BsrmlbRIDiqhXX00id26pTtW6ayrF6UrWW0bT2TOt/NjfWYssto27itdPFdekCnfIfIabRuNcV8/xq6t1pusrRk4eu2nFjvc3NqK3bC4eLZfBbOMNRuLIOGgIuPYSGrjp0G6KUwMoaug0Rw+o2RAyr2xAxrG5DxLC6DRHD6jZEDKvbEDGsbkOEsFO3IWJY3YaIYW0bIka1bYgY1bYhYlTbhohRbRsiRpVtiBhUtiFiUNmGCEGXbEPEoLINEYPaNkSMatsQMaptQ8SoTUZdGbXLsCujDtkuhFGnbDjAqEtWWCLUtukkZETVWciImmV7H0Ytsr0Po/J6UMZaTeoEGLVLoQCjDqkUYNQppQKMuqRWAFG5AKMKawkFhrAWl2A0YS2uwWjCWlyE0Yy1mlQMMGqXkgFGHVIzwKhTigYYdUnVAKJyKUYX1hJaDGEtLsYYwlpcjTGEtbgcYxhrNVuZP4G8yiZaoexvLnCx1/Kw19Apk7vdluGN4bUfF+Uul+CQZnS328rmchrSBDYSbU/2fXXEo8u2nP0RqOgRrRhU9YgOQM2OKKcY1O2IjkDDNqfIJQZN/WgHoKUfLQaJ5iP1yUcz7UYuoBaDsp6jA1DRc3QAqnqODkBNz1G8aH2jkCPQ0HN0AJp6jg5AS89RvI2Ihh/7HB2Akp6jA1DWc3QA0s1ySryxiQIPlzk6AjU7R0egbufoCKT37BJvbLgBR3sMFpavBKQ1hNIzSttCaBQrbV3v5QePTBUCp/549CkTPHKnZbwuHXi/hsaP7OqftGvVj0GK7bRe4dm3lUNwCcHN9k4qi0xHt9gKKv01UZfhABvP7vzeSYjndjltR63hIsAigcu6rxU88kjUoXadTN2Qp47sNpSjh5braTscZWiaUZ1ehs1pg3Par6PNRNLSBqwldKrtEBwuUyEQuLx2a3wQGNPNZ8tgoxaCgD1bKH4FT30Ca/H7aOqv5hYfwKduq9aIPXFJhctVQZvA+3BNhcv+0zdg20nXyl43rg3SprtN3VOtLYLVPdUYlr94dtUywi6rAENYUVxh14MjbLIKMIbNVgHGsEWXokPYqotsIGyzCjCG7brMBsIOXWcDYacutIGwS1faANjOQ/+nJajJ1tpAVHrYy+GboYTM4jRVHZTW7Vu1J/wOql72rbnDbu/Pv2/7BguO1x0ZQoY9YPRBDK5v1xh22b6tCMsj/XsgimGTPWMwbLZnDIYt9ozBsNWeMRi22TMGw+rS4gyr22Yw7LRnDIbVJbcQNm/2jMGwyZ4xGDbbMwbD0i+vdHkTTPAqzPTWL/c9mWmSyHTPtvLWANdoHXfKeHxzjfDmp/PSC20fWoiZElNijNRNj/B7v/OSChfMiDFJauPHijlZDucAU+RwZmwrHrFvT2Js5sCMbc7D9e1JjC0aNw98R3ryEWbZ4cQ+WKUrH2GsK8/YB6t05SOMdeUV+2CVrnyEsa68Yh+s0pWPMNaVV+yDVbryEca68op9sElXPsJYV16xDzbpykcYmqq8J8Cm7WPHjxBVbS7WFvszD8u3pzldDyj26DbsgA44UDvYr3P9TWSm/vH3Fzd3D7e/nhmvXn+4ffvu7v7hTHj98tXt6/Of/fXNh1evb3+4/Os/f335y+0P//0ff/2hnv718vcffsvnv/rb7bv3j2fTmepYedS+8vlj/fyL7u5/vj3//u3j4D/Tz4N6f//y7enhzemXd3c/71kfj1qP80+9fPX+zesPD7enj3/r7d39Lzc/Prz7cHvG/fTm/v3Nj387//zjk55/8uH3tx+f/9Mj/Gk2bj7//k8Hxm9+5Le7dw8fPk3XbotPf+OUv/jJHP7kt7/szyHCzz9f1G+uX/zkJ8N8Mvjd7eMzf2V9u+5PB24NaxaUa+O6bYsXbHFOfTQeu+pP8U5EQzy7rPaM+XZtBGtOPmQ8uKGfMdz8px1MSFl6MKH502ZHE2O0X8fHhpTtcGJM0cMJvTpVO5wYY49mp/jImawfH2C0I8cH8mQ9+QCjXTn+XMnWlQ8w2pXjj7lsXfkAo105/tTN1pUPMNqV44uAbF35AKNdOb4msVc/RxjtyvHlD83f6BcIkMboe6BTfL0lkjd2TuhI+iLo1EMP4BdB64oBrdjY/Kd8YYIgXekq8HnqFRjV1kU/ddQSRGboM+qSGfqIKrqVFkFNMkOfUbNtPo6oRWboM2qVGfqM2mSGPqN2maHPqENm6DPqlBn6jLpkhj6i8ruuKqzFr76qsBa/CKvCWg2G6NrBnh0KiWGE7to89NQLyh1tMpf+1JHQ3UlrvoHGImIjVzkxySm01LwyQ4EWLAW552KcOURjyrNbLou+oeC8LFDEqFkWKGLUIgsUMWq1xx9Ebfb4g6jdHn8QddjjD6JOe/xB1GWPP4Q6bLt6Rk32+IOo2R5/ELXY4w+iVnv8QdRmjz+ISuWP+wsF9IXkeS77gaIBVSlNermIP09tCy+ilyxFc4qTU+amOeG3PM9x2TlxThBPcbly4hv24ma55ufPLDSlZT8KVnAnM5s7tKBxwrXQNzHOYTLrrul/J5b/N2E8tNVjbrSCJ8ylrJdbtK/zlKOxLljXvO45SKeCakXzhJb98F7G84dins9ypYLLMZ7OckSNrLXq985AaC8YULymVwb2CmeWrrJ69a2IMtyeUkBK6aKr6foJw/LJ13J7ValxuHFTW8k4HmQJ8fpyIS7BkHiFyv4MyDYvPMWFMxLPR7nU9TsENfuWPQJ1O0dHoKHnKI4k8lyT6xwdgPQJ6wDE4+v96UdL2rPzQaQ+6zk6ABU9RwegqufoANT0HMXyAd1y8xA09BwdgKaeowPQ0nMUb2wi3J6eBumvhyOQ3rOPQMV9TyZQ4SZlvX/HNeZS1vv3EYgeYnr8mDWEDv2Y8YYnQvLradDSI4q3l6I/l49AsEZRmbvm7vk7kMQD83sMKBVwoiryW/rrsYZroVT3kZpAfYhUbKvYbyYgHitcJSPHYx0hdLgGaaf5fAAoiQqNY5e9EcfiopZL1VuEFdUbd3shbLIFahmWy172lwvC6mp4DFttqzyGFZW/jMl0RUiGFZWKjMl05S+GFZWLhMlEJckqTGbqSgqTNV3jiGGLLUHAsNWWIGDYZksQMKwuc8SwuswRw+oyRwy7XF/OE8i5TqJ2ZRF+0JOta8Cw2dY1YNhi6xowbLV1DRi22boGDNtdL1V0rOu6JR8bq27Jx7C6JR/CDt2Sj2F1Sz6GtS35GNW25GNU25KPUXWeAKLalnyMKlvyMahsycegy+YjAeiULfkYVLbkY1Dbko9RbUs+RrUt+RjVtuRjVNuSj1FtSz5GtS35GNW25EPUZVvyMaptyceotiUfo9qWfIxaVRd4dIhftC7fvFz6VzJQWoU5X7Utg2i9E1UOnHIORxteSpqil7sejGChqDo3NQd521yUBhgsC/3AZcWO530rCzFBCaktpBYXvgEukDe6sgyTJvXPqwinEs1U3roq+P7ZvyqR+GRRD3N/gRWCnRrbiI8t2+oMznKCkreZ3fSKkgFpfzkUsIRFTcxUkuDyr6+0v3gRtwruEFxRx3k/1CCu+AbLxm7imiMbu4m3WjJ2M7Wchd1Mbcwk7GaKYyZhN1MdMwm7icIHn+RamCvW22bsJtbbZuwm1ttm7CbW22bsxtfbMmbjy20JqxVROl0YTVRbWMJmovjCEiYTtRimMBlVeVw/qTI459DSDKfRQ2j4KSG6bQ4zr0NLHBB2aokDwi4tcSBYo/MQS8HoPITJTAdPYbKqO9UybNUSB4TVHd4YtmuJA8LqPqAMO7XEAWGXljgQbNP9Exk2aYkDwmYtcUDYoiUOCFu1xAFh6ZusbPz1KFQe+8cZ6KKYm71vJG/dpnsWnAqZgqUD28RcQuVhPst60oFthM06sI2wxQa2EbXawDaiNhvYRlRbTphRhw1sI+qUgW0EXTKwTaDD1m5E0CQD2wiaZWAbQYsNbCNqtYFtRG02sI2o3Qa2EXXYwDaiwiIOWXzWDihMLOL9yoUd5jTElR3m6MalHeYDnEs7hlgBtBTEnrtB7E9LQUxxq8FlHeayiMs6zM0Wl3WYazgu6zB3hlzWYS44uaxDXcdyXYe6PebCDnXZzatAqLt53tNUhRJ4T1MV+eA9TVWghss7VFyJ9zQ1YbDCe5qaqF3hAg8TZCxc4WFiokU0NhUh3MJLSZiIc+GFJUyAvPAyEyaeX7i8w8gPCpd3pGJMxleZOMwVKu44pXKVdySizipC3jEenQHcQxUh7pgpoqaQWpSQaKzDqYjxuifjt+ASgpvNuUFzrBufojnWfU+/vpiMp2Bq2RP03yVVtmRqsxUEk5n9QtgBvDdP57wZdhqayfkul3fMwucXv9jE7pChfvG8nzsXw81PL/FxIGAtWZXqO11FexvR7JVMV9uVC51sfee2HrqY0HbEr6CwNQQt3rELEIBEtnyh60ChIOIJQtQRbzbxnNbvfOXEc9pceAnNqVQHl6OVEI94/Ht0tjkWd8OI3GGpt0RT+0K177VCoOnfGjHbcXQvDrI4dCsOsjZqVTfDZGnUpi4wiXtxbYfYwLmyIz4jxPM51U0rmk+1tmZVe0Gj+vuqNrCW8JfffrIrpNVBafDA+PkzqqA9prmPtOu3VGHTQbtybG4ymswrRDPRJbQQNxtwAqaz2lRLIzmj0XYdpSurGanH5W4IYZPOTEHYrBNTELbovBSErTotBWGbzkpB2K6TUhB26JwUhJ06JQVhl85IIVhT0iNxk6mSHtxkoqTHHkNC2KKzURC26mQUhG06FwVhu05FQdhhM1EQddpEFERdNg8FNXLcbBoKoiabhYKo2SahIGpxd2ygM0yZ1WaLoJE2myyCqPSOsYvnp2LgmiNmeBc6p5Vuo6dfVrmNGpluVmCMqMnqixE1W3kxoharLkbUKsXFCNqkthhBu5QWI6jtZY2gUwqLEXQ5XTHq47s5WTFiJqcqRszsRMWIWZymGDGrlBQjaJOKYgTtUlCMoLYzNoLaxtgIutRdP3hB12SbYoNeUpULOuLv63ikWUqUUfPuIhXKCFpleX0EbbLDMoJ22eEDQW07RATF66kKQ9l2D6hzO89P4YbKtukbgvL2PtxQ2bb6QVDe9kcYqslSWwhqG10hKF5RXRhqyh4YCLpkbgaBcnHG4Iai2oxLbA98mFZecmOJhy8yhwJBq0yhQNAmMygQtMsECgQdNn8CUadNn0DUZbMnCJWrMMRVcq3J5k4garapE4habOYEolabOIGozeZNIGq3aROIOmzWBKJOmzSBqMvmTBAqr68hgqG1JZsxgajZJkwgarH5EohabboEojabLYGo3RYy7UThU5tsBkY6jFVRXONyvF7Py+Zq09VrFhhrh5V8U/z8obF6koKeTnSDlYstLhshqA9cu5I25aG8q1P94MadqzdVgJsZrMs6s9BgdHFdGlen/EeImTTmdcWAsdGavXnXRS2iX6oDSgavGjmIxcr3LZyD0D0Hlr73EBp+tAlVxeUNmBKZgGo7MjFs00p9hO1aqo+ww1ZtYlhdFpthl61pj7BTh4AZVseAGVYHgRlWR4EZ1oaBGdXGgRnVBoIZ1UaCGdWGghlVxoIRdMlgMIPKaDCDynAwg8p4MIPagDCj2ogwo9qQMKPamDCj2qAwoy75nUGobbOBYUZNMh+BUXWGFqLqFC1ErbJ5EqM22TyJUfHaKsZaQwbyGXXKSD6jLhnKR1QuuqjCWlx1UYW1uOyiCmtx3UUV1uLCi2as1WRAn1G7jOgz6pAhfUadMqbPqEsG9RGVyy+6sBbXX3RhLS7A6MJaXIHRhbW4BGMYazUZ2mdUvLaGsdawvRQSuHVsognK/uYC2ZQtL6fmTzO6zGxlcwL+NMEji5Yn+zY14tFlW8//CKSbLqQVg6oe0QGo2RHlFIO6HdERaNjuHLnEoKkf7QC09KPFoKpbIhyBkp6jFoOynqMDUNFzdACqeo4OQE3PUbxoTZOQ8SRItwU5Ak09Rwegpeco3kZEs499jg5ASc/RASjrOToAFTtHJd7YRNOOyxwdgZqdoyNQt3N0BNJ7dok3tkaDmu0x9la+EkzWEErPKG0LoVGlh9b1Xn7wyJ3GMPvj0adM8MidxjAvrYi/hsaP7OqdtL3+UVmkMEcTdRguX8A1EaxuHVUWmYz+vdgSYsf3TkJ4FO60TF7bDo0WT8NyYoZaw0VA9QFnzGV8dSNak4YVApcNpVYwm1ghcNlQjh66OAUHGxst7VrH4UzG4OZW/15frmbkSINK2Vo+BIfrX6gDLq/dGh8EhhTctAw2aqEG2LNj4lfw1CewFr+Ppv5qbvEBXMT497Qv4ii4fsLlqqBN4CS0gca+TfQN2FYE+HfN5wIXRCLCvwtUEVaE+IvATit8YthlhU8IKwopZGEyUUkhC5OJUgpZmEzUUsjCZKKYQjIma7r2BcJ2XfwCYYeufoGwU5e/QNhl618Aat82WwADUelJL4c7eAmZtHJkumq2N1Jou4s2Go/Y8vwJrW/6A+prbAuxzZ12e3/+hds3WAWo7sgQMqhaef8U7Y3oivs27dGlD4Jd9s4AYdNmW+IybLIRI4bN9lTEsMWeihi22lMRwzZ7KmLYbk9FDDvsqYhhpz0VMeyypyKEzZs9FTFssqcihs32VMSwxZ6KGJZ+fqXLK2aCl3e2+uoBbtI6bpHx+OYa4dVP50H+tg8txEyJKTFmSUz4wd+LbJk7RoxJUms+VszJcjgHmCKHM2Nb8ZB9exLT7HBim/N4fXsSYxMD5oHvSE8+wiw7nNgHq3TlI4x15Rn7YJWufISxrrxiH6zSlY8w1pVX7INVuvIRxrryin2wSlc+wlhXXrEPNunKRxjryiv2wSZd+QhjXTltsRPSNgvXdjnbxyYZIanJbJ6jEXX9aLFD0wYKp3R9tm9CKjUET/uk5wH+/cXN3cPtr+efefX6w+3bd3f3D+e///rlq9vX5z/765sPr17f/nD513/++vKX2x/+6z/++kM9/evl7z/8ls9/9bfbd+8fj5Az1bHyqH3l86f6ecB39z/ffrwriX7J6dWbN/985jd94r88P/Jvt/+4sPITv/CP/wfYjAZh
Copy blueprint
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 7:34 pm
by Kano96
Hey, nice intersection! The synchronized crossings are mesmerizing.
Do you want to have it added to the post? If yes, which version? V2 obviously performs better, but I also like the simplicity of the original.
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 9:37 pm
by mmmPI
very inspiring
Re: 3 and 4 way intersections
Posted: Sat Nov 20, 2021 11:47 pm
by farcast
Kano96 wrote: ↑ Sat Nov 20, 2021 7:34 pm
Hey, nice intersection! The synchronized crossings are mesmerizing.
Do you want to have it added to the post? If yes, which version? V2 obviously performs better, but I also like the simplicity of the original.
I would love for it to be added, thanks! I think v2 should be used, since it allows for simultaneous left & right turns from one T to the next, which is situationally better. It still has synchronized crossings, so it's just better all around.
Re: 3 and 4 way intersections
Posted: Sun Nov 21, 2021 7:04 am
by DaveMcW
Branch Predictor
4-Way, 2 Lane, Unbuffered.
0eNrtXdtuGzkS/ZWFnuWgWbwbmIdc5vK474vAkOVO0oAtGW0p2GDgf99uKZba6qJUdexcvJOXwcS2jkhWnSLrsEj+Pbm8Xte3bbNYTc7/njTz5eJucv6fvyd3zcfF7Lr/2erLbT05nzSr+mYynSxmN/2/2llzPbmfTprFVf3fybm5fz+d1ItVs2rq7ec3//hysVjfXNZt9wePPnn2FX06uV3edZ9ZLvov6nGo8q/8dPJlcn5mKmtf+fv76QiMdmB3qw7u46fV2aY9HFzcg3FQVg5lzHEoJ+2ioYMuTidXTVvPt3/kGGgPddhwrQxQh1moiLSKMgeVkFbxUBnxNAq8p5kK6mNksQzUSR6LEGfb9PKksxkL9ZkfPwf1mceCWEAsVw1EgwIWxgOWUgYjAo8FMcHkQsyFmGBYihLEhAIWxIRNL08ygSAmGJaxBDGhgAUxwfB2hZhQwIqQx1HB4xLUS5ajlKFe8kuGCvI4knicNVCfWf5bgvrMY0FMqFjGWogJBSyICRXLKgsxoYC1Z8J83X6ur8qtCjskeuwfnsNNCMP6/2dbmaHRY7FcBY0ej2UQhm16eZJhDkoeKn7FD2UPBSwHtYtlq/NQu3isIPZk2iLlHB6bwXCw8qliZ+KcR7N21/guY121y+uLy/rT7HOzbPsPzpt2vm5WF/Pr5V198ZDKfphd39XT3S/bena1+92qXXe/auuri+V6dbteXYzy389Nu1pvmvgwtJu/OHvXp8HLdrb4WGOf/djW9aL40U3a3Rmm7+di2+27/tem/8/mo8N0u7nqhjYNxrv/gc/37+9Z2wLRJOe0McKPHvY3Txj2N99k2OPBsIdQGnYg7Ha+z0F5IOqWoAzSKnb284S0ioey+qmggxKJKg7pMDtheY90mIcSx1uzi7ck6GxEOsvOVD4hneWhpCmq6UP/A5RRBqBtkGHjz0Fs6jCvdt/7oWnvFEHlr8m2UXerWa+lbmamm9tZO1v1bZv8po4mfPAImjx8N/q8FAgxnoeCGM9DWfGCo/oKlMLplXM4kGfnn2bNQuZwqSCJBA+YIrHBNwRgJk7ppyTCH89LhMPVjDFUogYS4wr2QGJcAUojPexd7rRHx0o8U4Q9UTggebrlH5PiURstB03iNqYCmSMHaxHmsQuMqIsLVLn9EIzkdOK+wCu/wD/+Ag4yII7Odz8ijs5DJWCplkRbEjHrxtBojZQq3ReQ0X6BmGNkj0H/fOH+z2cN96YqRfdE+nWBezx6gYOFQglLy6RJKPwe6rTzeITvEmC5uLMLz4JkI4nVT1MVYLkJL2k2BLJmGDISBAXAWZOeWw2wQRYVEmDNQl7jalmjlWqMlxWsI5XxFKwjlfHErKNUiGTcWitLWWf6IdvCVoLWJnGOHvYz16ishROBs5x3Ju+czZ4eClNVeLZHpVIQg8wUfMlAJd61tubIoNofr8O+fYIO+/Zb6LDJjBLGkpZiKrHWYEuUiSyutBbM+MFSuJIsJE3lxdhZjS2VIUwIamzpjo+JVo0tjlE9oBJbrFH2eowO21SA/inFhsIVX0k0KDe7qa+a9c1Zfd19edvMz26X1zW/r33YYDGDQzhksHcHP+kyvJ7TXavqrmOXy3XbV512fzftfvOe7YJFFjaF4VBqBkbvGB7/BiMq8jNixZGOUubnS0h/f96E1ETGGwvziRHvattnG9RvM62/fsK0/vpbTOudwx7aoSgVGCOWomxUU1NcVumcFpvEpWXeqLHFCpRXhyt5EWbwamx54Db+IQ2LWYLsFMhehewVyFGFHBTIWYUsV4JNMCrkpEDWWVCRQAaVBW2lQFZZUFHiaYLKgoqCTxNVFlSUf5qosqCiGNREnQUVHIw6Cyo4GHUWVHAw6Syo4GDSWVDBwaSyoKKk1CSVBZ2Cg0llQUV5qckqCyqKTU1WWVBRemqyzoIeEPhkyAoOZp0F5aXbD5pQTAJJ0iUgH4+ZP1WV9W0Mgr574JDPaFTZ3nvgyM8I2bPI8hKDkr0Ci2v1uILSBTMoO5RqKYP98ph1WgqTNhk6FFO858QUQ9PuN6yYoqp3jMd92QdgY0jEZE3NI6lisaYEklSx2Cu2IkkVizWFg6SKxZo6QlJZUFNWaFUWDAo50KosGBT7kVZnQQXrrM6CCg5anQUVHHQ6Cyo46HQWVHDQqSwYFRx0KgtGBQedyoJRwUGvsqCmik+n7EQFB3XKTlRwUKfsaIr6dMqOpsZPp+xEBQd1yk5UcFCn7CSkgD7ytzAkpII+CiojTCJl1ehes42j0y/sujlZ5TfkI9/ArnSTw/sQJNXFJnm8D+GVyA4ByVtEoxORNXTBDxOikUvUd0Vp3EAjlyArauMGGrkI2SAauQiZEI1chGwRjVyE7BCNXITsEY1chBwQjVyEHBGNXIScEI1chJwRjVyATFWFaOQiZINo5CJkqd6zmX+2uILqSaosor2LWuwQ7V2E7BHtXYQcEO1dhBwR7V2EnBDtXYScEe1dgqy4YGygvYuQDaK9i5AJ0d5FyMhhjMjfHmT0Ouvg6FV0Wp11rKqap+qsNCgDk57PiHR6VUsmqA9odLgs0p7NV/W8uarbs/ny5rJZbKqtjh1z+DrCp8uevuLua8LugKKw2eLL6lOz+Pi4NoxGtWHTibba6THy7ZeunevF6uJDu7y5aBYd1LYMS1Xs1HvKoe/EfY3X5gedK00ndATi4AOmUCxFqjvn4gnSZUTMl4QGzf1zpArug8KoU8cxSguKwOISskkgarFFNglEyA7ZJBAhe2STQIQckE0CEXJENglEyAnZJBAhZ2STQIKsKIkabBKIkA2ySSBCJmSTQIRskU0CEbJDNglEyB7ZJBAhB2STQIQckU0CEXJCNglEyBnZJJAga27ZU0lbpCiJIpW0RZob91TSFmnu31NJW+SQA1xxdD6PXRc45ACXFBs5wCXFRg5wSbGRA1xS7Cw+F7tLdgSH/MiLD2+leKzNvw57MMnLKHfuTFLIX7wRH6J7Nju8xJNM/Zm5w6SyPKgEH6AW0tJb/BtKN0arrvTbTWL8jdGDGjdxnZ45HASFcUbp+vSE9canIm0VdKciaVB8p5VvSEigZ5Fv3jxmQvUMuk39uW6fpNx0kXZkxVD1D6FIBZnDEGfHio1K4qFTiFSkOy7j2e/pB69fiB/0V+5OhUwfC8dB6QcnY8chYtkPkvq+tii4Q4QGZa0P1jvlYE4/V39orld1W3i/6IRLrXt/OqPBi0ZTBcgbHoRUIG95EKsCeceDOBXIHwMQs8MIKow/WYyowviLxUgbPoipKNXBBwXSgI/SLx/9vj76O+sb/mX6aJD6qEH2avgFbpC/nJO0i3tNef1+t8YIsu4gfmaN1ClJ8MC1AVLsAFwbIMWOwLUBUuwEXBsgxc7AtQFC7ChXZwZK2OhKgvjrhi0m76gOF5i5uKKMRv1+SEiCp7kGxxK0GUv1PTOWdy8kY4m+nLGoE1Nx3jk4AqK1ovmeVnz7UqzojliRlFniaTOTMpMt+4F7ytrb/Fp7v7y193PkmM+x9uaCG++j/ik+Wv3y0X+mj5ZyTJWPktRHA5IfGh4rqrXAw5UbW3x6+E6A4m7DKLrbkKI4rxjc4z9mqGcfJUUKtoPgYCIlpGBbhqy/Oj8IrjShZIFCcFmLkY08GbLmLn2rQg7A9f8yZORhGxkycqW+DBm5U1+EDF2qL0NG1LXAP0udSVyVsF8lhPgCqhKe98GPI4UdWVshEI4NJPsN2hPKVv0NULgRnEymjDwZtmk1iwaFGP518ow8nlXC0r78o7WQVT4VMLyMKYjembQVFFb4d6XlDwcM3s0NTnJe38pvw394tDoH4luJPK0Z+DeqK+RtzRJWAJ6oCuN3pf/fH90bnz+yVLr02lbIRQYlA+G5wdjJeTIij+8GdgfNGuT13RIWFCQKWMjOXqAX4ObP+8iqJV9yatVJ1J05DI/lEDcpYHn1o48+nU5rrUGeFPSZbyPypmAJC3mi3BfeTbQGIb/nZ2JCyF/CQu4R8nwfidQPSHvBmWGrOXS472+hjQ6Yh/3T5uF/yDP0fQ3wVBrlyAMvv/rRROt/vB3ePcEO776JHWhUnV18uNgSFH35yZ+g6FvASki7+JmLEEGogGUrYFZwqTArWCT6On6+sshD6CUsC0RJl0TLYItkaI6fvSySoZWwECa4gl0RJpSwECY4nlUWYUIBy0FMMAUmOIgJPEcdxIQCFsQE0WaRdQgTLM9YhzChhIUwwfKscggTSljIity6kschK3LLY3lkRV7CMoDHWZkE4QnpM89/j6zKS1gQE3jGeogJBSyECcSzyiNMKGEhTKCCAm89wgTiORoQJpSwECaQTBkPCBOIH7+AMKGEhTCBeFYFhAklLGTPp3+/kUdD9nyI52hA9nxKWBnxuGrsce+n28TtfHJ5va5v22ax6lCuZ5d1l9tN3nTZ4vzTv/7dpZvNfFvB9blu77bbw8m42HmxC5lCle7v/wf1+MVP
Copy blueprint
This intersection attempts to keep a pair of compatible lanes running at high speed as long as possible. It works best when many trains in a row are going to the same destination.
The main intersection is 58x58, but the train detector requires the 7-tile-spaced signals to extend past the end of the first train. So the blueprint for 6 wagon trains is 114x114. There is probably room to optimize these numbers by adjusting the train detector.
Re: 3 and 4 way intersections
Posted: Sun Nov 21, 2021 3:12 pm
by Factoriointersection
DaveMcW wrote: ↑ Sun Nov 21, 2021 7:04 am
Branch Predictor
4-Way, 2 Lane, Unbuffered.
0eNrtXdtuGzkS/ZWFnuWgWbwbmIdc5vK474vAkOVO0oAtGW0p2GDgf99uKZba6qJUdexcvJOXwcS2jkhWnSLrsEj+Pbm8Xte3bbNYTc7/njTz5eJucv6fvyd3zcfF7Lr/2erLbT05nzSr+mYynSxmN/2/2llzPbmfTprFVf3fybm5fz+d1ItVs2rq7ec3//hysVjfXNZt9wePPnn2FX06uV3edZ9ZLvov6nGo8q/8dPJlcn5mKmtf+fv76QiMdmB3qw7u46fV2aY9HFzcg3FQVg5lzHEoJ+2ioYMuTidXTVvPt3/kGGgPddhwrQxQh1moiLSKMgeVkFbxUBnxNAq8p5kK6mNksQzUSR6LEGfb9PKksxkL9ZkfPwf1mceCWEAsVw1EgwIWxgOWUgYjAo8FMcHkQsyFmGBYihLEhAIWxIRNL08ygSAmGJaxBDGhgAUxwfB2hZhQwIqQx1HB4xLUS5ajlKFe8kuGCvI4knicNVCfWf5bgvrMY0FMqFjGWogJBSyICRXLKgsxoYC1Z8J83X6ur8qtCjskeuwfnsNNCMP6/2dbmaHRY7FcBY0ej2UQhm16eZJhDkoeKn7FD2UPBSwHtYtlq/NQu3isIPZk2iLlHB6bwXCw8qliZ+KcR7N21/guY121y+uLy/rT7HOzbPsPzpt2vm5WF/Pr5V198ZDKfphd39XT3S/bena1+92qXXe/auuri+V6dbteXYzy389Nu1pvmvgwtJu/OHvXp8HLdrb4WGOf/djW9aL40U3a3Rmm7+di2+27/tem/8/mo8N0u7nqhjYNxrv/gc/37+9Z2wLRJOe0McKPHvY3Txj2N99k2OPBsIdQGnYg7Ha+z0F5IOqWoAzSKnb284S0ioey+qmggxKJKg7pMDtheY90mIcSx1uzi7ck6GxEOsvOVD4hneWhpCmq6UP/A5RRBqBtkGHjz0Fs6jCvdt/7oWnvFEHlr8m2UXerWa+lbmamm9tZO1v1bZv8po4mfPAImjx8N/q8FAgxnoeCGM9DWfGCo/oKlMLplXM4kGfnn2bNQuZwqSCJBA+YIrHBNwRgJk7ppyTCH89LhMPVjDFUogYS4wr2QGJcAUojPexd7rRHx0o8U4Q9UTggebrlH5PiURstB03iNqYCmSMHaxHmsQuMqIsLVLn9EIzkdOK+wCu/wD/+Ag4yII7Odz8ijs5DJWCplkRbEjHrxtBojZQq3ReQ0X6BmGNkj0H/fOH+z2cN96YqRfdE+nWBezx6gYOFQglLy6RJKPwe6rTzeITvEmC5uLMLz4JkI4nVT1MVYLkJL2k2BLJmGDISBAXAWZOeWw2wQRYVEmDNQl7jalmjlWqMlxWsI5XxFKwjlfHErKNUiGTcWitLWWf6IdvCVoLWJnGOHvYz16ishROBs5x3Ju+czZ4eClNVeLZHpVIQg8wUfMlAJd61tubIoNofr8O+fYIO+/Zb6LDJjBLGkpZiKrHWYEuUiSyutBbM+MFSuJIsJE3lxdhZjS2VIUwIamzpjo+JVo0tjlE9oBJbrFH2eowO21SA/inFhsIVX0k0KDe7qa+a9c1Zfd19edvMz26X1zW/r33YYDGDQzhksHcHP+kyvJ7TXavqrmOXy3XbV512fzftfvOe7YJFFjaF4VBqBkbvGB7/BiMq8jNixZGOUubnS0h/f96E1ETGGwvziRHvattnG9RvM62/fsK0/vpbTOudwx7aoSgVGCOWomxUU1NcVumcFpvEpWXeqLHFCpRXhyt5EWbwamx54Db+IQ2LWYLsFMhehewVyFGFHBTIWYUsV4JNMCrkpEDWWVCRQAaVBW2lQFZZUFHiaYLKgoqCTxNVFlSUf5qosqCiGNREnQUVHIw6Cyo4GHUWVHAw6Syo4GDSWVDBwaSyoKKk1CSVBZ2Cg0llQUV5qckqCyqKTU1WWVBRemqyzoIeEPhkyAoOZp0F5aXbD5pQTAJJ0iUgH4+ZP1WV9W0Mgr574JDPaFTZ3nvgyM8I2bPI8hKDkr0Ci2v1uILSBTMoO5RqKYP98ph1WgqTNhk6FFO858QUQ9PuN6yYoqp3jMd92QdgY0jEZE3NI6lisaYEklSx2Cu2IkkVizWFg6SKxZo6QlJZUFNWaFUWDAo50KosGBT7kVZnQQXrrM6CCg5anQUVHHQ6Cyo46HQWVHDQqSwYFRx0KgtGBQedyoJRwUGvsqCmik+n7EQFB3XKTlRwUKfsaIr6dMqOpsZPp+xEBQd1yk5UcFCn7CSkgD7ytzAkpII+CiojTCJl1ehes42j0y/sujlZ5TfkI9/ArnSTw/sQJNXFJnm8D+GVyA4ByVtEoxORNXTBDxOikUvUd0Vp3EAjlyArauMGGrkI2SAauQiZEI1chGwRjVyE7BCNXITsEY1chBwQjVyEHBGNXIScEI1chJwRjVyATFWFaOQiZINo5CJkqd6zmX+2uILqSaosor2LWuwQ7V2E7BHtXYQcEO1dhBwR7V2EnBDtXYScEe1dgqy4YGygvYuQDaK9i5AJ0d5FyMhhjMjfHmT0Ouvg6FV0Wp11rKqap+qsNCgDk57PiHR6VUsmqA9odLgs0p7NV/W8uarbs/ny5rJZbKqtjh1z+DrCp8uevuLua8LugKKw2eLL6lOz+Pi4NoxGtWHTibba6THy7ZeunevF6uJDu7y5aBYd1LYMS1Xs1HvKoe/EfY3X5gedK00ndATi4AOmUCxFqjvn4gnSZUTMl4QGzf1zpArug8KoU8cxSguKwOISskkgarFFNglEyA7ZJBAhe2STQIQckE0CEXJENglEyAnZJBAhZ2STQIKsKIkabBKIkA2ySSBCJmSTQIRskU0CEbJDNglEyB7ZJBAhB2STQIQckU0CEXJCNglEyBnZJJAga27ZU0lbpCiJIpW0RZob91TSFmnu31NJW+SQA1xxdD6PXRc45ACXFBs5wCXFRg5wSbGRA1xS7Cw+F7tLdgSH/MiLD2+leKzNvw57MMnLKHfuTFLIX7wRH6J7Nju8xJNM/Zm5w6SyPKgEH6AW0tJb/BtKN0arrvTbTWL8jdGDGjdxnZ45HASFcUbp+vSE9canIm0VdKciaVB8p5VvSEigZ5Fv3jxmQvUMuk39uW6fpNx0kXZkxVD1D6FIBZnDEGfHio1K4qFTiFSkOy7j2e/pB69fiB/0V+5OhUwfC8dB6QcnY8chYtkPkvq+tii4Q4QGZa0P1jvlYE4/V39orld1W3i/6IRLrXt/OqPBi0ZTBcgbHoRUIG95EKsCeceDOBXIHwMQs8MIKow/WYyowviLxUgbPoipKNXBBwXSgI/SLx/9vj76O+sb/mX6aJD6qEH2avgFbpC/nJO0i3tNef1+t8YIsu4gfmaN1ClJ8MC1AVLsAFwbIMWOwLUBUuwEXBsgxc7AtQFC7ChXZwZK2OhKgvjrhi0m76gOF5i5uKKMRv1+SEiCp7kGxxK0GUv1PTOWdy8kY4m+nLGoE1Nx3jk4AqK1ovmeVnz7UqzojliRlFniaTOTMpMt+4F7ytrb/Fp7v7y193PkmM+x9uaCG++j/ik+Wv3y0X+mj5ZyTJWPktRHA5IfGh4rqrXAw5UbW3x6+E6A4m7DKLrbkKI4rxjc4z9mqGcfJUUKtoPgYCIlpGBbhqy/Oj8IrjShZIFCcFmLkY08GbLmLn2rQg7A9f8yZORhGxkycqW+DBm5U1+EDF2qL0NG1LXAP0udSVyVsF8lhPgCqhKe98GPI4UdWVshEI4NJPsN2hPKVv0NULgRnEymjDwZtmk1iwaFGP518ow8nlXC0r78o7WQVT4VMLyMKYjembQVFFb4d6XlDwcM3s0NTnJe38pvw394tDoH4luJPK0Z+DeqK+RtzRJWAJ6oCuN3pf/fH90bnz+yVLr02lbIRQYlA+G5wdjJeTIij+8GdgfNGuT13RIWFCQKWMjOXqAX4ObP+8iqJV9yatVJ1J05DI/lEDcpYHn1o48+nU5rrUGeFPSZbyPypmAJC3mi3BfeTbQGIb/nZ2JCyF/CQu4R8nwfidQPSHvBmWGrOXS472+hjQ6Yh/3T5uF/yDP0fQ3wVBrlyAMvv/rRROt/vB3ePcEO776JHWhUnV18uNgSFH35yZ+g6FvASki7+JmLEEGogGUrYFZwqTArWCT6On6+sshD6CUsC0RJl0TLYItkaI6fvSySoZWwECa4gl0RJpSwECY4nlUWYUIBy0FMMAUmOIgJPEcdxIQCFsQE0WaRdQgTLM9YhzChhIUwwfKscggTSljIity6kschK3LLY3lkRV7CMoDHWZkE4QnpM89/j6zKS1gQE3jGeogJBSyECcSzyiNMKGEhTKCCAm89wgTiORoQJpSwECaQTBkPCBOIH7+AMKGEhTCBeFYFhAklLGTPp3+/kUdD9nyI52hA9nxKWBnxuGrsce+n28TtfHJ5va5v22ax6lCuZ5d1l9tN3nTZ4vzTv/7dpZvNfFvB9blu77bbw8m42HmxC5lCle7v/wf1+MVP
Copy blueprint
This intersection attempts to keep a pair of compatible lanes running at high speed as long as possible. It works best when many trains in a row are going to the same destination.
The main intersection is 58x58, but the train detector requires the 7-tile-spaced signals to extend past the end of the first train. So the blueprint for 6 wagon trains is 114x114. There is probably room to optimize these numbers by adjusting the train detector.
That is pretty cool:) it gets a score of 53 which is better than an 2 lane unbuffered intersections. Regulary turning signals of, with combinators, causes trains to repath and try to avoid the intersection.
Re: 3 and 4 way intersections
Posted: Sun Nov 21, 2021 5:59 pm
by Lubricus
Re: 3 and 4 way intersections
Posted: Sun Nov 21, 2021 8:08 pm
by causa-sui
2-lane, 4-way buffered by Tallinu. RHD.
0eNql3U/PXUeOHvCvImiTBLA6p/6f08BsgqyTRQJk0TEC2Va7X0QtGbI8ncagv3teWfdeq+Vzpef3zmKmYYmXIh+yyDpVJOvfnn/3+pdXP717ePP++R//7fkPr37+/t3DT+8f3r55/sfn/+vtu//787O3b17//dmf37579qfv375+++5f/v7q9eu3f/u2/uk///rf337z2V+0e38xrn/x7OWbHz77u3n7u+9fvnv2/t3Lhzc/P/uP37988+y7V8/++vD/Xv3wn/70rw/v3v/y8vWLnx9+fPPy9b98/J8XP7x9/+2F17tXP3z7X//7f/sP//PG7JefXz17eP/s4c/PXr998+OrG+eX7149+/Htw5sfn71/eyV6+fOz93959fdnf3t4/frZD6++f/fq5eNfvP/Lu7e//PiXn355/+yHdy//+vL9w/cvXz8C8kGFn96+f/Xm/cOv//39yw9sfnj18ofXb7//vz//4dl/f2T27m8Pv/L+Dz8/++vbx3/y1Z///PD9w+NvHtk+qvby2c/vH/m8fPfDs/7iby///vijdw8/Pjxq9cjog3rPvvv7s//5yP7hzS9/eP7N85/fvPzpxfu3L3589/DDB2v9v+d/7PWb53//8D//+Ob5y+9+fvv6l/evXnyg++lRued/fP/ul1ffPH/4/u2bn5//8U//9vwjZh9++/7vP716NPEF00fmb17+9cMfXFD9H88fGT68+eHV479R/vEN/PK/fPLLSr/sn/yy/ePbb55/APf9w6uPov/6H3//P29++et3r949CvXbr//6iNCL1y//+tMjx5/e/vzw0Xt/haccfxi/AvSitz+Mf3wQ5zM+9cbnu4cfX7x6/er79+8evn/x09vXr37PrpYLsw9wP4L65pH64Vds/+15+fD/Hj3wU2E/mOnoH1T58d2rV2/O/upRpudvXj38+Jfv3v7y7oOmR//2RMwWqVvr19TtNz7f//LuX1/98OJxPbw+wW1+ZNP2R/F+eHj3Uc/nfxwnLMeN5Qdel9V5wnLcZCvnss3fdPywTH/8y/t70q0rozM2Sz1jOxdnV8jv8DkyyOsdyPsJy7IpVO04E60U5rNO+dTQrbYLl/rPOtYzni3kWc95ljOePfTVm1Hbo9cGfEeMY7vy/Weu7Yzr1JXV+rkLlsV2Puezp3zqca7nWQApB3NtX7dJ3TL/aXf8Z53xLJlF5s0g9XP3OXP1Wtk87TSXtZRPK+dAnpmnduZaAvOEaaMNxDJcNB+SEPFdmTu96Beu2z/znGc84+V0B9hTQePV1HKmLU44A5h69jlN+C1ePu2Oymdu35pyrcfX3b7li2kBkiNzzr6dO+dZ9mnxdqwdIGmciTr4fNtD/SfoH6+jFxdL1fX1DNJ551ZPd249XjttnHvnmc/3qkG5Hn8IdjK9sbTr62uph7u5D99CJG28m+sNpI3XUz+Aa7yeXly5jsBL9wzZF7ePqLqSfXI/WNr1dXuNzb4+ag8+aj/b6X3/l5cPb+7i8M8wnLELF9Z+YzSTTcloIuVvXzUh907cxz9xP+M3OPadfm2OSXIppksz9Oc+eupPO3MN1tOI11MfuaxzY66BrDPOWKOArJW5JrLG+epFubJtXw+rszvbIF/NYZ8mn8e/s0+TOfHTpAZLay78NImY7vhpEjGNF9bKma54XR3ANP+IAkutqgdaEdd4WRWw1eqcVhKu4wlcz/jkC0msHq+kKlbPj/fE6vnxHlh9T4/37mz6zgLpXvSTtwbHm3tlrsHx5h6vpb5A1s5cE1njtTQayDqZayLrynbqo9+2lT35qNzTT6ryG+OafFPt+TfVLVaXr+9Vjs3Ztq/DcBQ+VUmE5QP0enqAfjS8O6x3rlmP/pRr5QrXyp/GxA//3Wa9e898Svu7i+f6zeOfn909HwNvQu+iMvlINbhJOMIV276wsE5dddejyhrcphwHcw0wKNvGp0uBsGUrzDaSNv9qGyJtY7aRtPDZduFbjq8HrbIN5vu5vKfXxtvUU7ZMXD9qjKT1s8YS3clvhxwT/XZ6tUXcPynB+PLh832+p1UPeUnGAtuVqt+zielKe9ohaYjEU48f75QXlTKeyDCUl+uXajmXcz3xfDOUc9dNznYP0EM3Bvc41Y0viIIr3FL5lqwEd7glr9foTaRtyjaTtvMRaSTtULaZtPlX3RJpl7LNpN3zFH7lG9wSl3o43yOI2G3jE+hI3ryU4ze+kbxhYeGLSxFX2b9+tF2gsuNc1PNyxY7n0Bmw4dn+FP2nShrpv/6dXM8dYP93bofOZT3wJD7iCrUdRdgWPYvP2FY9jM/YNt0FZWz7E9ieMhp6Hp/JN/VAPmO79EQ+YxvWS31Ib2dh5XSp5sUd7Y7lTzP32JjtSiq2i15yZ9JWZhtJ28KvzdtHS4lKncroeoiewcAn/hkMYXHvaApDnrwOgSE82xiHynuwvAm+E7aHV75BOVmZJb38+A2IqKCs5PUfv0m8ktaLxtcfGRKdr4HKzJAYLnGERH6aOAQIrQXJuIYLrqqbaVF9BO3arBuvBIWLZZWnnXKVda93qGr/R0kgXWFKa/X+QjhHtet9e1kJroPZRjCEKa19ITKew7D0Kj+DYWe2EQyHXt1E0u4bs02kzQtFZhFpK7ONpM1z2e3jJKhmLHmxyG98E8/d/V4sk3c630jepTUNmbg7s42kPbCyMxI2LxcRTzjCfeMnm6Ue3YEc9WlXLCl77h0rUZ9sZ7ZBxVM5hpYkZNJOZhtJu7QkIZN2Z7aRtEf4Bbjdd7F22t288YVGAEPNCz7GymGoW9j/MnaFIV5pswkMndlGMIRNz7MrDOEu8tdixQvnqLqwQtXH7QgyqNir2+58W4LEE27OEnnL5nwTefN6j1uxTiRuZbaRtE2LdUqL3KxAjZXAMJhtBMPMPtyvx+c1mAUAMzrurIfTaQD5yI57e+lztgffxyRs8zqQcgjbwrczEdtqo30+94NT36rcK12SIR4wxWOcL7DTdVu5VzqTdjLbSNqwVLh/IUueG23nYpgIhoPZJjDANI8DpM2LQMYh0uanIrIg8iqQKQuiwaHIhW9QwFnbYLYlKOGsbfL9SSTu8muZSNzdL5KiauEK4z6u1RsJEP0JBVcJEHlRyIsG0lblmgnbsDQokrXrfiniOnRCXOhfeYFIIWiXzk47EmF5WkEpySAxrhBJhB1hJX5b9012iu0TSkQSFLxEJEKhccVFJCzXh0TCDr7oiISdyjYSNl5iUxZDPhFkymLI01i9sA3KUCsUhtRzaU9XWD4T5HaDFElbmW0krdeERNJ6ScgepZwnVIREMHBBSITCUq6RrDvWbUSiajFIIuni4uFEVJ8OEsnKFSFBsVxdPL00KGmrXg0SycrFIJGsU2srIlm5ECSSddfKikhWLgNJZN3DHeK4FUNFVZgVykBajgFUgTTAIDy5nw0xyG/KYH3t6UXZgdJOlTbCNp0NfB1G0xOmfkEWVEhWGBdSz93rFFgZFzJyaWFcSBkgbdXSmkjYplwjWdPt4e3zNipprXnVRwEIdGxchMDCbq1I0h2ZRpIeWqATlAW2vNSjnQeC00HUW1hb1dpdvzodm5zP9ugFMGjKNcIgnSB8O+2bGQZDi4kiDHiCcIRBeid2oB/sWkkUYXAo1wSDEhbiz3nN36dcSsZl1S9yqXzTExRottKYbWJlqdtYIO1gtpG0PBknEpYH40Sy7lq6Esl6KNdE1rqlR1jXGBI9q9OqDsNJIKg6CydCgKs2gjLE5kUbLUGVazYiWblkI5J1aQVEJCuXa0Syhi99zetI0tP43/yoPaiEazCho54vplO/b0/ov0ykbcw2krZz+UBUvtigPON2zZ/AkJb1fjLaP5N3sbwRvjvXDyQoHMo1kbXrk0aJqHlZxgBJK78ZFMRAeJPlPMycP28UrrC233XYcwyGXppHGEy+4U8wWHpnHsm68wV/IuthR5fBI4stLcj49Tmei6hR1Bp8XZys2eG3xUFlTht8WxwJ273LPxF24O1rJGuavW7PJW6ZG/BVcQQBXhVHCPDYgORdtk1nHESoTn1R+c6YzTaf8qTyRg8q//M469F//yfjS48uRz8/eZj5m0fSx/8bpw80T32i+S5+Pr8gSB9Tb6yT7DH5wjoSVS+sI1HDyuG+7i6b89XogwsCCJbOLUggWOkUntvIjTvjWtuCOuFrIj7l0/QyMjngWV25JmF38VSCSFaeSRDJqhMJIlF1HkEkKU4jSATdcRZBIueO2fFecP+0uCPJEnf56H1YEnXg9ZdTa5xGnV3vwiJJ9SosklRnBEeS6jVYJOmBtcPn4Tcv2ljtS2yKZoN2zodvvoKL/nbwxVdyJnPwvVckK197RbLGp4jXvU92iHjovVcEwY5MIwT01it5I3eLjzkuqEZHyX0rKGsAQN90Yn1wItU3nVcfqa+POkfnh33TafURABOZRgDoKNJI0p2upubpk+PbgdNMM9MU7UZOUCw6oa2dv7JeMdHeYdMw0d5h0zXRjnM+Q+8Ck5ftobiinqbEc+/gTuJI1l25RrJyD3Eia+UW4kTWGo/kvdZs9Ch9VW0hjiBoyDRCoOPlT1BZ0KveU60E03DczPj4wPN+uujzSopZcnV3ZnrK5kA2CWptkxl/87pLG1HSauHyubH93erpp2w135zj2TTf3GHT08vBjxWNZQtcpg09hZx/uCMeJJyPQTyYANDb0tvLaD53h9qIeprIzv3w0MvLBIMef9pcbRT1HPTOF7gJBjC14nInGmHA97eRrB3vLiNR9fY2klTvdoLy7d71audIvGrn7HHK5sC+u0ThYZXln0fQU3PnZRBzfUHfEU4vW/1UtNP8lb5Tsvq92HnOlj98kumAHaoe2mnwPF04Y6Zvll2ADWpqOtQ8XO+JIgTieUrXGo0jCvQwhqKMGFmYQrFyDKY+SR6JWrFrLxrp0PMRFP10x3Mao/KCg+sNTUlE1Rkvp+919TmftIs/orgydbTLHRl3kvG4J2M9ZR6eus39niedqp5XGLy4dBUmc+D7Ksw2uH7tK30HsnwcuVqCDusO1QcHINCVawSAnl8nM4j60gPsZMp1X3rSUE7vFfvSCUn3+By20QmmtPZ9Sz+NLw45g6W+w+IZp/Y4lzVePPVU1lMj7zpvLBnK2feOD7xl81n7Hj6jOuYpAqcLPa9BGDdjnfLh5XKHDy+XO3wOymb7XUuc5h2oOVi536QPhaxlfnOES2ffcr/JCxKufnN+/JUOhhjXrXvJziCPIfa/XfaVEW1nDp3Rd0/7RV7aUMr9SbvO33M/R5jLd04xGNv2tJUaYTDSARFrIt/w02hvyJcLfco6h7XrAr3DR7+A7vGZzieAa+FxV8Z1x6naGVdeMOdI5qUGv/H5unRQa3AA17xNHazOlQgZ13jFLLB6XqawxFrxalpirXg17WKteDXtYq0jqkF+cSux+vVR4jNOn5YmfJHT9lVOhYP3cc4oK7B+Ub+uXAs5fV25rtUm95QbmUjlqxLNrJz9q3xWxCew/54x+rrVtB/nDtRWPfDbHjs6fRtNy9PuSVmftk8NpcxWwG9s7xnl00cxvsRofJXR0AR+B7f5tJ1ziFu2Kvav45ativ3ruB3Sk/mifzwIqiXvyhy93G25/PXvftdP+finZ42UA57MuKSCenruNz6pNkiUrk9Quh0nzaR3YTin/j0wj9Z6/JtzcHjeyj1wuLzhHqMuKG+McZv1d6iVz/5k1XYX9fj3v7PDh07mD070+Lfnthii+RPW1Jno+79T9R1U3++rrmef95xHzz7v8dnFFLM/IbyNz6Ec2xcC3in1SQgc3zz+zTnE+s17B5pPKlACaPanQLN/AYj9VO39VOVR8MPkQ/nZudIVP0zuc2qyU3hRrxvBD98X5wz5gbDazhkN/NK5r+M0Hbev6rjw0+m+aFyofw8tutX47a2NuzpCMco1gZ5LFg7euH3U3cVqVvqou8+n2UfdfUbdPuruMxpUAF/n16+MxtRT1XvmW/aRdF/J3T6S7jPizHGu2drsM+auQKvYZ8x9Rvnu99KhXpObg08KQaLL/M/9q50yhZrFA2SFmsUFbKeWHmRsl5YDZWx3LdzM2B5aoh+x3XmiZ8aWj0zr+ara6xMYBfLxcJeMbdcegozt4I3GHTTnExgF8qVvjJSexyh4Y6S0Lypto2/rHiToQy/r7sh2FKrh+By4ecozLe/tt93W7yrdzxm3tDuqI+POAT7ovRjHsBaxFjQ4jGM+8ZsrhGJxvDu/TrYqkcdwhHIeT/wsu9MwN7eNQ9M6Z1TsY2qR4jOtEPnkK23dU9mPOe+o3LULO1k/cxvUH9SCDsuZ14tc7s1r0GQ203dCHsPH1Si/K3A/Z7xjCKnnBjqeGDTu3JnM4vcQxzmjwsvuDiNudLzHqGnzf2jLosXvNWhQmTCv4jISJWhQmUWL31tJENAHC2rQTjTzQpBLgU0mqxXGt6BRbebTKtbI9a/FeupaTZjyd087PWKflV8ruMeoW6V+61+/jZ75SIrrMMigdWTmz31cubbEe5bO9QtacmY+paKfx49z99GnqCJZ8+c/xsplzetNrgOIIlmrco1kxRuX6+ay1WhzGb8BctshtDtXABNe/bgGkHbO6IkXMK3ek2zpIUkL2k9n49uYewof1s/XZhDooHBknDr5aaCDmRUjRzKv47gMQmjJ9isv6ujnIel0QaZvetxeCGy/m3R4juzAIoIMAy1NyDAIv37GfjcanWOwYxV+hoGOsogwGBtWpEey5tMsrlwjWX1vdx5Jh+/tEruP/gS2p4z43LoFw7PmmDhxLdN6KddI1h1nrrWV+OWhXIOGwplXDYyWy5qPsBgNZK06QzOStSnXSNYwR83riWHrUXyGKRYHYKDP0GcYhDlqXQ912sgw2HGoT4vaIOc8eG74+dns4pO6e4zKE/fhMzodW+m59m+M751rr/aEsH/KiAeZt2Du1Vw+yTw5Ll/6gG8mrA4yz2TVB3wzWXWUeSRrXqJwnQ+eXBnkFQr9PNmdhrm8XGEUkLUp10hWnWfRVhSS82qFcQAGU7lGGOiQpUxWnXaRyXrQE+49uY7jVzbuROonPLNxfvvj72zcY+RJ6A6jri9UtOw+6vBHm5ILqYNfberJjdTBzzZFwuq7TZms+nBTIOra9B35zA1W/qZGiRFY8KbGOddzUfVhpxbcn634VY3bFn5P8tDa9HGnDAN+3SnCQJ93ymTl950iWfWpjd8vhFN7wQCMkWMAAzBGjkHh26XT5LJK07zZyzkj7ty5x2jY7UcPrnkXPL9xKQ7pJfGYxWyDi94FD3AMEPZQromseUkD4JoPvABUw+EXt1cK+50HPtcnFQ35G769StPg2aO7//wnxz6+0FgY/v6k+fDXN3y/efzbb09V7/ZC430M9cXdHty5r7zuop1n3NNYW3UueybrrlwjWXXCRyRr0xd3I1lhzkcDWatyjWTV0VB3sltaYHE7Lu4lOS5e/nBIv1MesVo6or197AnoM5FvWY1axnTXsuMeFDWsxi9V9aCqYUEFRsuF7elTVdfC496ir8KuT1VlGOQHiQBBR6aRpAN3C3fqoFafmDLvMorT0KW3sUd23pVrUGGweviJ1o67Xnlq6rzKoo8cg7zKoo8cgxFeaPX904gcYKDDpTMMunKNMNApn5ms2p2eybrw3jmTdbdD85l4wKGSJvrPDW/IwzULT4ic43rOtSrXoFpmzYYXiJmsXblGsoZbvuvtWe9R4s/LLxYgsJBpBECeusYp13P9D+UalJ+spXfIkaxL75AzWfUOOZNV75AzWdM75H53FZw67NI75AwDvUPOMAhLm+YtcI8MA71FzjDQASwRBjBGopwHg1MIYIzElW1QUbJgqMQCYZtyjWTteD0YiTqQaSRpvLoOkHQh00jSPHO1U66nK2s/lGtQ9bHyCo1eclnzeo1eQNb0k+u2J4oqitahL8tlGOjTchkGQ29yI1mnco1kXXrjGsmqzyxksh46qKgHVR37xvOPRlB/sW/8mHAmbVW2mbQ8iCKTtivbTFp9UTgTduKjmD0q79nzyo6LtBkG6duo12LtvmfSHnjzm0Bb8I46QiCv6yiwwEr6/o85QV7mUWDZ5jUf7ZzruawDufagYGYvejWcybr0wjmSVa+GM1kPvXBOZK0b9r/2qBhrz0tAxsgxyKdajAEYNLxyzmTtepEdyao9W5ms2rOVyZpOVbqNORglCod57cW1WG2UxGcPZhsULu2NJ5NF0rb05vg2mi1Et/EzDBkMTa/lMxji8vqGMAyWN4JBm48zFLT5OJN1t5v5TNQDmSaS5sUZBVDt4WSm8nGA3eiBW+WFGfV8cZ1zbco1qJraeziyqfVT/espz4EFC5mkE0sAMlSXco1k3fGqPpP1UK6JrGPDd3jHFm0Ph74RFmEwtKk/w6DhjUcma1eukaxD51KPlphrMtugSGuHkRllgbQ7s42kPbBkIRIWnto4clmhaKOArFW5RrI2Ky7IRE2bwq5xKyqr3PORGeBYM6zYrZdtxkx4ht9e9bgLwDmuO5YsjAjWQ7kGFVF7XrQxSi5rXrQxCshasbQgk7Up10jWjgULoW/lRRuXi58Mg6lcIwx4COGIINiZbVBqtctgjZFL61UbkbRQtbFAWC3ayGRNp01f68NHVMa3a9lGBgGWbWQIYNlGJimWbWSSxovrzpI9/aDNyzbubI1PueZlG3UA13hl1QVc+Ugj4qrDAkZQvrZD0ca5D5xmg0NHBWSy6qiATNZ02ucte0flhvuhwwIyDHQQdYLBkVdtXG98AlmPTRsiM1nDK+U572aYcco3zly31BVNgjs2Hv85ViIvDwMdQS3fEddtlIkw8HCBDAZ+1iqDIez4erEbCkXnVkcgFJ1bHWGQD+UAe+WlG2CtvHKjFBA1HN1xeYVtbon9afr77TnfET2mdJT0lGMh37Drq81TJOopz0MrWIJiyQPmd5zH2tOckz5J0nuuf9Wp8JmkTetMIlS7co1k1W7KTFbtpsxk9aP5oD7uqHw0P4NKtqNyy38krVRulFzaVvSyPhJWO/4zWbHjPxM1PEC8bTyjKskjr9gYAEC4P7ydo++ZrIvy4ryLRD/lrlMBZklkPvTqPqgSO/qGswZGVIF4dJ0bH2GQl2+MBhjoOX0ma9fL+z1DVpsrMwym3iqEfrB0/uqMCsSOvuvp9yyJvHxWP4MKqWPoPXMk7Cj62GII7tD5ABkIOh8gAyEtQWyIwVBpIwxwQEAGAQ4IyCSNF1g5d9nT75C8jKOWnGtexlEbcC14CzBPx5YdeeFGHSBdw9uEjGvH24SMq3alZFwntuxmXBeOsJhBwdnB4zYyWY9/J9fTvUBeudHAs/LKjQaexeM2ImvxuI0M1463KZms2rKcycozf2dQGHYsPpafQQ3XsXQQfSbsoVwTWfOyjZKLuuMY+kzSamUAmaQtPOb+ONJrzmAJ7N3GDc470zuPT0o08uHEs+fDiVdtn40SLtve784ivkf+u9HDH8Yqf/irb0+1etotwIxevT0+LRZJRjTeB3/XbVI753M86XAnVPfYnsa9RUdHR3j0385Xx+ky/nyux5clbhXxCC+y20K+naS+b8XTKHSEl219nuJ8uhXhgpEZlDoeXDAyW4bAjpcsM/loPnSCdoJB2Ta/CggweORbmG9Q6vbIt+INeShuU7aZtN0uyUNhB3LNZA3PKW/RJir4fOS7cAsxzrPYI6cd8+F9TocmxDuMij4NO1eCWeEz/pEs9nSKx+3gfEYlV4+M05qrcrPNzLwH3m85TgG+I/BQtkeyhoo2QYfSahd0KC22QYfCYh90JmteD3K9X19f31g8si16FJuxrXoWm7Ftehibse0aDdd5NMwLQeoQ+aaex2Zslx7IZmx3PZHN2OoUxYxtXgrSxGR5KUgTk+W1IE1M1rQkP2Tb9azzSFIilIOcS3u+OYABHutU2vN0EL+w8rHkbtUIAn2mOZQ1fEm2gqj5BA9BNS8C+ch1lSTJ9vq046w9OXd4ZN80PRzneab3p50U7clJ0SP7QewPhSH80GqM73racdQRwrLTyc7ny+M8RuZVIf18I34ezOL5HuUuCOcLLy4MuX4mr5J96KTPstye0Y0Zh99mU/l2u8NYJcJ3INeWBLa8NqReQTiPPCPMZpc3yFaPdN7tiulznc9X1sCRpRnXvB5kCNd0INU5rOcxIC8OKee4nltr6szSNRIXnfoRttq5i85BFx2fY3meWqAgZInddU5pyHbH/XzI9sBI2rO8vXTI24pSVV4WcmUbnRMvrblad85Ol852W9HZaTrFow01U/iwUa/KeNI4vn27g+dSw9w5xlk7ze3Zt8htwsVz262vmW1L9w0nAq2VbfV2LVJcdz5Xdl0x+53dx6cvqSRXKXu9dwHySV1HXo6xQznGl96BPn/j+c7bzo+yDrv2+YLWug3c7+TYfaEz7y105h0tfPeK69PxHRFqv3J6NNn7h9evfv7VZL87ofl4RFM+fIFdWL9++eaHPz+8fv38gwx36GtN6T+mobohfUnpP+54ykT6ZfS5/PVJ8teO9APpY3wK4lkQz4L+VtDfCuJZEM8N8dkQnw3l30z+y567KP1E+mX0sb5XepQ/9v8Pp9Af5O9IP5Ae5akoT0V5FJ8a2/fjp2NpSN+RfiD9NPqK8lSUp6o8iH/dU/qJ9ppor4n2moj/RPwn4j8R//kk/GuaHy83uKUgfUX6hvTd6KvSD6SfSL+Qfkd6tG9L95+X8fZF6QvSV6RvRp/7Q0d/6GjfjvbtaN/+JPu22F4fv6c2I59Gfhh5QWkKKps7Z0Nna+hsDZ2nofM0dJ72JOdpiGeP6T9+nL7oSN+QXuUpRr8ZOXJH4REbhH4Y+TTyZeS7kR9oJjWr2hWhr4h9RX0b6ttQ36aOjJ7cEM+GeDZ05obe3NCdG9q3o3072lejftdIhfbtsX0/HgG+mEiv/DvSN6SvSF+MfjNy5I7CIzYIPVoWHWcZ+W7kB5oJzVoRyopYNpSnoZ81dTT0tIb4NMUHna2htzV0t4b+1tG+He3b0b5dIwnaV7NQR/v22L4fL4peKP1E+oH0Hekr0hej34wcuaPwiD2adjfyA1VFw1Z0nIaWamiqjvJ0NJYu3J6a61JY90LpF9JPpB9IX5G+GP1m5MgdwUHs0bTxUqx4uX6hb4hlQzA7otkRTl1aPQ2F9eNl+Qul35F+If1E+ob0FemL0W9GPowcwUHs87WIhRwX+obgNMS+oW074tPR93UtDnWeGJ918eUNf3Ag/Y70Hekb0lejR3GGkU8jr6hsRekril9VfnSehs7Z0Psb4tlR/oHy56t3XlYv/2DDHxxIP5C+I30zeiRHaVDZ+KK/YlVbxaq2ilVtV/qJ9Avpd6RH56zo/BVXV0X7VrRvRftWtG9F+1a0b0X7VrRvQ/s2tG9D+zYNVmjfhvZtaN+G9m1o34b27WjfjvbtaN+u2QXt29G+A/HR7caI8RmX3UbTH/C/UPQHG/5gIv1A+m70CBAaAIVRMNVa6g7qb0X1ReMWdJ58wzRwwzRwwzRwwzRwwzRwwzRww4Rl+hXL9CuW6Vcs069Ypl+xTL9imf6VHu3bNFqhfRvat6F9G9q3oX0b2rehfTvat6N9O9q3azpC+3a0b0f7drTvQDx1gzViPLtuyLpuyLpuyDpeBnXcj3Xcj3W7OO22Heu2HetUw1Cxi6piF1XFLqqKUxoqTmmo2HVVseuqYtfSlV69Ad2ho/wd10rHtZhffnUMb/1J4W3E/tAuwYp/0PQHFX+wI/1C+mn0m5EXI0dwUFeE8kBVFRrFBvlX5Y++nwdP7Nqr2LV3pcel2FDfjiulo3d2dM+O/jkQHw2eA/1hxHheuxqH/qDrDxr+4ED6HemXKmD0m5EjdxQesUHoC+palR7BqeibFZ2/4urKoy12N1bsbrzQd/Seju7T0X8G+sNAfxiIz0B/yKPttbuOfzD0B11/sOEPDqTfkb6qAkaP6qLBlpEjNgWxr4hlfvKPfX8V+/6u9Ih+Q30b6ttQ34b6NtUX3a2j/wxcLAPX4kB8NN6OGJ9rX9iuP+B/YeoPhv6g6g+K/mDDHxxI35G+IT0jZPRoMfQI9LiCYKq/qUPritElWdDZKjpzRWeo6GwVnbmifSvat6J9K9q3on0r2rehfRvat6F9G9q3oX0b2rehfRvat6F9G9q3o3072rejfTvad6D8Q5MRyj/QH3SPNVJ/KAfuyW4/WPqDqT+o+oOiP9jwBx3pG9KjxijOMHK0l5qrIDgFtS2orvqnLgBdYfEW60Jf0ZkrrpaK9q1o34r2rWjfivataN+K9q1o34b2bWjfhvZtaN+G9m1o34b2bWjfhvZtaN+O9u1o367JBe3b0b4d7TtQ34H6DtR3oP/olmzE/nMd5cA/2PUHS3/Q9AdVf1DwBwPpO9KjxqgvckfhERvFXo2r3lNQ3ar0iE++49gx4+2Y8XbMeDtmvB0z3o4ZZscMs2OG2a1M6rpc0J8H6jt0+aK9NMPMDenj+HCdZ7LhD/KUtzTlLbzpv/2g6Q8q/mAi/UB61BjFR3hQGPSHgg5X0KPVtuo8VW2FvtDQ1/IMszDDLMwwCzPGwoyxMGMsKw270A/0h4H6DtR3oL4D7TVxPeYZ5jJyp/IPNvxBnpImlh7cftD1Bw1/sJB+Ij1qjDarRo7goHkL+k9BZQtqW9F5Ktqqoe/kGQDnrBScs1JwTsmVHn2/Iz4d8Rlo34H6DtR3Iv4a0Wfs/5cZJfm1xPUH/C8U/cGGP8jP4YbevQ5NSkOT0rBqtSv9jvQKESKEJkOXQJdDbBD6grrqCqvoOhV9s6JpK7pOQzw74tnReTrK39F9Ouo70F4D7TVQ34l4aoqZsf93TUldU1LXlNQ1w3TNMF0zTMeE0TFh4PCOmwJGvxk5ckfhERuEXn1Bna2g+AXlr2grXV26fDU+5AkVZ4lc6dG+Fe1b0b4V7dvQvg3t29C+De3bUf6O8neUv6O9OtproL4D9R3ozwP9eSA+E/HXDceM48Nl0ErlHzT9QcUf5Dmg6Y6m6Y6maTVxwx0NztO50rMRVGGjR3gQfjQvYllwBeS724ZbpoZbpoZbpoZbJpzwU3DCz5UefVMDkEa4ivataN+K9q1o34r2bWjfhvZtaN+G9m1o34b27ahvR3076tvRvgPtO1Dfgf480J8H6jsRT90yTfSfGceHy7ikPABV3cNV3cNVvfmuuoeruoerWh1cdQ+HY7Su9ApqVQWMHp0CnQ6dGq1bEMuCyhbUtqC6VekRn4rLq6IvN8S/If4N8W+IZ8e11VHfrosLY8/AtT5Q34H+M9B/Juo7Ud+J+E+NbrG/XWdu8Q+G/qDrDzb8QZ7kiyb5ovXQRZO8DmO7/kBRbWoFo0dx0InQSdVcBcEpqG1BdfOsWjCrFsyqOP2s4PSzgtPPCk4/uzon2rejvh31HRgdBvrzQH0H+sPEYDVR36nhAf1nxv5zHRu26w/4X5j6g6E/qPqDoj/Y8Ad54t60om/TMnOdoVd0ht71B2o3VRk1RnKUBpVVMNVa6g7qbxonKi6AhiusIf4No1DDMNcQn474d9S3o74D/W2gvw3Ud6I/TFxfE/WdiKcm4pn6z4F5+8C0fWDWPjAHH5iCD8zAB+bTA9Opjks7rOD9sFSKk9IOqnc/KI3akLTDit0PS6I4Iw1HROGEKBwQhfOScFwSTkvC4UGH5Z7DKuhxctBhieew8vnDitkOy1KHJanDrlkPS1HHUzLUTF3sMsmnKv2O9AvpG9JXpC9GH5+07ZgAdXjUbuVxu9X775YucczUTtX+NjPKRkbtVBe3U2PAbrkVx0vtlv12y367FSjh6CScnLRbATjONdot++1W/b1bZRLOQNotWe6WLHfLfrtlv93uK3fLfvtTst8yF1vparrMGIoX68JcvDAXL7w4XZiLF+bihcXnC3OxjrValluX5VacaLWsxmlR2fmiTGyzrxblVhtlhZOslmW/ZdlvWWUQTnValv2WlebiiKZl2W9Z9sP5TDieaVlR7rJ0tiydLbuHXJbOlqWzZensMtCoKf1m9HH6m5j+Jl5wTkyXE9PlxHQ5sTB4YnrVGV3TqoKnZVcczzUtXU5Klzaaa1KB76R0aXO5piW0aQltWg0PzqialtCmlblOq9/B+VTT8t+0klgcTjUt/02rh52W/6blv2m3f9PS5bR0OZ+SLlfqkQOz68DsOjC7DsyWA7OljigbWGKr48N0etjA+locBYaTwIYV1w7LljYGbFBp7aBsaTPAhiW0YQltWCkMDrgaltCGJTScbjUsQw2rRsXRVsMy1LBS1GEZaliGGnb3NyxDDctQwzLUZRZUU/qC9JvRx7UyHTNax4zWsfi0Y0bTcWU6raxj4WnHDIizzbqVnXbLgDjYrFPVaacMaFPNuiWpbkmqW7kmzlDqlqS61WriACWcn9StUBOnIXVLUt2qNLuVv3TLad1yWrcbvW45rT8lp63UIxumwIYpsGFKa5jSGqYoHUCl86calnM2TFE6rapZQSfOnsLRU41KWhoVgDbKZzakCqfKNEs5zQo0caRMs5TTrEAT58k0SznNCjSb1Zzg7JlmGapZhmqWcpqlnGbHiM1STrOUUzHlVEw5FVOOzuSp2EGgA3Z0vk7FgsuKKUqn8VQrC6lWclktoeHgnkoZyqbw2BCeapP8qg3aw5kr1VJUtSrKanUkOJ+lWkarVnSJw1mqZbRqGQ0ns+BglmpVlNVSVLUUVe0csdo3V7UEWC0BFkyABRMgD6zRPnltYtcedm1h1w52bWDHN2awex2b1+2JGetct8Z1nB2Lo2OxbRq7pvHtF+yZxpZpfPgFx7ZjfzW2V+MjMdhcjb3VOB3UUk6xlFMs5RRLOYVSzmYZZ7OEg4NZcCwLjkzBgSmblQjidBWcrbJRheBGaclmqmxSH7hJSqJZKhulmI0yjM3Z2ChhbFQZaBM2NsoWGyULm62xUezfqMjPpmpsFPg3qvDbKEtslCQ2yhEbpYiNMgR+k+AnCX6R4AcJfo/g50ixooNiCQW/dQoV0RXKJ/aZU6SCrkg6oS+cQsdkhU7J7COhUMwvVDtnXwj2gVCocM72+4VifqGqOdvsF4r5NlzRPgzsu8A+C+yrAC9i8B4Gr2HwFgYvYfAOBq9g8IGDahmlWkaxpw0qJZRKCcUeQbAnEKqknyrpp1IcrxTHbXR9pTheKY7b0PpKcbxSHLdx9Tas3kbJ2yB5GyNvFxB2/2DXD1jxhQVfWO+F5V7Noj4Wh2FtGJaG4cOEWOhljxLak4RW5WXPC9LjgvZal73VZWVVVlVlr3rZm15WgWXvedlrXlZPZS9t2TtbVkxl1U5W7IQdJthggv0i2C6Cr893i83YW4KtJdhZgo0l2FeCbSXWVWJNJdZTYi0l1jphnRPWOGF9E9Y2YV0TnS5frcXCOiyswcIaJqxfwtolrP3Buh+GRWdsaB8WnbE9fVh0Hhadh0VnbGXHTvZh9TrDojO2vQ8q1xkUna3n3RqkB0XQQQUv1h09KIIOiqDWGj0oJg6qXbG+6EExcdCVpDVFD4qg14lYSF6NvBB5GnBxeta0gDst4E4LuNMC7rQ6lGkBd1rAnRZwJxWuTArPk8LzpBA6KYROqgGZFEInhdBJNSCTQuikEDqpBmRSCLXBSjZXycYq2VSl+YTwvEJbLovOy6Lzsui8LDrjZF8c7Lss9i+L/cti/7JgviyYLwvmNgN4USxfFMsXxdtF8daGyy6Kt4virU2WXRRvF8VbGytrU2VtSqwNibUZsYui86LovFu83S3e4jslu4Xn3cLzbpOH8M0UfDIFX0zZLZrvFs3xeRV8XWW34G+Pq9jbKva0ir19YU9f2MsX9vCFvXthz17Yqxf26IW9eWFPXtibFPYkxU7xeaf4fNjhxmHh/LBwju804rOLh4Xzw8L5YeEcn4DEFyDxAcjDwjk+F4mvRR5Ut3FQNLeHJe2pvYMi7kER197Zs2f2DiqXOOj6zt7YOyjiHlRccVDEPSjiHk+IuOl5xe0db6VvSF+RviD9ZvTpxOsb/Y70C+kn0g+kR/tWtG9F/AviX1D+gvKjOOgN5gzduHeTfZilhjnmMFWHqTrNqtOcZtqamobMsgi4TFWM9ytV9dqkqPQd6RvSV6QvSL8ZfZxOCqaTgulEu0S1TVT7RLVRVHs5cW7NjR7lR/HNut24D5N9mOsP87Rhqg5TdZobTPPiaYtkmY8tkx0j8kplv3YcKv1A+o70Demr0ccBE1ssC/ZYFmyyLNhleaNH/AviXxD/9O7zRo/4GDzDuA8Tfhg2w1wzjrDW1lds0GGxxr5inX1XckNmmc8vkz2OsNfuvoX0yn8gfUf6ZvQV5a8ofxwxsUPxRo/4FMQnjpg4vr5gV2Ox7rZi88WLzRcv1g5XrB+u2HzxYh1xxVriLuTL3B6jzkJhUtyvHVFKv5B+Iv1A+m70FeWpKE8c07Cz70aP8hTEJ46BHWMgdgMW6zcr1nBWrOPsSm5YDjPtNM+Zhsw0v5+2zJdxX8jdYtRKcb82KVWjb8g/DrEDQ+zAEDswxA780MZWvoK9fDd6tFda8lCw+69g+1/B/r8bPeITh/yBIR87DIu1sBXrYbuSm7LTbDvNdaZ5/rSFtZDc3Ayj5p4COTHIXukL0qM8cRCfGMQnBvGJQXxiEJ+4T8ZexYLNigW7FW/0aN+K9q1o34r2rWjfivataN+K9q1o34r2rWjfgvYtaN+C9i1o34L2LWjfYvYdSG7SDFN2mi9Mc7VplprmCMv8bJkbY9bdDZnd1vie+szCLcDCLcDCLcDCLcDCLcDCLcDCLcDCLcDCLcDCLQB2xBZsib3Ro30r2reifSvat6J9K9q3on0r2reifSvat6J9C9q3oH0L2regfQvat6B9i9l3GPth0k8z7jTfmQb9NMvuJvtusu+2rOKsi52tBVtbC/a2FuwnLdhQWrCj9EaP8serEHtQi/VEFmuKvJBPA3Oaraa5TrwKLz1X6UiZG30x+tjzsQ2wYB9gwVa9gr16BZv1CnbrFWzXu8lP5AZON2y6iT4MmWGOM032achMg32i7LamMCTsJvuezqy/9PSkXnCjr0YfP/qBHWEVO7xu9Cr/ZvTxuyLYEVaxI+xGT+SmbDfm6DrDkBnmONNUnabqNCtNU3XamkoDzoV8N9n3VPaCAadgwMGeoYo9Qzd6lL+q/JvRxwEHe5Iq9iTd6InclO3GHF1nGDLDHGeaqtNUnWalaapOW1NxwCkWcIoFnGqfVDf6YvRxwNF3zap9Ut3oVf7N6OOAgz09FXt6Kj4qZk9/4dtflT6pLuTDkBnmONNkn4bMNNgnym5rKg44lT6pruSp7NhSUrGlpGJLScWWkootJRVbSi70w9gPQ2cY+NOwjBdJs0ViLRzVWjiu5Om7eh033h3zZrer7Ct9epVdsQuiYhdExS6Iil0QFbsaKnY1VCv0v5IbOsPAj1+ItHdxqjUpVGtSqNakcCW3ZTXNqtOsOs2q06w6zaoYoKZZdZlVl1l1mVWXWXWZVZdZdZlVl1l1mVWXWXU3q+5m1d2sGn/IYlPOjb4g/Wb0cYbFpp+KTT8Vm2wqNtlUbIKp2ARTsUmlYpNKxSaVam0kV3JDc5ixhvnCMFcbZqlpjjBtHU4z0zQvmGbVaVadZtVpVp1m1WlWXWbVZVZdZtVlVl1m1WVWXWbVZVZdZtVlVt3NqrtZdTerxhkfO7IqdmRV7Miq2JFVscOnYodPxQ6Zih0yFTtGKr57VvHhs2odKdU6Uqp1pFzJzbbDoJ9m2WlATrPTNNynITNtEU5b48uEWSbMQmHMCXZzgji6YvNKxeaVis0rFZtXKjZPVGyeqNh8ULH5oGLzQcXi/YoPl1V8uexGb/gME2eYtnGwt1aFK7m52jRkpgE/URhbtsuQWSbMQmFsicTxdceItmNE2zGi7daOV7Exo2JjRsXGiRv9jvSIfxzRdoxoO0a0nSZRXclN+jgAWpdItS6Ral0i1bpEqnWJVOsSuZAvQ2YZMstkXyh7uqIOjDgHRhx80qtiA03FBpqKDTQVG1xu9Ih/HNEOaxC90Rek34ze4BnGfZjwcbw8LF5ag061Bp1qDTrVGnSqtdBUa6G5kpvPL8N9Ge7LcF+GTBqN22bhteEDWw0f2Gr4wFbDdqGGD0g1bC+60qfh9UaP9krD641+M/rDyE3bbtyHyZ4G42btRc3ai5q1FzVrL2rWANSsAehKbladZtVlyCxDZln8WLa8l/nMMp9JQ33D16kavk7V8HWqhq9TNey8utGjvhX1rahvHLsLxu5iUxuave7U7HWnK7kp2417N9njzGCNXc0au5o1djVr7GrWqdXs7ahmjV3NGruu5OYE05xgGe7LcF8WDJbFmmVWjRMJPkvV8FmqG31B+s3o40hfMdJXjPQVI33FSF8x0mNL3ZV+N3LU1pTtxr2b7HEisQ68Zh14zTrwmnXgNevAu5LbGpmGzERkzGem+cw0J1gG5DIg41DfMBY3jMUNY3GzCZM3+ob0qG9FfePYit2PDbsfr/S7kS8jn0Zu2HTj3k32bsgMw32YWYchM21RTfPhaUtkGjLTkJmIjPnMNJ+Z5jPLgIwjfcfQ3TF0dwzdHUN3t+HAN3rEpyI+FfGpiE8c6rHDtuG7YVf6aeTDyE3Zbty7yR6nBnvyrNmTZ806oZu1BzdrD27WHtysPbhZe3Czft9m/b7Nemab9cy2gYcgA6P3wOg9MHoPjN4Dozc+edbwibGG3ZUNuysbdks27Ja80aO+w8g7eg+Rd+PeTfY42A+7mLW31Jq9pdasCbZZI2mzRtJmjaTNGkmb9W42691s1v/YxlOid3xqgk9zNXyaq+HTWQ2fzmrYWNewUa5ho1zDp6QaNso1bJS70aO+6j6IPpF3495N9jh2TwvG04KxNTReyc3LhjnxNJ+Zhsw0ZKYt8GnxY5kwcTDGV48avnrU8JWhho1yDRvlGja+NWx8a/jqTsPGt4aNbw0b3670CA96mypL5N24d5M9jt3L6liWxW7rT7ySm1MO8/lhPjMNmWnITENmWriZBuQyYeLYvWPs3jF2Y8tew5a9G303+jgWY8vejR71jWPrbrF1t+vE3ULxbqF4t1C8y+z3C3U35t1E7wZMNysNU3WYqsM8eJjLDFN1mqrTVJ22+KYhs8xn4kh8YCQ+MBIfeMCMrYkNWxNv9IhPHLmxNbFha+KNHvE5jBy1VWWJ3DzHeHdj3pG7LapuPtnNSN1cYBgyw/x3mMcMU3WYqtNUneYE05CZhswyF0vTQseWxxt9QfrN6NN7x44tlR1bKju+2NaxRfJGP5Ae9d2NfBm5KWuuYI5mZirmZegEzbh3w6UbMN1M2s1huqk6zNuH+dcwVafhPg33abJPk32ZR8ZZAZs1OzZrdmzWvNFvRh9nkWIXrB2bOzs2d97oEZ84i+AzfB2f4evWrnkln0ZuyhqUZiiDpZoXoxM08+FmS6Sb7N1M2s1huqk6zNuH+dcwVacBOc0JJgpjuC9bHXHWwUbQjo2gHRtBr/RxFqmYRbARtOPbih3fVuzY2NnxrcQbPeq7jHwa+TByw8Y0NRxREnMC9LFmNmq2QpotwG4m7eYw3VQdZtRhVh2m6jQnmOYE04CcBuSytYRJJy317Ngg27FBtmODbMcG2Rv9jvQL6VHfivoW1DfOUQ1zVLNip249r1dy9U4iN1WNtwluqKAPVNRzGrktkGbrrxuO3YDspmo3VYfhPszBBnqY+cy0sDQtCkzDfRruy3CPEyb2GXfsM+7YB3yjX0g/kX4z+jg6dSs86NgH3LEP+EaP9iqIT0f3QWsRuckyiNrcrBnzhtxtjTRzyW426oZ6N2SGue8whxmm6jAgh4WOaStvms9M85llQMZZB/ujO/ZHd+yP7ti/3PE12Y6vyXbsd+7Y73yj35Ee8Slor4L6orroneicpqt5gvmZWSmd+XslN8mbid4N9G4m7abqMHcc6AGm6jCrDlvaw5bSNGQmerv5zDRklplpmZniFIhd4zf6zejjo0TsGu/4HOuNvht9nKImpqiJpX3YNX6lR/hR24rCE7lpajialQyVZkuwmUc2c/humHezaDdVu3njMA8YpuowHxjmBMNUneYE05xg4uIw3JfhHic07Ly/0W9GH2eohUeJ2Kl/o+9I34w+zlALM9TCskHrvL+SI/qoLPqmuaY5pvE2PQ1Es1AzDJu5b7PV0Q3zbqB3U7Ub7N1wH6bqsGU9zMGGqTrNCaY5wbSINA2ZaWZaZqaFYSD1yB2T5Y7JcsdkiaMRbvQN6RGfOPntmPx2rI602QhX8mXkpqy5TiFqM5OhYi5cTM1mejZTtJm7N1O1m6rdVO2majff7eYD3ZAZtqyHLaRhqk5zgmkhZpqq04Bc5mJx9jswPR2Yng68oMN5ETf6ivSIT5yeDkxPB5aR2MCIbgMjruTTyA0bQ97saiiaz8f57EJuejbj3pA7wmg4NvPGZrh3Q6ab83ZbGt1U7abqsKgxbOENQ2aaz0zzmWmqTsN9Gu5pch2bZb8b/UL6ifQV6QvSIz5pthw4RuNG35Ae8UH4UVtT1kQ3YEySYl5QzMnQRumG9YqLyd5M9mbru1n4aKZqN3fs5uzdVB3mkMM8cpiq06w6zSOnqToNyGk+kybAUTBDFcxQ+L77wJEbN/rN6AviE2ecghmnWMHlsKEbV/Ju5KasUZsopqc5JWKOJkWPwQUY70CLZcti2bJQqeiV3FRtpmo3B+vmYd1UHeYzw3xm4FrCxWROMG01TUNmGjLTzDTNI6d5ZJyLK+bWirm12lXhwMElV/qC+qaVogMHl9zoC9KjvghnQ/SJ3GQxxzG3XESNNi0GYjFYcAFWU7Wau1dbTc1s2kzVZqp2M1M3M3VTdVgYGOaRw1QdZtVpIWmaqhPjgPlMnFwbprOG6azZ1eLAmSgDZ6Lc6HekRzzj9Ncw/TUqQx02FOWGPgpP5OZpk6jNSuYDxVAphnmxBVUMRVze1VCvBns13Jsh00zVZqo2U7Wbz3TzmW7IDIsxA5e1qTrMCYYFvGmqTgNyYghLXaxjLu6Yizvm4o4XnTjN5Ua/kB7xjHNrt9zaqSpo2HSWm/BEbpoajmYlQ8UgR4MWw7CYhYqtpmKLtVgswKWBKw8XdjGrVrNqNatiEMMYiSEYI3w1q1azajNVm6naTNVuVu1m1W6qdlO1m78P8/dhyAxzgmFLe5iq03Cfhnu8HRu4/xm4/xl4jY5zgm70E+kRnzi92lyhK/lu5AoOkZumxtv0NBDRRMUkL+bwxdZTvAMatgMatgMatgMatgMatgMatgMatgMatgMatgMatgMatgMaVEp/JTfZm8nezUzdzNRN1W4e2c0jh6k6bPENW3zDVJ0G5DSfifcoEzcREzcREy9McJLTjX4gPeKzG/kyclPWoDRDmRsgimgk9IFioBczaTMcmwEZZ4Rp1d/TMoJNubqSG+7dcO+m6jBVh3nkMI8chswwZKaZaZpHTvPION8szB8L88fCC3ecs3SjR33jjxCbtHQln0aOypquZtlK1IYiym0gFjNRNYds5u/NQG+I+m7kpmo3VbuZqZuZuqk6zMWGLbxhqk4DcprPxPljx4i9Y8Te8RoXhwkNHCZ0o29Ij3hOI0dtUVnT1TQ13ia4oVIM8zgj7FZntFsC2S2B2KSlYZOWruSGTDNkmiHTzQm6OUE3VYd5+0B3N1WHATnNxeJ8c2ACOTCBHJhADrwHw/E9N/qK9IjnMPJu5Kis6WrUJorpaSBOoi7GvCB3c9+K5LaYqq3VZqGgGTLNVG2majNVu/ljN5/phsywhTds5Q1ceob7MNzTZDY3yx43+oX0E+kr0hekR3y6kTcjV2WJ3DQ13ia4oWKQD6I2bzRft5V0mHXQmGZNXHTF7FnMoMUsigEG4xeGx2JWrWbVimvUrFrNqtWsWs2q1axazarVrFrNqs1UbaZqM1U7xl6zajdVhznwMAcepuowIIf5TLptmwX3VQX3VcWOjScObbrRb0aP8FSUhshNdONtgjei7kRtDmDuZc67E7V5CvohunkxcxazZzGD4pLGiIEBqZhRi1m1mlUrrlGzajWrVrNqNatWs2o1qzaTvZnszWTvZqaOwdRU7abqMAce5sDDkBmGzDAzDXOxYYEj3ldV3CdV3CdVu16fOIDrSo/q7kRushsyhvsiatPSIEQHQP8qpmgxTYupGue9SsW9V3Lzrma4p8W9V3JTtZuq3XAfFgOGqToMyGEOHEf3hvG0YTxtdjs9cQLUtAlQV/LdyBHMSeTG3CQ3WNAJiulZTNFqHhB/SzQqQLqSVyM3b2+2mLoh003Vbqp2c8huHjlM1WFADvP3OAR3jKkdY2rHmNrxztZG+VzJl5EjmIalyWKKHkQdJzIbWTNtZM20oTLThspcyJtxb8jdvLfZ4mi29po5QTdkuiHTzQm6uXs3VYfhPgz3OGIPDJEDQ+TA6xcb33Eln0aO4HQi34n6IOo4SNpUi2lTLaaNqZg2SOJKbtybIdPMH5vJ3swHmqnaTdVuTtDNCbqpOgzIYWEpDpITo9jEKDbx49zmDVzJh5EjOM3IFUoiNxyNtwluqBjkZk9zlkXUO1EfZh00plkTl3QxexYzaDGLFjNpMZsWM2oxq1azasU1alatZtVqVq1m1WpWrWbValatZtVmVm1m1WaqNlO1mardrNrNqt1UHQbksOUxbHnEu6qFu6SFu6RlVxg2JeNK3oy8oq5EbsAYbxPcUDHIB1FPol5EvRO1+SF6OS6iYuYsZs9iBi1m0WImLWbTYkYtZtVqVq24Rs2q1axazarVrFrNqtWsWs2q1azaTPZmsjeTvZuZupmpm6rD/H2Yv8f7mB13DrvtHHa719speeyWDnZLB7ulg90Cts1fmTZ/5UpuQDaTvZnszWSP66x2W9o2IeVKbu4+zCPjpX3gWj1srR62Vg+7XzrsYPagjeFhkeCwSGDTKKZNo7iQx7fBh61VmxdxIe+GTFy/c9jStnkRV3LDvZu7d/PINBKsjdbelXwZ+TTyQeTFVE0X37Je7mW93BfytHLjSt6N3IDsBmQ3INO1uqxJ+EpuZupmpm7LI12rq9hqKraaiq2mQmdty3obl/U2LusPXNYfeCFPKwKu5M3IDchmZmrmYt3M1M1M3YDsBmQ3ZLr5TDefiSNBtbVaba1WW6uVzsWv5NXIC5FvRG28TXBDxSA3e5qzLKI2vz3MOmhMs2YxWIrh0kyYhr5lztXMu5q5VzMgGwJpHtbMxbq5WDerdrNqx5BhVu1m1W5WjfNdsxTTLMU0SzHNUkyjFNMoxTRKMY1STKMU0yjFNEox1K63qF1vUbve1TpoTLNmMXMWQ7EYjM1UbaZqQ881123mu82ctxnuDXE3/23mwN2s2s2q3azaMSCZVeMERm/RL+pIW9aRtuy9+GXvxS97L35Ze9yy9rgLeTUgmwHZDMhmQDZzsHgtWYPOshd2l72wu+yF3WUv7C5rLlrWXHQhTws8lnULLesWWtYttKxkfVnJ+rKS9WUl68tK1peVrC8rWV9WC72sFnpZLfSyWuhlFXnLKvKWVeQtq8hbVpG3rCJvWWXYssqwZZVhazfcd8PdCmuWFdYsK6y5kFcTppowFYVJzXQY7vZkx7IiiWVFEhfyasJUEybFfbdp5LvdYO92g73bzO3dZm7vNnN7t/vC3e4Ld5uaudvUzN2OuXc75t5tDNtuY9iu5N3IU2RsVNNupzO7nc7sNqppt1FNV/Ju5CkyNhJlt5Eou80S2L80S+Dbb54/vH/118c/++71L69+evfw5v3zbx7//rtXrx//7E/fv3399t2/lEcWx/hm+/Z//Ok///on375/9/Lhx7+8f/Y5wX+5Evzy5z+/evfqh98R9CvBi7+9/Puz//38f/3l4d3rn96+ff2/nz/+u//66t3Pvwpe99LXUVefR53b/o9//H9nbm/w
Copy blueprint
Results in testbench 4.2.1, factorio 1.1.46 (build 59110, linux amd64): 45/48/45/46